
RC23168 (W0403-169) March 30, 2004
Computer Science

IBM Research Report

An Authoring Technology for Multi-Device Web Applications

G. Banavar1, L. Bergman1, R. Cardone1, V. Chevalier1, Y. Gaeremynck1,
F. Giraud1, S. Hirose2, M. Hori2, F. Kitayama2, G. Kondoh2, A. Kundu3,

K. Ono2, A. Schade4, D. Soroker1, K. Winz5

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2IBM
Shimotsuruma 1623-14

Yamato City
Kanagawa 242-8502

Japan

3IBM India Research Laboratory
Block-I, IIT
Hauz Khas

New Delhi, India 110016

4 IBM Research Division
Zurich Research Laboratory

8803 Rueschlikon, Switzerland

5IBM
P.O. Box 12195

3039 Cornwallis Road
Research Triangle Park, NC 27709

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Authoring Technology for Multi-Device Web Applications
G. Banavar, L.. Bergman, R. Cardone, V. Chevalier, Y. Gaeremynck, F. Giraud, S. Hirose, M. Hori, F. Kitayama, G.

Kondoh, A. Kundu, K. Ono, A. Schade, D. Soroker, K. Winz
IBM Worldwide Research and Development Labs

Contact: Guruduth Banavar, T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
Email: banavar@us.ibm.com, Tel: +1-914-784-7755

Introduction
Pervasive computing enables information and applications to be accessed anytime, anywhere, using any device. For
a user to have a satisfying experience accessing a pervasive applicationusing any device, the application developer
must author the application to execute on multiple devices. In the past few years, there has been a proliferation of
computing devices with a wide range of capabilities; these devices include PDAs, internet-capable phones, and
consumer appliances. Creating and managing applications for this diversity of devices has become a significant
challenge. For example, building an interactive web application that can be accessed by multiple browser-based
devices usually means writing separate applications for each device. This is problematic, since the application
developer must reflect any modification in several versions of the application.

The need for application development support is particularly evident in mobile devices. These devices are being
released at an accelerating rate, with any particular model having an increasingly short lifecycle. In addition, both
hardware and software manufacturer’s time-to-market is becoming shorter and more critical. For these reasons,
development and maintenance of multi-device applications is growing prohibitively complex and costly.

Multi-device applications are also essential for enabling future types of pervasive applications [Banavar 2000].
When pervasive applications are enabled for migration between a multiplicity of heterogeneous devices, application
authoring becomes far more complex. In addition to being concerned with presentation on each device, the
application author must also address migration issues including user interface consistency and differing device
capabilities. A technology for authoring multi-device applications is essential to manage this complexity.

One solution to this problem might be to author a multi-device application just once, and to build an intelligent
infrastructure that can automatically customize that application to the context of use, based on meta-data describing
the characteristics of the context of use. However, in reality, the more specialized the characteristics of a device, the
less likely it is for an automatically generated application to be usable on that device. A good solution to this
problem must allow for both automatic adaptation as well as developer customization of multi-device applications.

Multi-Device Authoring Technology, or MDAT, has been developed to reduce the complexity of creating
interactive, form-based, web1 applications and targeting them to multiple heterogeneous devices. The approach is
for the application developer to specify the common aspects of an application within a device-independentgeneric
application, and to use the MDAT tools to create customized device-specific versions of that application. MDAT
enhances reuse by enabling the generic part of an application to be shared across multiple devices, while allowing
device-specific extensions when necessary. MDAT also automates repetitive tasks such as writing the same
application in multiple markup languages. A distinguishing characteristic of MDAT is the combination of
automated generation of device-specific applications based on device characteristics and a rich set of tools for
incremental manual customization of the application for specific target platforms.

In support of the above approach, the MDAT tools provide several capabilities:

1. Visual specification of the generic application flow and user interaction common to multiple devices.
2. Visual specification of incremental changes to the generic flow and user interaction for target devices,

either individually and grouped by category.

1 Web portals, consisting of a collection of portlet applications, are emerging as a new paradigm for composing and
organizing groups of applications suited for particular tasks on the web. The phrase “web application” in this article
refers to both conventional web applications as well as portlet applications.

April 21, 2003 2

3. Access to a device profile repository containing the characteristics of a large number of popular devices,
including PDAs, handhelds, phones, and desktop browsers.

4. Design-time and runtime generation of device-specific web and portlet applications artifacts (Java Server
Pages, or JSP, and Struts [Struts] code) for a variety of devices supporting multiple markup languages.

5. Hand-customization of generated device-specific pages and storage of the customizations so that they can
be re-applied upon re-generation.

6. Conversion of existing HTML pages into generic, retargetable application fragments.

An Eclipse-based [Eclipse] toolset supporting most of the above features has been developed and has been released
for public evaluation in February 2003 [Everyplace]. The design of MDAT is based on lessons learned from first-
generation research prototypes.

This paper describes the application developer’s perspective on the MDAT toolset. The primary contribution of this
paper is an end-to-end development methodology and toolset for building interactive form-based web applications
for multiple heterogeneous devices. The novel aspects of this methodology are (1)Specialization– the ability for
the developer to incrementally modify the generic application for specific targets, (2)Iterative Refinement– the
ability for the developer to iteratively edit generated artifacts without losing the changes, and (3)Generalization–
the ability to convert existing HTML pages into retargetable applications. We will illustrate how this development
methodology makes it easy and cost effective to build and manage multi-device applications.

The next section gives an overview of the MDAT development approach. The sections following that describe the
major aspects of the development process in the following order: device profiles, application specification and
specialization, device-specific application generation, iterative refinement, and generalization.

Multi-Device Application Development Approach

Application Model
MDAT applications are calledmulti-device applications. Multi-device applications capture the structure and
function of interactive form-based web applications, such as web-based banking, travel booking, registration, and
shopping cart applications. A single multi-device application is associated with multipletargets, each of which is
either an individual device or a category of devices. A multi-device application consists of ageneric applicationand
one or morespecialized applications. The generic application describes those aspects of the MDAT application that
are common to all targets. Each specialized application describes incremental deviations from the generic
application for a particular target.

Multi-device applications are based on the Model-View-Controller pattern, also known as the JavaServer Pages
“Model 2” architecture [JSP MVC]. The Model components, which encapsulate business logic and data, are
common to all target devices and are defined as JavaBean components [JavaBeans].

The View components describe the presentation and user interaction within a multi-device application. A collection
of presentation and interaction elements that logically belong together is known as adialog. Generic dialogs, i.e.,
dialogs within the generic application, containcontent elements(e.g., text and images),form elements(e.g., type-in
fields or selection lists),containersfor specifying dynamic iteration and grouping, and references todata model
elementsdefined as JavaBean components. The elements within dialogs are represented using XHTML Basic with
embedded XForms [XForms]. Specialized dialogs, i.e., dialogs within a specialized application, can also include
device-specific information, such as user-specified page breaks.

The Controller component describes the control flow of an application and is represented as a flow graph. The
nodes of the graph represent the dialogs described above, and the arcs, calledtransitions in MDAT, represent the
navigation among dialogs. A transition can be conditional, that is, a request from a dialog might result in navigation
to different dialogs depending on the result of running a JavaBean method at runtime, which processes the
information in the request. Transitions may also be associated with an action, which is a JavaBean method that is
invoked when the transition is taken. The generic controller, i.e., the controller within the generic application,
represents control flow that is common to all targets. Specialized controllers, i.e., controllers within specialized

April 21, 2003 3

applications, can customize the flow for particular targets by deleting generic dialogs and transitions or by adding
device-specific markup pages and transitions.

Hybrid Design-Time and Runtime Adaptation
A fundamental aspect of the MDAT approach is its support for bothdesign-timeand runtimeadaptation. Design-
time adaptation is the process of converting a multi-device application into multiple device-specific versions before
the application is deployed to the server. Design-time adaptation includes both manual and automatic activities, as
described in the next section. Design-time adaptation has several benefits:

1. The developer can view, edit, and fine-tune the generated artifacts if necessary.
2. The system does not incur any runtime overhead for adaptation.
3. The generated applications can be deployed to industry-standard servers that do not have special support

for multi-device applications.

Although design-time adaptation provides significant benefits, runtime adaptation is also essential for a complete
solution. Runtime adaptation is the process of converting the generic portion of a multi-device application to a
device-specific version when the application is requested from the server by a client device. Runtime adaptation has
the following benefits:

1. Devices that are not known at design-time, for example, new devices that are introduced in the
marketplace, can be supported.

2. Adaptation based on dynamic data can only be handled at runtime.
3. The size of the deployed application archive can be significantly reduced.

The MDAT system derives all the above benefits by supporting both design-time and runtime adaptation. Design-
time adaptation results in one or more device-specific application versions that can be deployed to a Web application
server. When a device makes a request for the application, the runtime web application dispatcher determines if an
application request can be satisfied by an existing device-specific application version. If not, a device-specific
version of the application is generated on the fly and delivered to the device. Thus, runtime adaptation allows
MDAT to service requests from devices that do not have a pre-defined device-specific application version.

In the rest of this paper, we focus on design-time adaptation support, since the purpose of this paper is to describe
the development process and tools.

Semi-Automatic Design-Time Adaptation
In this section, we describe how MDAT developers create web applications and how these applications are adapted
to run on different devices using asemi-automatic, design-timeadaptation process. The process is semi-automatic
because most aspects of the process are automated, but developers have control at key points for customizing how
the application is adapted for each target.

Figure 1 identifies the three main steps involved in creating multi-device applications in MDAT. Solid arrows
indicate processing steps that are automated by MDAT; dashed lines indicate steps that use manual input. We now
describe the automated and manual components of each step.

In Step 1, the developer defines a generic application, which represents the common aspects of the View and
Controller portions of an application across multiple target devices. The MDATGeneric Controller Editoris used
to define the control flow among the pages in the application. The MDATGeneric View Editoris used to define
generic dialogs, which are the logical pages of an application. Dialogs are logical in the sense that they may get
realized as multiple physical web pages for particular target devices. The Controller and View editors are described
in later sections.

In addition to authoring new dialogs from scratch, developers can convert existing HTML files into dialogs through
the generalizationprocess. The MDATGeneralization Editorallows developers to interactively translate standard
HTML markup into MDAT’s dialog representation. The dialogs created through generalization can be manipulated

April 21, 2003 4

using the controller and view editors just like manually created dialogs. The Generalization Editor is described in
the Generalization Section below.

Figure 1 – Design-Time Application Generation

In Step 2, MDAT automatically translates a generic application into one or more specialized applications, which are
intermediate non-deployable versions of device-specific applications. The devices targeted during translation are
specified using the controller editor. For each target device,specialized JSPfiles are generated from the dialog files
in the generic application. These specialized JSPs support the markup languages required by their particular devices,
such as HTML or WML. Thespecializationprocess automatically modifies both the View and Controller portions
of an application to accommodate specific devices. For example, a dialog may be split into multiple specialized
JSPs for devices with small screens. In this case, MDAT will also generate the appropriate control flow for the
specialized JSPs.2

Automated specialization, however, cannot meet the needs of all applications, as argued earlier. If the semantics of
an application influence how it should be specialized, then a completely automated approach is not practical. For
example, portions of an application may be removed or added on particular devices due to security or usability
concerns. This type of customization requires the developer to be able to incrementally add or remove from the
generic application for particular target devices. MDAT allows developers to specify incremental customizations in
both the controller and view portions of application for particular devices. This process, which we refer to as
manualspecialization, is one of the key innovations in the MDAT development methodology. Developers use the
Controller and View Specialization Editorsto manually specialize application flow and content for specific devices.

In Step 3, MDAT translates specialized applications into standard web applications, which can then be deployed.
Once a specialized application has been generated, developers can iteratively modify the formatting and layout of its
presentation pages using theRefinement Editor. These post-specializationrefinementsspecify customizations of an
application’s look and feel on specific devices. The refinement editor remembers all refinements performed by the
user, which allows the system to help the developer reapply those refinements whenever the generic application is
modified and the specialized application is regenerated. The Refinement Editor is described in the Iterative
Refinement Section.

Overview of MDAT Tool Components
MDAT provides a comprehensive set of tools to facilitate a flexible and iterative development process. The
following are the main components:

• Controller Editor: This visual builder helps the developer define the application flow consisting of dialogs
and transitions. The targets (individual devices or categories of devices) for an application can be defined.
The application flow can be manually specialized for each target. JavaBean business logic can be
associated with the flow.

2 This feature, known asautomatic page splitting, can be turned off by users.

Existing
HTML
Files

SpecializationGeneralization

View & Controller
Specialization

Editors

Specialized
Application

Generic
Application

1 2

Refinement
Editor

Deployable
Application

Refinement

3

View
Generalization

Editor

Generic View
& Controller

Editors

April 21, 2003 5

• View Editor: This visual builder helps the developer define the form and content elements within each
dialog. The user interaction can be manually specialized for particular targets. Data sources for dynamic
content, as well as submission of form data to the server, can be specified.

• Refinement Editor: This editor is used to fine-tune the generated JSPs for a particular device. These
refinements are stored and can later be re-applied in case the base generic dialog is changed and the JSPs
regenerated.

• Generalization Editor: This editor helps the developer interactively convert a static HTML page into a
dialog that can be retargeted to multiple devices. This provides the flexibility for designers to use external
tools for web page design and then import the pages into MDAT.

• Device Profile Tools: These tools help the developer define and view device profiles and device profile
categories.

• Deployment and Test Environment: The MDAT tools are integrated into underlying IBM WebSphere
Studio tools, built on the Eclipse IDE framework. The user can iteratively design, build, refine, deploy, and
test an application, without throwing work away – for any or all targeted devices.

Device Profiles
MDAT’s support for device profiles is central to both the automated and the manual process of application
specialization. When specializing applications, MDAT users have access to a database of predefineddevice profiles
that describe the detailed capabilities of individual devices. The “Targets” area within the MDAT Controller Editor
shows the list of supported devices organized by manufacturer name. Developers can view device characteristics,
edit existing profiles, add new device profiles, or select devices for specialization from this page.

Device profiles contain device properties that are organized according to the six components defined by the OMA
UAProf specification [UAProf]: hardware platform, software platform, browser UserAgent, WAP characteristics,
network characteristics and push characteristics. Device profiles for phones, PDAs and desktops are stored in a
database of predefined profiles. Most device profiles in the database correspond to actual phones or PDAs. We have
also defined profiles for desktop clients, such as Microsoft Internet Explorer and Netscape Navigator, and for a
number of device emulators.

Developers can also defineprofile categoriesto help manage large numbers of devices. A category is a user-defined
predicate over the properties contained in device profiles. When a category’s predicate is applied to the profile
database, the result is a set of device profiles that satisfy the category’s predicate. We say that the category contains
the devices represented by this set of profiles. For example, developers may choose to define a category that
contains all devices that support WML markup, or a category that contains all devices with screen size less than
VGA. Profile categories can also be created by refining existing categories, thus resulting in a hierarchy of
categories. MDAT allows profile categories to be used as specialization targets.

Application Specification and Specialization
As described in the section on the application model, MDAT supports the easy development of the View and the
Controller portions of multi-device web applications. MDAT developers typically begin by creating generic
applications by specifying the control flow and the dialogs that apply to all devices. Developers then use various
editors to define device-specific customizations when they are needed. In this section, we describe how to specify
and specialize applications using the Controller and View Editors.

Controller Editor
As described earlier, the generic controller (i.e., the controller within the generic application) is the common basis
for all devices. The specialized controller (i.e., the controller within a specialized application) is often identical or
very similar to the generic flow. We now describe how the Controller Editor is used to create both the generic and
specialized controllers, and to specify the associations with the View and the Model.

The Controller Editor provides a visual builder for the generic flow graph. Generic dialogs and transitions can be
created, deleted, and moved around on a canvas, and their attributes can be modified through a property sheet editor.
Figure 2 shows a simple banking application within the controller editor. The left screenshot shows the generic

April 21, 2003 6

controller flow, which starts with a Login dialog and proceeds to the BrowseAccounts dialog if login is successful.
The transition from Login to BrowseAccounts is conditional upon successful authentication of login information.
Similarly, there are transitions from the BrowseAccounts dialog to four other dialogs.

The Controller Editor contains a drop-down list for selecting the specialization target (highlighted in Figure 2).
When a specific target is selected, the specialized controller for that target is shown, and can be manipulated. The
right screenshot of Figure 2 shows the specialized controller for a Nokia target device. The nodes in a specialized
controller are either specialized dialogs (inherited from the generic flow) or concrete device-specific pages. In
Figure 2, “InfoTran..” is a device-specific page added for the Nokia target. In addition to adding pages and
transitions to and from them, the user can also delete dialogs and transitions from a specialized flow, as shown in
Figure 2. Note that a change in a specialized flow applies only to that device, whereas a change to the generic flow
is reflected in all specializations.

Figure 2 – Generic and specialized controller in the Controller Editor

Besides the visual builder, the Controller Editor contains separate areas for defining the list of target devices, for
specifying the list of JavaBean components, and for viewing and editing the XML source representation of the
controller.

View Editor
As with the Controller, the View has generic and specialized aspects. We now describe how the View Editor is used
to create both generic and device-specific content, and to specify Model associations.

The View Editor is a visual builder for assembling the generic interaction elements in a dialog. Wizards and a
property editor are used for specifying elements’ attributes. Elements may have numerous attributes, as defined in
the XHTML and XForms specs [XForms]. Figure 3 shows two screenshots that illustrates our current
implementation. On the left, we see a generic dialog for updating personal information, which contains a number of
elements. The visualizations of these elements are not intended to show the actual appearance on any device.
Rather, this is an abstract representation that is converted into concrete presentations for particular target devices.

As with the controller editor, the view editor contains a drop-down list for selecting particular targets for
specialization. The right screenshot shows the specialized dialog for a Nokia target device. The currently
implemented operations allowed for specializing a dialog are limited. Developers can add device-specific page
breaks, which force a dialog to be split during view translation. Also, developers can add a specialized submit

April 21, 2003 7

button for navigating to device-specific pages in the controller graph. Several other specialized operations, e.g.,
adding and removing elements and changing properties, are being implemented currently.

Besides the visual builder, the View Editor contains separate areas for associating dialog elements with JavaBean
components and for viewing and editing the source representation of dialogs. Each dialog element that admits
dynamic values can be bound to JavaBean properties, so that the runtime value of the property is used to populate
the element.

Figure 3 – Generic and specialized dialogs in the View Editor

Device-Specific Application Generation
The MDAT system implements a specialization framework that corresponds to the automated portion of Step 2 in
Figure 1. The specialization framework translates generic applications into specialized applications. This
framework is constructed as a pipeline of individual stages that can be easily added or removed. Each stage
performs a specific portion of the translation from dialogs to specialized JSPs. For example, the HTML markup
language pipeline includes a stage that specializes images and another stage that performs automatic page splitting.
Each target markup language has its own pipeline.

One of the design goals of MDAT is extensibility: As new devices are introduced to the market, MDAT needs to
easily support these devices and any new markup languages that they require. Thus, the requirements for MDAT
extensibility include the ability (1) to define new devices, (2) to support new markup language capabilities during
application definition (3) to support new markup languages during specialization, and (4) to support different
controller runtime frameworks (such as Struts). The pipelines mentioned above, along with other specialization
configuration, are defined in an XML configuration file. Extensibility is achieved by allowing Eclipse plug-ins that
extend MDAT to modify the specializer’s configuration.

View Translator. The first stage in specializing a generic dialog is the translation of the dialog into the markup
language required by the target device. To implement this stage in the specializer pipeline, MDAT provides an
extensible view translation framework. Aview translatorconforms to a framework interface and provides the
translation needed to a particular markup language. Support for a new markup language can be provided by
dynamically plugging a view translator into the framework at runtime.

Controller Translator. The Controller Translator is responsible for generating a device-specific controller from the
generic application. The generated controller code uses the Struts framework [Struts] to manage control flow in
both web applications and portal applications. The Controller Translator generates the required action subclasses,

April 21, 2003 8

form bean definitions (created by scanning the generated JSPs), and configuration files. Each transition is
associated with a single action subclass, which may invoke a JavaBean method to determine which branch is taken
or to call underlying business logic.. The generated configuration files include mappings between the action
subclasses and transitions, as well as form bean definitions.

Iterative Refinement
After JSPs are generated through specialization, the developer can optionally apply formatting, layout and other
stylistic refinements to achieve a customized presentation for a particular device. These refinement operations can
include font changes, image resizing, removal of unnecessary elements, and insertion of header and footer images.
As shown in Figure 1, MDAT provides a Refinement Editor that allows the developer to selectively handcraft or
“tweak” pages generated for particular devices.

When an application is modified, either by changing the generic view specification or a specialized view
specification, a new set of device-specific JSPs is automatically generated for each target device. It is important that
handcrafted changes previously created using the Refinement Editor are not lost in this process. This is referred to
in the literature as the “round-trip” problem [Medvivovic 1999]. To preserve refinements to generated pages, the
Refinement Editor maintains a change history that is used to reapply refinements whenever JSPs are regenerated.

The Refinement Editor supports typical WYSIWYG editing functions, including adding static content, removing
content, and changing the properties and placement of elements. The Editor records these editing operations as they
are performed. When editing is completed, the refined page is not actually saved, instead a refinement command is
created from the edit history. Subsequently, when a newly-generated version of the same page is reopened in the
Refinement Editor, the refinement commands are re-applied. The developer can then further refine the page.

The history function of the Refinement Editor is based on the technique of programming by example, where the
developer only needs to work with examples (i.e., the initial and refined views), and a refinement command can
replicate changes automatically [Hori 2002]. A key feature of this history function is generalization of the
refinement commands [Ono 2002], which allows commands to be reapplied to a page that has changed since it was
last refined.

Generalization
Although a model-based approach appears to be an effective solution to the problem of multi-device application
authoring, it poses some problems for the end user. First, the application developer must learn a new set of tools in
order to create the application model. Second, the developer is forced to think about the application in terms of
abstract entities. This may be problematic, since most designers are accustomed to working with concrete UI
elements and layouts. Third, the approach only works for newly created applications; legacy applications must be
completely re-implemented.

We have addressed these problems by developing a facility for extracting the View component of an application
model from existing web applications, a process we callgeneralization. Within the MDAT system, we provide
support for generalization of HTML pages. Generalization is a two step process. The first step is a completely
automated process of extracting a candidate model from an HTML page. In the second step, the application
developer views the candidate model and edits it. We will discuss both of these steps in more detail.

An application developer begins generalization by selecting an HTML page, or a portion of a page via rubber-band
selection. An automated inference engine is invoked, which extracts a candidate abstract model. The extracted
model consists of user interaction elements,sub-elements of these elements such as captions and hints, and groupings.

Figure 4 shows an example of such an extracted model The “Yes” and “No” radio buttons have been grouped
together into a single choice list interaction element and the caption “e-mail Access?” assigned to it. Similarly, the
input fields “First”, “Middle”, and “Last” have been grouped together into a phrase, and a caption assigned to the
group.

April 21, 2003 9

Figure 4. Example of a generic model extracted from an HTML page

The automated generalization process uses a variety of information extracted from the HTML page. In addition to
structural information from the document object model (DOM), we also use geometric layout information from a
rendering of the page, style information (such as bold or italic fonts) contained either directly in the page or in
cascading style sheets (CSS), as well as some content information from strings (such as enclosing parentheses).

Note that the inference process must resolve ambiguities. In the fragment of HTML displayed in Figure 5, the
caption of the user interaction element I1 may be either S1 or S2. Our inference engine performs a spatially localized
search using a set of heuristics in order to resolve these ambiguities. Even with a sophisticated set of inference
techniques, however, the automated extraction is not guaranteed to perform all assignments correctly. This can be
seen in Figure 4 where the strings “City” and “Country” have not been correctly identified as captions. For this
reason, we provide an interactive visualization and editing interface.

Figure 5. Fragment of HTML Page

Our design goals for the inference engine were to perform the extraction quickly, and to minimize the amount of
manual editing required. Most pages are extracted in under a second, meeting our goal for rapid extraction. We
performed a study to evaluate the accuracy of the extraction process. This study, described in more detail in
[Gaeremynck 2003], compared the model automatically extracted from 48 HTML application pages (i.e., forms)
gathered from the web against an “ideal” model manually constructed for each page. Figure 6 shows the results:
40% of the pages had no errors in the automated extraction; 77% had fewer than 10% errors. Our conclusion is that
the automated extraction does a reasonable job of minimizing the amount of manual editing required.

The generalization interface (Figure 4) displays extracted user interaction elements and their properties using
colored rectangles. Properties are indicated by arrows from the property value (i.e., string) to the associated
interactor. Groupings such as phrases are indicated by enclosing rectangles, with a level-of-detail display that shows
the contents of the group only when the mouse cursor hovers over the group. Interactive controls are provided,
which permit the deletion of model elements, creation of new model elements, and reassignment of properties by

April 21, 2003 10

visually manipulating the rectangles and arrows in the display. This interface allows the developer to quickly
evaluate and modify the candidate model. Once manual editing is complete, the developer saves the model, making
it available, as a generic dialog, to the rest of the MDAT tool set.

Figure 6. Histogram of evaluation results, showing the
number of pages versus the percent errors on a page.

Conclusions
In this paper, we have described a solution for multi-device web and portlet application development, called MDAT.
MDAT enables a developer to build a singlegeneric application common to multiple devices, and specify the
incremental differences to particular target devices. The generic application can be specified using a set of visual
builder tools, or partially derived from existing applications using a rule-based extraction tool. MDAT then
generates device-specific artifacts for the chosen targets, based on device capabilities. If necessary, the developer
can modify the generated artifacts to further handcraft them for individual target devices. These modifications are
stored by the tool so that they can be re-applied if the application is re-generated. In addition to design-time
generation, MDAT also supports runtime generation, allowing dynamic adaptation to new device types.

MDAT is the second generation of this technology based on lessons learnt from previous research prototypes,
including PIMA [Banavar 2003]. The main advances in this second generation are: (1) The combination of design-
time and runtime adaptation, (2) A rich notion of device profiles and device categories, (3) A solution to the “round-
trip” problem, for modifying generated artifacts while not losing these modifications upon regeneration, and (4) An
integrated, end-to-end development methodology, built as an industrial-strength implementation on the Eclipse IDE
platform [Eclipse], and incorporating many industry standards such as Struts, JSPs, XForms, etc. The toolset is
currently available for public evaluation as part of the IBM Everyplace Toolkit for WebSphere Studio [Everyplace].

The MDAT application model builds on the concepts in model-based UI development [Szekely 1993, Eisenstein
2001]. The key distinguishing features of MDAT are the notions of specialization, iterative refinement, and
generalization, all targeted specifically to multi-device web application development. Specialization supports
addition and removal of elements of the view or controller descriptions of web applications. Iterative refinement
with round-trip support for presentation artifacts builds on software engineering notions of capturing changes to
generated code for inclusion into the original model [Medvivovic 1999]. Generalization of HTML into a generic
model is based on concepts from reverse engineering of user interfaces [Bouillon 2002, Vander Zanden 1990].
Another well-known end-to-end system for multi-device authoring of web applications is the Microsoft ASP .NET
Mobile Controls (formerly known as the Microsoft Mobile Internet Toolkit). This technology does not support the
notion of design-time adaptation, nor does it support specialization, iterative refinement, or generalization. This
solution is based on runtime interpretation of a device-independent application.

Future releases of the MDAT technology will strengthen and extend the toolset in several areas. We are currently in
the process of performing an in-depth field analysis to refine the usability and utility of the MDAT system. We plan
to add rapid application development tools throughout the toolset, including the ability to specify business logic and
data at a higher level. We also seek to be able to generalize not only from HTML pages, but from entire pre-existing
web applications, including both the view and the controller. Another major area of extension is the support for
non-GUI modalities such as Voice and Ink.

0

5

10

15

20

25

30

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

Errors (%)

N
um

be
r

of
pa

ge
s

April 21, 2003 11

References
[Banavar 2000] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski. Challenges: An Application Model
for Pervasive Computing. In Proceedings of the Sixth annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), pages 266--274, August 2000.

[Banavar 2003] Banavar, G., Bergman, L., Gaeremynck, Y., Soroker, D., Sussman, J., Tooling and Systems support for authoring
multi-device applications. To appear in Journal of Systems and Software, Elsevier Publications, 2003.

[Bouillon 2002] Bouillon, L., Vonderdonckt, J., Souchon, N.,Recovering Alternative Presentation Models of a Web Page with
VAQUITA, Proceedings of CADUI ’02, pp. 311-322.

[Eclipse]http://www.eclipse.org. Home page for the Eclipse open, extensible, IDE platform.

[Eisenstein 2001] Eisenstein, J., Vanderdonckt, J., Puerta, A., 2001. Applying model-based techniques to the development of UIs
for mobile computers.In Proceedings of IUI 2001, Intelligent User Interfaces, Santa Fe, New Mexico, USA, January14–17, 2001.

[Everyplace] http://www-3.ibm.com/software/pervasive/products/mobile_apps/everyplace_toolkit.shtml. Web URL for IBM
Everyplace Toolkit download, which includes beta release of MDAT.

[Hori 2002] Hori, M., Ono, K., Koyanagi, T., and Abe, M.: Annotation by transformation for the automatic generation of content
customization metadata. In F. Mattern and M. Naghshineh (Eds.)Pervasive Computing, First International Conference,
Pervasive 2002, Lecture Notes in Computer Science 2414, pp. 267-281, Zurich, Switzerland (2002).

[Gaeremynck 2003] Gaeremynck, Y., Bergman, L. D., Lau, T. MORE for less: Model recovery from visual interfaces for multi-
device application design. Proceedings of IUI 2003 – International Conference on Intelligent User Interfaces, Miami, Florida,
January 2003.

[JavaBeans]JavaBeans: Developing Component Software in Java. Elliote Rusty Harold. ISBN 0764580523. IDG Books.

[JSP MVC] Govind Seshadri. Understanding JavaServer Pages Model 2 Architecture. JavaWorld Magazine. December 1999.
Available from http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html

[Medvivovic 1999] Medvivovic, N., Egyed, A., Rosenblum, D.S., 1999. Round-trip software engineering using UML: from
architecture to design and back. In: Proceedings of the 2nd Workshop on Object-Oriented Reengineering (WOOR), September
1999, pp. 1–8.

[Ono 2002] Ono, K., Koyanagi, T., Abe, M. and Hori, M.: XSLT Stylesheet Generation by Example with WYSIWYG Editing.
Proceedings of the International Symposium on Applications and the Internet (SAINT 2002), pp. 150-159 (2002).

[Struts] The Apache Struts Web Application Framework. http://jakarta.apache.org/struts/

[Szekely 1993] Szekely, P., Luo, P., Neches, R., 1993. Beyond interface builders: model-based interface tools. In: Proceedings of
ACM INTER-CHI_93 Conference on Human Factors in Computing Systems 1993, pp. 383–390.

[UAProf] Wireless Application Group User Agent Profile Specification. November 1999. Available at
http://www.wapforum.org/what/technical/SPEC-UAProf-19991110.pdf

[Vander Zanden 1990] Vander Zanden, B., Myers, B.A., 1990. Automatic Look-and-Feel Independent Dialog Creation for
Graphical User Interfaces CHI 90.

[XForms] W3C. XForms – The Next Generation of Web Forms.http://www.w3.org/MarkUp/Forms/

