
RC23170 (W0404-013) April 2, 2004
Computer Science

IBM Research Report

Server Scheduling in the Weighted lp Norm

Nikhil Bansal
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Kirk R. Pruhs
Computer Science Department

University of Pittsburgh
PA

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Server Scheduling in the Weighted �� Norm

Nikhil Bansal
IBM T.J. Watson Research Center

nikhil@us.ibm.com

Kirk R. Pruhs �

Computer Science Department
University of Pittsburgh

kirk@cs.pitt.edu

Abstract

We explain how the apparent goals of the Unix CPU scheduling policy can be formal-
ized using the weighted �� norm of flows. We then show that the online algorithm, Highest
Density First (HDF), and the nonclairvoyant algorithm, Weighted Shortest Elapsed Time First
(WSETF), are almost fully scalable. That is, they are ��� ��-speed����-competitive. Even for
unit weights, it was known that there is no ����-competitive algorithm. We also give a generic
way to transform an algorithm� in an algorithm� in such a way that if � is ����-speed����-
competitive with respect to some �� norm of flow then � is ����-competitive with respect to
the �� norm of completion times. Further, if � is online (nonclairvoyant) then� is online (non-
clairvoyant). Combining these results gives an ����-competitive nonclairvoyant algorithm for
�� norms of completion times.

1 Introduction

1.1 Motivation

Tanenbaum [15, page 704] describes the generic Unix CPU scheduling policy as follows. Each
process initially has a nice value in the range -20 to 20. Lower nice values correspond to processes
that are more important. Users can set the nice value of a process to be in the range from 0 to 20
with a nice system call. Only the system administrator can give a process a negative nice value.
Once a second the priority of a process is recalculated using the formula:

priority = CPUusage + nice + base

Here the CPUusage parameter is an exponential weighted moving average of past CPU usage, the
nice parameter is the nice value for the process, and the base parameter is used to give higher

�Supported in part by NSF grant CCR-0098752, NSF grant ANIR-0123705, and NSF grant ITR-Medium 0325353.

1

priority to jobs that have just returned from some sort of interruption (say for I/O). Confusingly
enough, the high priority jobs are those whose computed priority value is smallest. The jobs with
highest priority are then scheduled using a Round Robin(RR) policy, typically with the quantum on
order of 100 milliseconds. Round Robin shares the processor equally among all processes.

Round Robin represents an apparent effort to balance between optimizing the worst case Qual-
ity of Service (QoS) and optimizing the average case QoS. If the goal was to optimize worst case
QoS then the best algorithm would be First Come First Served (FCFS). If the goal was to optimize
average QoS then Shortest Elapsed Time First (SETF) is generally considered to be the best non-
clairvoyant algorithm. Processes with lower nice values get more of the CPU, but the CPUusage
parameter works to try to prevent starvation. That is, the CPUusage parameter will be high for
processes that have been run a lot recently, and thus these processes will have a higher computed
priority, and thus these processes will be given less CPU time in the near future. So it seems that
the Unix system designers’ goals for the process scheduling policy were:

Goal A: Amongst jobs of the same priority, there should be some balance between optimizing for
average QoS and optimizing for worst case QoS.

Goal B: Higher priority jobs should get a greater share of the CPU resources, but lower priority
jobs should not be starved.

In this paper we try to formalize these goals and then analyze algorithms with respect to this
formalization.

In the literature, the most common QoS measure for a single process/job �� is clearly
flow/response/waiting time �� � �� � ��, where �� is the time that the job completes and �� is
the time that the job enters the system. The most common way to compromise between optimizing
for the average and optimizing for the worst case is to optimize the �� norm, generally for something
like � � � or � � �. For example, the standard way to fit a line to collection of points is to pick the
line with minimum least squares, equivalently ��, distance to the points, and Knuth’s TEXtypesetting
system uses the �� metric to determine line breaks [12, page 97]. The ��, � � � � �, metric still
considers the average in the sense that it takes into account all values, but because �� is strictly
a convex function of �, the �� norm more severely penalizes outliers than the standard �� norm.
Analyses of algorithms for optimizing �

�
� �
� �

���, the �� norms of flow, can be found in [3].

The most common way that priorities of jobs is formalized is to assume that each job �� has a
positive weight 	� and then to have the objective function be maximizing the weighted QoS. By far
the most commonly studied QoS measure for a collection of equal priority jobs is average flow time,
and logically enough, the most commonly studied QoS measure for jobs with variable priorities is
weighted flow time

�
	� � ��, e.g. [2, 5, 6, 7]. It is easy to see that even an optimal algorithm for

optimizing weighted flow time does not in general accomplish Goal B as it can starve low weight
jobs if there are always higher weight jobs to be run.

If one wishes wishes to achieve both Goal A and Goal B, then the appropriate objective function
to optimize would be something like the weighted �� norms of flow, that is, �

�
	��

�
� �

���, where
�
 � is some small constant. Note that in any competitive schedule for the weighted �� norm of

2

flow, a low weight job �� would eventually be scheduled even in the face of a constant stream of
high weight jobs.

In [3] it was shown that there is no ����-competitive online scheduling algorithm for any un-
weighted �� norm of flow. This motivated the authors of [3], and us, to fall back to resource augmen-
tation analysis [9]. In the context of a scheduling minimization problem with an objective function
� , an algorithm � is -speed �-competitive if

���
�

� �������

� �Opt�����
� �

where ����� denotes the the schedule that algorithm � with a speed produces on input � , and
similarly Opt���� denotes the adversarial schedule for � with a unit speed processor. A �� 	 ��-
speed ����-competitive algorithm is said to be almost fully scalable [13]. The intuition is that such
an algorithm should perform well up to load close to the capacity of the system since increasing
speed corresponds to lowering the load. This intuition is borne out in the lower bound instances,
such as those in [3], that show no algorithm can be ����-competitive. In the lower bound instances,
the system is fully loaded, so that there are no spare resources to recover from even small mistakes
in scheduling decisions. For a more in depth discussion of this motivation see [9, 3, 13]. In [3] it is
shown that several standard algorithms — SETF, Shortest Remaining Processing Time(SRPT), and
Shortest Job First(SJF) — are almost fully scalable for any �� norm of flow. Surprisingly, RR is not
almost fully scalable for any �� norm of flow. Note that this result would argue against the use of
RR by Unix.

1.2 Our Results

We first show in section 3 that the results in [3] can be extended to the case where the objective
function is the weighted �� norm of flow. In particular, we show that the algorithm Highest Density
First(HDF) is almost fully scalable. HDF always runs the job that has the largest weight to work
ratio. HDF is the natural generalization of SJF. Note however that HDF is clairvoyant, that is, it
needs to know the work of a job at its release time. While this might be reasonable in a web server
serving static documents, this is not reasonable in the context of an operating system.

We then show in section 4 that the obvious nonclairvoyant generalization of the nonclairvoyant
algorithm SETF, Weighted Shortest Elapsed Time First (WSETF), is almost fully scalable. For a
job ��, let ����� denote the amount of work done on that job by time �. We define the measure of a
job �� as ����� �

�����
��

. Amongst the jobs with the smallest measure, WSETF splits the processor
proportionally to weights of the jobs. So, if ��� � � � � �� are the jobs that have the smallest measure,
then the job �� will receive a 	���

��
��� 	�� fraction of the processor. Thus this result suggests the

adoption of the algorithm WSETF by Unix.

An interesting aspect of our analysis of HDF and WSETF is that we first transform the problem
on the weighted instance to a related problem on the unweighted instance. This makes the problem
simpler and also allows us to use previous results on unweighted scheduling.

There is a lot of literature on scheduling to minimize total/average completion time (a nice

3

survey can be found in [11]), and average weighted completion time [8, 1]. While this does not
appear to be an interesting objective function from a computer systems point of view, it seems
to be of general academic interest. So one natural academic question to ask is whether there are
good online algorithms when the objective is the �� norm of completion time, or the weighted ��
norm of completion time. In section 5 we give a rather generic way to transform an algorithm
for a flow time problem, which possibly uses resource augmentation, to obtain an algorithm for
the corresponding completion time problem, which does not use resource augmentation. A nice
property of our transformation is that online algorithms are transformed to online algorithms, and
non-clairvoyant algorithms are transformed to non-clairvoyant algorithms. As a corollary of this
result, we will obtain ���� competitive online and non-clairvoyant algorithms for minimizing the
�� norms of weighted completion time.

1.3 Other Related Results

The following results are known about online algorithms when the objective function is average
flow time. The competitive ratio of every deterministic nonclairvoyant algorithm is
������, the
competitive ratio of every randomized nonclairvoyant algorithm against an oblivious adversary is

��� �� [14]. The randomized nonclairvoyant algorithm RMLF, proposed in [10], is ���� ��-
competitive against an oblivious adversary [4]. The online clairvoyant algorithm SRPT is optimal.
The online clairvoyant algorithm SJF is almost fully scalable [5]. The nonclairvoyant algorithm
SETF is almost fully scalable [9].

For online weighted flow time, the best known competitive ratio is ����� � [2]. It is an
outstanding open question whether an ����-competitive algorithm exists.

2 Definitions

We assume a collection of jobs � � ��� � � � � �	. For ��, the release time is denoted by ��, the
work/size by ��, and weight by 	�. Without loss of generality we assume that all job sizes and job
weights are integers. The completion time �
� of a job �� in a schedule � is the first time after ��
where �� has been processed for �� time units. The flow time of �� in � is �� � �
� ���. A clairvoyant
algorithm learns �� at time ��. A nonclairvoyant algorithm only knows a lower bound on �� equal
to the length of time that it has run ��. For an algorithm � on an input instance � with an speed
processor, let ������� � denote the sum of the ��� powers of the flow time of all jobs. Similarly,
�� ���� �� �� will denote the sum of weighted ��� powers of the flow time (i.e.

�
�	��

�
�) of all

jobs. Finally, for the measure ��, let ����� ���� � denote the value of the optimum schedule for
the � � measure on � with a speed processor. Similarly, let ������� � �� �� denote the optimum
value for the ��� measure.

4

3 Analysis of HDF

In this section we show that HDF, a natural generalization of SJF is a �� 	 ��-speed �������-
competitive online algorithm for minimizing the weighted �� norms of flow time.

The algorithm HDF at any time works on the job which has the largest weight to processing
time ratio. The ties are broken in favor of the partially executed job. We will show that

Theorem 1 HDF is �� 	 ��-speed, �������-competitive for minimizing the weighted �� norms of
flow time.

The main idea of the proof will be to reduce the weighted problem to an unweighted problem and
then invoke the result for �� norms of unweighted flow time. We first define the relevant notation.

Given an instance � , we define an instance �� obtained by applying the following transformation
to each job in �: Consider a job �� � � . The instance �� is obtained by replacing �� by 	� identical
jobs each of size ���	� and weight �, and release time ��. We denote these 	� jobs by � ���� � � � � �

�

���
.

Let �� � �� �

��� � � � � �
�

���
	 denote this collection of jobs obtained from ��. Note that all jobs in ��

have the same weight.

Lemma 2 For � and �� as defined above,

����� ��� �� �� � ������ � ��� � � (1)

Proof: Let � be the schedule which minimizes the weighted �� norm of flow time for � . Given
�, we create a schedule for �� as follows. At any time �, work on a job in �� if and only if �� is
executed at time � under �. Clearly, all jobs in �� finish when �� finishes execution, thus no job
in �� has a flow time higher than that of ��. By definition, the contribution of �� to �� � is 	��

�
� .

Also, the contribution to the measure �� of each of the 	� jobs in �� will be at most ��� , and hence
the total contribution of jobs in �� to � � is at most 	��

�
� . Since the optimum schedule for �� can

be no worse than the schedule constructed above, the result follows. �

From Theorem 3 in [3] we know that SJF is �� 	 ��-speed, ������ competitive for the (un-
weighted) �� norms of flow time , or equivalently SJF is �� 	 ��-speed ������� competitive for the
� � measure. This implies that,

� ��SJF� � �� � 	 �� � ��
�

��
������ �� � �� �� (2)

We now relate the performance of HDF on � with a �� 	 �� times faster processor to that of SJF
on � �.

Lemma 3
�� ��HDF��� � 	 �� � �� 	

�

�
��� ��SJF� � �� � � (3)

5

Proof: We claim that for every job �� � � and every time �, if �� is alive at time � under HDF with
a � 	 � speed processor, then at least �

���	� jobs in �� � � � are alive at time � under SJF with a �
speed processor.

The claim above immediately implies the result for the following reason. Consider the time
�� � ��� 	 ���

� just before �� finishes execution under HDF. Then �� contributes exactly 	��
�
� to

�� ��HDF��� � 	 ��, while the
 �	���� 	 �� jobs in �� that are unfinished by time � contribute
at least �	���� 	 ����� to � ��SJF�� �� ��. Taking the contribution over each job, the result follows.

We now prove the claim. Suppose for the sake of contradiction that � is the earliest time when
�� is alive under HDF and there are fewer than ���� 	 ��	� jobs from �� left under SJF. Since ��
is alive under HDF and HDF has a � 	 � faster processor, it has spent less than ����� 	 �� time on
��, whereas SJF has spent strictly more than ����� 	 �� time on ��. Thus there was a some time
��, such that �� � �� � � during which HDF was running �� �� �� while SJF was working on some
job from ��. Since ��
 ��, it follows from the property of HDF that �� has higher density than that
of ��. This implies that jobs in �� have smaller size than ��. Since SJF works on �� at time ��, it
must have already finished all the jobs in �� by ��. Since �� is alive at time ��, this contradicts our
assumption of the minimality of �. �

Proof: (of Theorem 1) By Equations 2 and 3 we have that

�� ��HDF��� �� 	 ��� � � ������������� � �� �� � �

Combining this with Equation 1 gives us the result. �

4 Analysis of WSETF

4.1 Algorithm Description

For a job �� with weight 	� , let ����� denote the amount of work done on �� by time �. We define
the norm of a job �� as ����� �

�����
��

.

Algorithm WSETF: At all times, WSETF splits the processor, proportional to weights of the jobs,
among the jobs �� that have the smallest norm �����. So, if ��� � � � � �� are the jobs that have the
smallest norm. Then �� , for � � �� � � � � �, will receive 	���

��
���	�� fraction of the processor.

Note that for all jobs �� that WSETF executes, the norm increases at the same rate and thus stays
the same.

4.2 Analysis

As in the analysis of HDF the main step of our analysis will be to relate the behavior of WSETF
on an instance � with weighted jobs to that of SETF on another instance �� which consists of

6

unweighted jobs. We then use the results about (unweighted) �� norms of flow time under SETF to
obtain results for WSETF.

Given an instance � consisting of weighted jobs, let �� denote the instance defined as in Section
3 which consists of unweighted jobs. Suppose we run WSETF on � and SETF on �� with the same
speed processor. Then the schedules produced by WSETF and SETF are related by the following
simple observation.

Lemma 4 At any time �, a job �� � � is alive and has received ����� units of service if and only if
each job in �� � �

� is alive and has received exactly ������	� amount of service. In particular, this
implies that if �� has flow time �� then each � ��� � �� for � � �� � � � � 	� has flow time ��.

Proof: We view the execution of WSETF on � as follows: If at any time WSETF allocates � units
of processing to a job of weight 	�, then we think of it as allocating ��	� units of processing to
each of the 	� jobs in the collection ��. Thus the norm of job �� under WSETF is exactly equal
to the amount of service received by a job in ��. Since WSETF at any time shares the processor
among jobs with the smallest norm in the ratio of their weights, this is identical to the behavior of
SETF on � � which works equally on the jobs which have received the smallest amount of service.
�

Theorem 5 WSETF is a �	�-speed, �����������-competitive non-clairvoyant algorithm for min-
imizing the weighted �� norms of flow time.

Proof: By Lemma 4 we know that if �� � � has flow time ��, then the 	� jobs in �� have flow
time ��. Thus the �� norm of unweighted flow time for �� is �

�
�	��

�
� �

��� which is identical to the
weighted flow time for � under WSETF, which implies that

�� ��WSETF��� � � � � ��SETF� � �� � � (4)

By Equation 1 we know that �������� �� �� � ������ � � �� � �. By the main result of Section
7 in [3] about the competitiveness of SETF for unweighted �� norms of flow time we know that

� ��SETF�� �� �� 	 ��� � ��������������� �� � �� �� (5)

Now, by Equations 4, 5 and 1 we get that

�� ��WSETF��� � 	 �� � ��������� ������� � � �� � �

Thus the result follows. �

5 Completion Time Scheduling

In this section, we give a rather generic way to transform an algorithm for a flow time problem that
possibly uses resource augmentation to obtain an algorithm for the corresponding completion time

7

problem that does not use resource augmentation. Our transformation carries online algorithms to
online algorithms and also preserves non-clairvoyance. As a corollary of this result we will obtain
����-competitive online and non-clairvoyant algorithms for minimizing the weighted �� norms of
completion time.

We first make precise the notion of a completion time measure corresponding to a flow time
measure. Given a schedule � for � jobs, this determines the flow times ��� � � � � �	 and the comple-
tion times ��� � � � � �	. Let � be some function that takes as input � real numbers and outputs another
real number. Given a schedule �, we define the functions and � as follows:

��� � ����� ��� � � � � �	�

���� � ����� ��� � � � � �	�

For example, if ����� � � � � �	� � �
�

�	��
�
� �
���, then and � are simply the weighted �� norms of

flow time and completion time respectively.

Our technique for converting a flow time result to a completion time result will require two
properties from the function �.

Scalability: For any positive real number �, ������ � � � � ��	� � ������ � � � � �	�. In particular,
if we scale all the flow times in a schedule by � times then ��� increases by � times.

We now motivate the next property that we require from the function �. We first point out a
somewhat surprising property of the �� norms of the completion time measure. While it is easy
to see that minimizing the total weighted flow time (i.e. �� norm with � � �) is equivalent to
minimizing the total weighted completion time, this is not the case for �
 �. In particular, it
could be the case that a schedule which is optimum for the

�
� �

�
� measure is suboptimal for

�
� �

�
�

measure and vice versa.

Consider the following instance with just two jobs. The first job has size �� and arrives at � � �,
the second job has size 1 and arrives at � � �. A simple calculation shows that in order to minimize
the total flow time squared, it is better to first finish the longer job and then the smaller job. This
incurs a total flow time squared of ��� 	 �� � ���, where as the other possibility which is to finish
the small job as soon as it arrives an then finish the big job incurs a total flow time squared of
���	�� � ���. On the other hand, if we consider completion time squared, finishing the larger job
first incurs a cost of ���	���. If instead if finish the smaller job first, this incurs a cost of ��	���.
Thus the optimal schedule for �� norms of flow time need not be optimal for �� norms of completion
time and vice versa.

We say that a function � is �� ���� if is satisfies the following condition:

Given a problem instance � and any two arbitrary schedules � and �� for � . If ��� � �����,
then ���� � �������.

Lemma 6 ����� � � � � �	� � �
�

� 	��
�
� �
��� is �� ���� for all �
 �.

Proof: Let � and �� be two schedules and let ��� � � � � �	 (resp. ��� � � � � �) and � ��� � � � � �
�
	 (resp.

���� � � � � �
�
) be the flow times (resp. completion times) under � and ��.

8

We know that, �
�

�	��
�
� �

��� � ��
�

�	��
��
� �
���. The weighted �� norms of completion times

under � (resp. under ��) can be written as �
�

� 	���� 	 ���
����� (resp. �

�
�	���

�

� 	 ���
�����).

By convexity, we have that
�

�

	���� 	 ���
� �

�

�

����	���
�
� 	 ��� �

� ������
�

�

	��
�
� 	 ��

�

�

	��
�
�

� ������
�

�

	���
��
� 	 ��� �

� ������
�

�

	���
�

� 	 ���
�

Thus the result follows. �

Our main result is the following:

Theorem 7 Let � be a ������ function. If there is an -speed, �-competitive online algorithm with
respect to the measure (derived from �), then this algorithm can be transformed into another on-
line algorithm which is �-speed, ��-competitive with respect to the corresponding completion time
measure �. Moreover, non-clairvoyant algorithms are transformed into non-clairvoyant algorithms.

We now describe the transformation:

Let � be a -speed, �-competitive algorithm for a flow time problem. Let � be the original
instance where job �� has release date �� and size ��. The online algorithm (which we call �) is the
defined as follows:

1. When a job arrives at time ��, pretend that it has not arrived till time ��.

2. At any time �, run � on the jobs for which �
 ��

Proof: (of Theorem 7) Let �� be the instance obtained from � by replacing job �� � � by a job
� �

� that has release date �� and size ��. Also, let � �� be the instance from � by replacing the job
�� � � with a job � ��� that has release date �� and size ��.

Let ���� ��� �� (resp �������� ��) denote the flow time cost (resp completion time cost) of
the optimum schedule on � run using an � speed processor. We first relate the values of the optimum
schedules for � and ��.

Fact 8 ������� �� �� � �������� ��

Proof: (of Fact 8:) Since the release times and sizes in �� are scaled by times that of � . Given
a schedule for � for � , we can construct a schedule �� for � � such that if some event happens at

9

time � in � , then the corresponding event in �� happens at time �. By the scalability property of
the function �, the value of the schedule �� is exactly times more than that for �. Similarly, given
any schedule for �� we can construct a schedule for � with value exactly times smaller. Thus the
result follows. �

By our resource augmentation guarantee for the algorithm �, we know that

���� �� � � ����� �� �� ��

By the �� ������ of � the above guarantee on flow time implies that

���� � �� � � ��������� �� �� (6)

We now relate �� to � ��.

Fact 9 ����� �� � � ����� ��� ��

Proof: (of Fact 9:) This follows as jobs in �� are times longer than jobs in ���, and have ex-
actly the same release times. So the schedule produced by � on �� using an speed processor is
indistinguishable by schedule produced by � on ��� using a � speed processor. �

Now, by definition of the algorithm �, executing the algorithm � on ��� with a speed 1 processor
is exactly the schedule produced by � on � using a � speed processor. So the completion times are
identical. This implies that

���� �� �� � ����� ��� �� (7)

Now using Facts 8 and 9 and Equations 6 and 7 it follows that

������ �� � �������� �� ��

Thus we are done. �

For ����� � � � � �	� � �
�

�	��
�
� �
���, it is easily seen that the scalability property is satisfied, and

Lemma 6 implies that it is �� ����. Thus by Theorems 1, 5 and 7 we get that

Corollary 10 There exist ����-competitive clairvoyant and non-clairvoyant algorithms for mini-
mizing the weighted �� norms of completion time.

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella,
C. Stein, M. Sviridenko, “Approximation Schemes for Minimizing Average Weighted Completion Time
with Release Dates”, Foundations of Computer Science (FOCS), 32-44, 1999.

10

[2] N. Bansal, K. Dhamdhere, “Minimizing Weighted Flow Time”, ACM/SIAM Symposium on Discrete
Algorithms (SODA), 508–516, 2003.

[3] N. Bansal, K. Pruhs, “Server scheduling in the �� norm: a rising tide lifts all boats”, ACM Symposium
on Theory of Computing (STOC), 242–250, 2003.

[4] L. Becchetti, and S. Leonardi, “Non-Clairvoyant Scheduling to Minimize the Average Flow Time on
Single and Parallel Machines” ACM Symposium on Theorey of Computing (STOC), 2001.

[5] L. Becchetti, S. Leonardi, A. Marchetti–Spaccamela, K. Pruhs, “Online weighted flow time and dead-
line scheduling”, Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), 2001.

[6] C. Chekuri and S. Khanna, ”Approximation schemes for preemptive weighted flow time”, ACM Sym-
posium on Theory of Computing (STOC), 2002.

[7] C. Chekuri, S. Khanna and A. Zhu, “Algorithms for weighted flow time”, ACM Symposium on Theory
of Computing (STOC), 2001.

[8] L.A. Hall, A. Schulz, D.B. Shmoys and J. Wein, “Scheduling to minimize average completion time: off-
line and on-line approximation algorithms”, Mathematics of Operations Research 22, 513–549, 1997.

[9] B. Kalyanasundaram, and K. Pruhs, “Speed is as powerful as clairvoyance”, Journal of the ACM, 47(4),
617 – 643, 2000.

[10] B. Kalyanasundaram, and K. Pruhs, “Minimizing flow time nonclairvoyantly”, Journal of the ACM,
July 2003.

[11] D. Karger, C. Stein and J. Wein, “Scheduling algorithms”, CRC handbook of theoretical computer
science, 1999.

[12] D. Knuth, The TeXbook, Addison Wesley, 1986.

[13] K. Pruhs, J. Sgall, E. Torng, “Online Scheduling”, to appear in Handbook on Scheduling: Algorithms,
Models and Performance Analysis, CRC press.

[14] R. Motwani, S. Phillips, and E. Torng, “Non-clairvoyant scheduling”, Theoretical Computer Science,
130, 17–47, 1994.

[15] A. Tanenbaum, “Operating systems: design and implementation”, Prentice-Hall, 2001.

11

