
RC23173 (W0404-031) April 5, 2004
Computer Science

IBM Research Report

Approximability of Probability Distributions

Alina Beygelzimer, Irina Rish
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Approximability of Probability Distributions

Alina Beygelzimer∗

IBM T. J. Watson Research Center
Hawthorne, NY 10532

beygel@cs.rochester.edu

Irina Rish
IBM T. J. Watson Research Center

Hawthorne, NY 10532
rish@us.ibm.com

Abstract

We consider the question of how well a given distribution canbe approx-
imated with probabilistic graphical models. We introduce anew param-
eter,effective treewidth, that captures the degree of approximability as
a tradeoff between the accuracy and the complexity of approximation.
We present a simple approach to analyzing achievable tradeoffs that ex-
ploits the threshold behavior of monotone graph properties, and provide
experimental results that support the approach.

1 Introduction

One of the major concerns in probabilistic reasoning using graphical models, such as
Bayesian networks, is the computational complexity of inference. In general, probabilistic
inference is NP-hard and a typical approach to handling thiscomplexity is to use an approx-
imate inference algorithm that trades accuracy for efficiency. This leads to the following
question: How can we distinguish between distributions that are easy to approximate and
those that are hard? More generally, how can we characterizethe inherent degree of distri-
bution’s complexity, i.e. itsapproximability?

These questions also arise in the context of learning probabilistic graphical models from
data. Note that traditional model selection criteria, suchas BIC/MDL, aim at fitting the
data well and minimizing therepresentation complexity of the learned model (i.e., the
total number of parameters). However, as demonstrated in [2], such criteria are unable to
capture theinference complexity: two models that have similar representation complexity
and fit data equally well may have quite different graph structures, making one model
exponentially slower for inference than the other. Thus, our goal is to develop learning
algorithms that can find good trade-offs between accuracy ofa model and its inference
complexity.

Commonly used exact inference algorithms, such as the junction tree algorithm [12], or
closely related variable-elimination techniques [6], essentially triangulate the graph, and
their complexity is exponential in the size of largest clique induced during triangulation
(parameter known astreewidth). Generally, it can be shown that (in some precise sense)
any scheme for belief updating based on local calculations mustcontain a hidden trian-
gulation [10]. Thus the treewidth arises as a natural measure of inference complexity in
graphical models.

∗The work was done while the author was at the Department of Computer Science, University of
Rochester.
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Intuitively, a probability distribution is approximable,or easy, if it is close to a distribution
represented by an efficient, low-treewidth graphical model. We use the Kullback-Leibler
divergencedKL as a measure of closeness. The following example explains our intuition
behind approximable vs. nonapproximable distributions.

Motivating Example Consider the parity function onn binary random variables
{X1, . . . , Xn}, and let our target distributionP be the uniform distribution on the values to
which it assigns 1 (i.e., onn-bit strings with an odd number of 1s). It is easy to see that any
approximationQ that decomposes over a network whose moralized graph missesat least
one edge, is precisely as inaccurate as the one that assumes all variables to be independent
(i.e., has no edges).

This follows from the fact that the probability

treewidth

n − 1

n − 2

(clique)
0

1

(empty graph)

dKL

distribution induced on any proper subset of the
variables is uniform, and thus for any subset
{Xi1 , . . . , Xik

} of k < n variables, P (Xi1 |
Xi2 , . . . , Xik

) = P (Xi1), uniform on {0, 1}. It
is then readily seen that

∑

x
P (x) log Q(x) =

2−(n−1)
∑

x:P (x)>0 log
∏n

i=1 Q(xi | xi1 , . . . , xir
) =

log
∏n

i=1 Q(xi) = log 2−n = −n, anddKL(P,Q) =
−H(P ) + n = 1 sinceH(P ) = n − 1. (The sec-
ond to last equality is due to the well-known fact that

dKL(P,Q) is minimized by forcing the conditional probabilities ofQ to coincide with
those computed fromP .) Thus, unless we can afford the complexity of the complete graph,
there isabsolutely no sense (i.e., absolutely no gain in accuracy and a potentially exponen-
tial loss of efficiency) in using a model more complex than theempty graph (i.e.,n isolated
nodes with no edges). This intuitively captures what we meanby a nonapproximable dis-
tribution.

On the other hand, one can easily construct a distribution with large weak dependencies
such that representing this distribution exactly requiresa network with large treewidth;
however, if we are willing to sacrifice just a bit of accuracy,we get a very simple model.
For example, consider a distributionP ({X1, . . . , Xn}) in which variablesX1, . . . , Xn−1

are independent and uniformly distributed; if allX1, . . . , Xn−1 are true,Xn is true with
probability1 (and false with probability 0); otherwiseXn is true with probability 1/2 (re-
gardless of the values ofX1, . . . , Xn−1). The network yielding zero KL-divergence is the
n-node clique (after moralization). Tolerating KL-divergence2−(n−1) (i.e., exponentially
vanishing withn) allows us to use an exponentially more efficient model forP (namely,
the empty graph).

The following questions naturally arise: If we tolerate a certain inaccuracy, what is the best
inference complexity we can hope to achieve? Or, what is the best achievable approxima-
tion accuracy given a constraint on the complexity (i.e., a bound on the treewidth)? The
tradeoff between the complexity and accuracy is monotonic;however, it may be far from
linear. The goal is to exploit these nonlinearities in choosing the best available tradeoff.

Our analysis of accuracy vs. complexity trade-offs is basedon the results from random
graph theory which suggest that graph properties monotone in edge addition (e.g., such
as graph connectivity) appear rather suddenly: the transition from the property being very
unlikely to it being very likely occurs during a small changeof the edge probabilityp
(density) in the random graph [7, 8].

This paper makes the following contributions. First, we show that both important proper-
ties of random graphical models, the property of “being efficient” (i.e., having treewidth at
most some fixed integerk) and the property of “being accurate” (i.e., being at distance at
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most someδ from the target distribution), are monotone and demonstrate a threshold behav-
ior, giving us two families of threshold curves parameterized byk and byδ, respectively.
Second, we introduce the notion ofeffective treewidth k(δ), which denotes the smallest
achievable treewidthk given a constraintδ on KL-divergence (error) from the target (we
also introduce a notion ofε-achievablek(δ) which requires at leastε-fraction of models
in a given set to achieve treewidthk and errorδ). The effective treewidth captures the
approximability of the distribution, and is determined by relative position of the thresh-
old curves, an inherent property of the target distribution. Finally, we provide an efficient
sampling-based approach that actually finds a model achieving k(δ) with high probabil-
ity. We estimate the threshold curves and, using their relative position, identify a class of
treewidth-bounded models such that the models in the class are still simple, yet this class
already contains (with high probability) a sufficiently good approximations to the target
distribution (otherwise, we suggest that the distributionis inherently hard to approximate).

2 Preliminaries and Related Work

Let P be a probability distribution onn discrete random variablesX1, X2, . . . , Xn. A
Bayesian network exploits the independences among theXi to provide a compact repre-
sentation ofP as a product of low-order conditional probability distributions. The inde-
pendences are encoded by a directed acyclic graph (DAG)G with nodes corresponding to
X1, X2, . . . , Xn and edges representing direct dependencies. EachXi is independent of
its non-descendants given its parents in the graph [12]. Thedependencies are quantified
by associating each nodeXi with a local conditional probability distributionPB(Xi | Πi),
whereΠi is the set of parents ofXi in G. The joint probability distribution encoded byB
is given by the productPB(X1, . . . , Xn) =

∏n
i=1 PB(Xi | Πi). We say that a distribu-

tion P decomposes over a DAGG if there exist local conditional probability distributions
corresponding toG such thatP can be written in such a form.

In general, exact probabilistic inference in Bayesian networks is NP-hard. For singly-
connected networks (i.e., networks with no undirected cycles), there is a linear time local
belief-propagation algorithm [12]. In order to use this algorithm in the presence of cy-
cles, one typically constructs ajunction tree of the network and runs the algorithm on this
tree [12]. Constructing a junction tree involves triangulating the graph, i.e., adding edges
so that every cycle of length greater than three has a chord (i.e., an edge between a pair
of non-adjacent nodes). Each triangulation corresponds tosome order of eliminating vari-
ables when summing terms out during inference [6]. Exact inference can then be done in
time and space linear in the representation of clique marginals in the junction tree, which
is exponential in the size of the largest clique induced during triangulation. This number
(minus one) is known as thewidth of a given triangulation. The minimum width over all
possible triangulations is called thetreewidth of the graph. The triangulation procedure
is defined for undirected graphs, so we must first make the network undirected while pre-
serving the set of independence assumptions; this can be done bymoralizing the network,
i.e., connecting (“marrying”) the parents of every node by aclique and then dropping the
direction of all edges.

Given a set of independent samples fromP , the general goal is to learn a model (a Bayesian
network) of this distribution that involves dependencies only on limited subsets of the vari-
ables. Restricting the size of dependencies controls both overfitting and the complexity of
inference in the resulting model. The samples are in the formof tuples〈x1, . . . , xn〉 each
corresponding to a particular assignment〈X1 = x1, . . . , Xn = xn〉. Given a target distri-
butionP (X) and an approximationQ(X), theinformation divergence (or Kullback-Leibler
distance) betweenP andQ is defined asdKL(P,Q) =

∑

x
P (x) log P (x)

Q(x) , wherex ranges
over all possible assignments to the variables inX (See [5].) Notice thatdKL(P,Q) is not
necessarily symmetric.
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A natural way of controlling the complexity of the learned model is to limit ourselves to a
class of treewidth-bounded networks. LetDk denote the class of distributions decompos-
able on graphs with treewidth at mostk (0 ≤ k < n), with D1 corresponding to the set of
tree-decomposable distributions. The distribution within Dk minimizing the information
divergence from the target distributionP is called theprojection of P ontoDk. Again, if
P is the empirical distribution, then this is also the distribution withinDk maximizing the
likelihood of observing the data.
Learning bounded-treewidth models Chow and Liu [4] showed how to find a projection
onto the set of tree-decomposable distributions. For a fixedtreeT , the projection ofP
onto the set ofT -decomposable distributions is uniquely given by the distribution in which
the conditional probabilities along the edges ofT coincide with those computed fromP .
Hence the tree yielding the closest projection is simply given by any maximum weight
spanning tree, where the edge weight is the mutual information between the corresponding
variables. Notice that candidate spanning trees can be compared without any knowledge of
P beyond that given by pairwise statistics. The tree can be efficiently found using any of
the well known algorithms. The additive decomposition ofdKL used in the proof, can be
easily extended to “wider” networks. Fix a network structureG, and letQ be a distribution
decomposable overG. Then

dKL(P, Q) =
∑

x

P (x) log
P (x)

Q(x)
= −

n
∑

i=1

∑

xi,πi

P (xi, πi) log Q(xi | πi) − H(P ),

whereπi ranges over all possible values ofΠi. If P is the empirical distribution induced
by the given sample of sizeN (i.e., defined by frequencies of events in the sample), then
the first term can be shown to be−LL(Q)/N .1 Thus minimizingdKL(P,Q) is equivalent
to maximizing the log likelihoodLL(Q).

Standard arguments (see, for example, [12]) show that the first term is maximized by forc-
ing all conditional probabilitiesQ(xi | πi) to coincide with those computed fromP . If
P is the empirical distribution, this means forcing the parameters to be the corresponding
relative frequencies in the sample. Hence ifG is fixed, the projection onto the set ofG-
decomposable distributions is uniquely defined, and we willidentify G with this projection
(ignoring some notational abuse). It remains, of course, tofind G that is the closest toP
among all DAGs in some treewidth-bounded classDk. As observed by Ḧoffgen [9], the
problem readily reduces to the minimum-weight hypertree problem. The reverse reduction
is not known, so the NP-hardness of the hypertree problem does not imply the hardness of
the learning problem. Srebro [13] showed that a similarundirected decomposition holds
for bounded treewidth Markov networks (probabilistic models that use undirected graphs
to represent dependencies). He showed that the learning problem is equivalent to find-
ing a minimum-weight undirected hypertree, and so is NP-hard. It is important to note
that Srebro [13] considered approximation in the context ofdensity estimation rather than
model selection, thus the choice ofk is directly driven by the size of the sample space;
the only rationale for limiting the class of hypothesis distributions is to prevent overfitting.
With an infinite amount of data, they would learn a clique, since adding edges would al-
ways decrease the divergence. Our goal, on the other hand, isto find the most appropriate
treewidth-bounded class onto which to project the distribution.
Threshold behavior of random graphs We use the model of random directed acyclic
graphs (DAGs) defined by Barak and Erdős [1]. Consider the probability spaceG(n, p)
of random undirected graphs onn nodes with edge probabilityp (i.e., every pair of nodes
is connected with probabilityp, independently of every other pair). LetGn,p stand for a
random graph from this probability space. We will also occasionally useGn,m to denote
a graph chosen randomly from among all graphs withn nodes andm edges. Whenp =
m/

(

n
2

)

, the two models are practically identical. A random DAG in the Barak-Erd̋os model

1Since the true distributionP is given only by the sample, we letP also denote the empirical
distribution induced by the sample, ignoring some abuse of notation.
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is obtained fromGn,p by orienting the edges according to the ordering of vertices, i.e., all
edges are directed from higher to lower indexed vertices.

A graph property P is naturally associated with the set of graphs havingP. A property
is monotone increasing if it is preserved under edge addition: If a graphG satisfies the
property, then every graph on the same set of nodes containing G as a subgraph must sat-
isfy it as well. It is easy to see (and intuitively clear) thatif P is a monotone increasing
property then the probability thatGn,p satisfiesP is a non-decreasing function ofp. A
monotone decreasing property is defined similarly. For example, the property of having
treewidth at most some fixed integerk is monotone decreasing: adding edges can only in-
crease the treewidth. The theory of random graphs was initiated by Erd̋os and Ŕenyi [7],
and one of the main observations they made was that many natural monotone properties
appear rather suddenly, i.e., as we increasep, there is a sharp transition from a property
being very unlikely to it being very likely. Friedgut [8] proved thatevery monotone graph
property of undirected graphs has such a threshold behavior. Random DAGs (correspond-
ing to random partially ordered sets) have received less attention then random undirected
graphs, partially because of the additional structure thatprevents the completely indepen-
dent choice of edges. Nonetheless, many properties of random DAGs were also shown to
have threshold functions. (See, for example, [3] and references therein.) However, we are
not aware of any general result for random DAGs analogous to that of Friedgut [8].

3 Formalization
First we introduce two properties of networks essential forthe rest of the paper.

Accuracy Recall that the information divergence of a given DAGG from the tar-
get distribution P is given by dKL(P,G) = W (G) − H(P ), where W (G) =
−

∑n
i=1

∑

xi,πi
P (xi, πi) log P (xi | πi). (In our case,P is the empirical distribution in-

duced by the given sampleS of sizeN . As mentioned before,W (G) = −LL(G)/N ≥ 0.)
Fix a distance parameterδ > 0, and consider the propertyPδ of n-node DAGs of having
W (G) ≤ δ. Notice thatPδ is monotone increasing: Adding edges to a graph can only
bring the graph closer to the target distribution, since anydistribution decomposable on the
original graph is also decomposable on the augmented one. Thus if G is a subgraph ofG′,
thenW (G) ≤ δ only if W (G′) ≤ δ.

Complexity Fix an integerk, and consider the property ofn-node DAGs of having
treewidth of their moralized graph at mostk. Call this propertyPk and note that it is
a structural property of a DAG, which doesnot depend on the target distribution and its
projection onto the DAG. It is also a monotone decreasing property, since if a graph has
treewidth at mostk, then certainly any of its subgraphs does.

Recall that we identify each graph with the projection of thetarget distribution onto the
graph. We call a pair(k, δ) achievable for a distributionP , if there exists a distribution
Q decomposable on a graph with treewidth at mostk such thatdKL(P,Q) ≤ δ. The
effective treewidth of P , with respect to a givenδ, is defined as the smallestk(δ) such that
the pair(k, δ) is achievable, i.e., if all distributions at distance at most δ from P are not
decomposable on graphs with treewidth less thank(δ). This formulation gives the level of
inevitable complexity (i.e., treewidth)k, given the desired level of accuracyδ. We will also
be interested in average-case analogs of these definitions.Fix ε > 0. We will say that a
pair(k, δ) is ε-achievable for P if at least anε-fraction of all DAGs inDk certify that(k, δ)
is achievable. Thus we not only care about the existence of anapproximation with givenδ
andk, but also in thenumber of such approximations.

4 Main Idea
Consider, for each treewidth boundk, the curve given byµk(p) = Pr[width(Gn,p) ≤ k],
and letpk be such thatµk(pk) = 1/2 + ε, where0 < ε < 1

2 is some fixed constant.
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Similarly, for δ > 0, define the curveµδ(p) = Pr[W (Gn,p) ≤ δ], and letpδ be the critical
value ofp given byµδ(pδ) = 1/2.

For reasons that will become clear in a moment, our goal will be to find, for each feasible
treewidthk, the value ofδ such thatpδ = pk. To find eachpk, the algorithm will simply
do a binary search on the interval(0, 1): For the current value of edge probabilityp, the
algorithm estimatesµk(Gn,p) by random sampling and branches according to the estimate.
The search is continued untilp gets sufficiently close to satisfyingµk(Gn,p) = 1/2 +
ε. To estimateµk(Gn,p) within an additive errorρ with probability at least1 − γ, the

algorithm samplesm = ln(2/γ)
2ρ2 independent copies ofGn,p, and outputs the average value

of the 0/1 random variable indicating whether the treewidthof the sampled DAG is at
mostk. The analysis is just a straightforward application of the Chernoff Bound. Note
that the values related to treewidth are independent of the target distribution and can be
precomputed offline. To findδ = δ(k) for a given value ofk, the algorithm computes
the values ofW (Gn,pk

) for the m sampled random DAGs inG(n, pk), orders them and
chooses the median. Each pair(k, δ) gives a point on the threshold curve. We know
that at least a(1/2 + ε)-fraction of the DAGs inG(n, pk) satisfyPk. On the other hand,
at least half of them satisfyPδ, and thus at least anε-fraction satisfies both. Moreover,
there is a very simple probabilistic algorithm for finding a model realizing the tradeoff:
We just need to sampleO(1/ε) DAGs in G(n, pk) and choose the closest one. Clearly
we are overcounting, since the same DAGs may contribute to both probabilities; however
not absurdly, since intuitively the graphs inG(n, pk) with small treewidth will not fit the
distribution better than the ones with larger treewidth.

A small example should help make
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Figure 1: Threshold curves for a 3-wise indepen-
dent distribution on 8 random variables (using a
construction from [11]).

the goals clear. A distribution is
called k-wise independent if any
subset ofk variables is mutually in-
dependent (however, there may ex-
ist dependencies on larger subsets).
Figure 1 shows the curves for a 3-
wise independent distribution on 8
random variables. We can hardly
expect graphs with treewidth at most
2 to do well on this distribution,
since all triples are independent, and
their marginals do not reveal any
higher-order structure; as we will
see this is indeed the case. Thex-
axis in Figure 1 corresponds to the
number of edgesm, the y-axis de-

notes the probability thatGn,m satisfies the property corresponding to a given curve. The
monotone decreasing curves correspond to the propertiesPk for k = {1, . . . , 6} (from left
to right respectively). Fork = 7, the curve is justµm(Pk) = 1. The monotone increas-
ing curves correspond to the property of havingdKL at mostδ. The leftmost curve is for
δ = 0.07, and it decreases by0.01 as we go from left to right; the smallerδ, the higher
the quality of approximation, thus the smaller the probability of attaining it. The empty
graph (treewidth 0) had divergence0.073. As m increases, the probability of having small
treewidth decreases, while the probability of getting close to the target increases. (Sincen
is small, we computed the divergence exactly.) As the randomgraph evolves, we want to
capture the moment when the first probability isstill high, while the second isalready high.
As expected, graphs with treewidth at most 2 are as inaccurate as the empty graph since all
triples are independent. Given the desired level of closenessδ, we want to find the smallest
treewidthk such that the corresponding curves meet above some cut-off probability. For
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example, to get withindKL at most 0.7, we may suggest, say, projecting onto graphs with
treewidth 4 (cutting at 0.4). The cut-off value determines the efficiency of finding a model
with suchk andδ (see discussion above).

Estimating dKL Fix a bounded-treewidth DAGG. Let the target distribution be the
empirical distributionP induced by a given sample. Recall thatdKL(P,G) decomposes
into sum of conditional entropies induced byG (minus the entropy ofP ). Höffgen [9]
showed how to estimate these conditional entropies with anyfixed additive precisionρ
using polynomially many samples. More precisely, he showedthat a sample of sizem =

m(γ, ρ) = O((n
ρ )2 log2 n

ρ log nk+1

γ ) suffices to obtain good estimations of all induced
conditional entropies with probability at least1 − γ, which in turn suffices to estimate
dKL(P,G) with the additive precisionρ.

Estimating Treewidth Computing the treewidth of an arbitrary graph is NP-hard. How-
ever, there exist different heuristics that work well in practice and provide good (upper)
bounds on treewidth (based, for example, on eliminating vertices in the order of maximum
cardinality, minimum degree, or minimum separating vertexset). We used the maximum
cardinality heuristic (combined with random orderings). Note that the values related to
treewidth are independent of the target distribution and can be precomputed.

5 Experimental Results

We tested the approach presented in the paper on distributions ancestrally sampled from
real-life medical networks commonly used for benchmarking. The experiments support
the following conclusions: the properties capturing the complexity and accuracy of a model
indeed demonstrate a threshold behavior, which can be exploited in determining the best
tradeoff for the given distribution; the simple approach based on generating random graphs
and using them to approximate the thresholds is indeed capable of capturing the effective
width of a distribution. Due to page limit, we discuss an application of the method to a
single network known as ALARM (originating from anesthesia monitoring).

The network has37 nodes,46 directed edges,
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Figure 2: Tradeoff curve for ALARM

19 additional undirected edges induced by
moralization; the treewidth is4. A sample of
sizeN = 104 was generated using ancestral
sampling, inducing the empirical distribution
with support on5570 unique variable assign-
ments. The entropy of the empirical distribu-
tion P was 9.6 (maximum possible entropy
for a 5570-point distribution is 12.4). Fig-
ure 2 shows the curve illustrating the (esti-
mated) tradeoffs available forP . For each
treewidth boundk, the curves gives an esti-
mate of the best achievable value ofW =
dKL − H(P ). (Recall thatLL = −N · W .)

The estimate is based on generating 400 random DAGs with 37 nodes andm edges, for
every possiblem. Several points on the curve are worthy of note. The upper-left point
(0, 23.4) corresponds to the model that assumes all 37 variables to be independent. On the
other extreme, the lower-right point(36, 0) corresponds to the clique on 37 nodes, which of
course can modelP perfectly, but with exponential complexity. The closer thearea under
the curve to zero, the easier the distribution (in the sense discussed in this paper). Here we
see that the highest gain in accuracy from allowing the modelto be more complex occurs
up to treewidth 4, less so 5 and 6; by further increasing the treewidth we do not gain much
in accuracy. We succeed in reconstructing the width in the sense that the distribution was
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Figure 3: Threshold curves for ALARM

simulated from a treewidth-4 model.2 Such tradeoff curves are similar to commonly used
ROC (Receiver Operating Characteristic) curves; the techniques for finding the cutoff value
in ROC curves can be used here as well. Instead of plotting thebest achievable distance,
we can plot the best distance achievable by at least anε-fraction of models in the class,
parameterizing the tradeoff curve byε. Figure 3 shows the threshold curves. The axes
have the same meaning as in Figure 1. Varying sample size and the number of randomly
generated DAGs does not change the behavior of the curves in any meaningful way; not
surprisingly, increasing these parameters results in smoother curves.
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