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Abstract

Performance modeling has become increasingly important in the design, engineering and opti-
mization of Information Technology (IT) infrastructures and applications. However, modeling work
itself is time consuming and requires a good knowledge not only of the system, but also of modeling
techniques. One of the biggest challenges in modeling complex IT systems consists in the calibration
of model parameters, such as the service requirements of various job classes. We present an ap-
proach for solving this problem in the queueing network framework using inference techniques. This
is done through a mathematical programming formulation, for which we propose an efficient and
robust solution method. The necessary input data are end-to-end measurements which are usually
easy to obtain. The robustness of our method means that the inferred model performs well in the
presence of noisy data and further, is able to detect and remove outlying data sets. We present
numerical experiments using data from real IT practice to demonstrate the promise of our framework
and algorithm.

1 Introduction

Performance modeling has been of great theoretical and practical and importance in the design, engi-
neering and optimization of computer and communication systems and applications for several decades.
A modeling approach is particularly efficient in providing architects and engineers with qualitative and
quantitative insights about the system under consideration.

However, as Information Technology (IT) matures and expands in the scope of available applications,
IT systems increase at a fascinating rate in both size and complexity. For example, today, a typical Web
service hosting center may have hundreds of nodes and dozens of different applications simultaneously
running on it. Each of the nodes in turn has often multiple processors and layered caches. These
nodes make use of both local and shared storage systems. The size and complexity of such systems
make performance modeling much more difficult, if at all tractable. Detailed modeling, fine tuning and
accurate analysis can be carried out only on very small systems or very small components in a system.

In addition, due to the rapid evolution of hardware technology, components in these systems are
upgraded at a much higher pace than in the recent past, in order to meet demand and to improve the
Quality of Service (QoS) parameters of performance and availability. Hence, performance modeling must
be done in a very short time frame in order for the model and analysis to be relevant.

These constraints made performance modeling work on modern IT systems very expensive, and of-
tentimes unaffordable. In order to obtain relatively accurate performance evaluation results with a short
turnaround time, i.e., before the system under consideration becomes obsolete, heavy investments are
necessary in human and compute power.

On the other hand, IT systems have become critical in most businesses. Losses of millions of dollars
per minute when a company’s IT system goes down are well-documented. Thus, it is natural that users
impose more and more stringent QoS requirements on their systems. In the case of IT outsourcing,
service-level agreements (SLA) signed between the parties stipulate, among other things, the service
quality guarantees, often with associated penalties in case of violations. As a consequence, predictive
modeling is truly vital in the capacity planning and QoS management of such systems.
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It is therefore urgent that researchers develop performance modeling methodologies that can cope
with large systems in an efficient and effective way. In this paper, we propose one such method based on
queueing networks. Queueing network models have been and continue to be the most popular paradigm
for the performance analysis of such systems, cf. e.g. [8, 11]. When one uses queueing networks for
the performance modeling, the first thing to do is to specify the system configuration and component
dependence relationships using a network of queueing stations with an appropriate number of servers and
service disciplines in the queues. The customers in the queueing network represent the jobs processed by
the system components. These queueing stations can model both hardware resources (such as routers,
machines or cache, etc.) and software elements such as threads or thread pools. Depending on the desired
level of modeling detail, this step of queueing network specification will be more or less complex. Once the
queueing network is built, performance predictions and what-if analyses can be done through analytical
approaches or simulations by varying the queueing network parameters such as traffic intensity, service
time requirements, number of servers, queueing disciplines, etc.

While many parameters, such as the queueing discipline, the number of servers in a queueing station,
buffer size, etc., of the queueing network can be easily set by the modeler, the service requirements
(i.e. job processing times) of customers are much more difficult to estimate. However, without an
accurate estimation of the service requirements, performance predictions can vary wildly. In other words,
a principal difficulty in building a valid queueing network of an IT system is the fine tuning of the service
requirements. This step requires benchmarking of the real system followed by an adjustment of the
queueing parameters in order to obtain coherency between measurement and predictions.

In many cases, however, measuring job processing times is either technically difficult, far too time
consuming, and/or very intrusive. Given that a computer system is typically multi-threaded, with many
internal input and output queueing effects, it is often impossible to measure such processing times (without
the queueing delay) of various transactions. As a result, direct measurement of these parameters is in
general too costly. Furthermore, measurement data, when available, are often noisy or biased. In short,
determining service requirements is probably the greatest impediment to using queueing networks for the
performance modeling of IT systems.

In this paper, we propose an optimization-based inference technique to tackle this important yet
highly challenging problem. It is formulated as a parameter estimation problem using a general (Kelly-
type, [7]) queueing network. We consider the case where aggregate and end-to-end measurement data (i.e.
system throughput, utilization of the servers, and end-to-end response times) are available. Note that
such data are typically easy to obtain. Each set of measurements, that is, a set of service requirements in
which the working environment (load, scripts,. . . ) is constant, is referred to henceforth as an experiment.

Our contribution in this paper is three-fold.

• First, we formulate the overall problem as a set of tractable, quadratic programs, one for each set
of end-to-end measurements.

• Then, based upon that formulation, we present a novel and highly robust method for solving the
problem, the self-adjusting nested estimation procedure, which makes explicit use of the underlying
problem’s structural properties. In particular, we use the non-uniqueness of the solution to each
quadratic program and the presence of multiple experiments, to obtain queueing network parameters
that maintain a representation of the entire set of solutions to the data. The robustness of the
method means the model performs well in the presence of noisy data, and further is able to detect
and remove outlying experiments within the procedure itself. This robustness comes at a very low
computational cost.

• Finally, we show that for data coming from real IT system measurements, typically subject to
measurement errors and other bias, the methods we propose here are superior to other available
methods for obtaining parameter values from multiple, multi-dimensional experiments. In partic-
ular, we compare our algorithm with an adaptation of the bundle-adjustment method used in 3-D
image reconstruction to the queueing network inference setting; our method is shown to be clearly
more robust and yet it requires a only modest increase in computation time.

We emphasize that the inference methodology for developing performance models is applicable in
a much more general context than the specific Kelly-type network model considered here. We restrict
our attention to Kelly-type network in this paper so as to explore fully the potential of the quadratic
program structure. In fact, our numerical results demonstrate that the approach works quite well in
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most real system practice, which indicates that product-form queueing network models can serve as good
approximations to capture the high-level queueing dynamics of real systems.

Though our modeling approach is very useful in doing prediction, what-if analysis, etc., it does not
solve every problem in this space. For example, this model is not intended to predict the impact of major
functional changes, or software defects, although we claim later in the paper that our outlier detection
component will assist in identifying functional changes or software defects.

Earlier work on queueing parameter estimation can be found in [12] and [14]. In [12], a tandem
queueing network with First-Come-First-Serve (FCFS) servers was considered. Various equations were
established relating different queueing variables (such as queue length and response times). In [14], a
tandem queueing network with two queueing stations was considered, one with FCFS discipline and the
other with Processor-Sharing (PS) discipline. Other related inference work can be found in the network
tomography research area, see e.g. [10, 5, 4, 2, 15]. Most work has focused on designing smart probing
schemes and using statistical methods such as EM algorithms or Monte Carlo methods to infer either the
network loss probability or the delay distribution.

In the next section, we present background on the relevant characteristics of IT systems, followed
by the nature of the queueing model we shall derive, and the inference problem. In Section 3, the
queueing dynamics are defined. Section 4 presents the derivation of the mathematical program for a single
experiment, multiple experiments, and its properties. Section 5 introduces our algorithm, its theoretical
basis, characteristics, and a comparison with a related algorithm from the 3-D image reconstruction
literature. In Section 6, we demonstrate the workings of our algorithm on both constructed and real data
sets, and compare it with the related algorithm described in Section 5. Conclusions and suggestions for
further work on the topic can be found in Section 7.

2 The Modeling Framework

2.1 Background on IT Systems

Rapid development in e-business and information technology has made today’s IT environment quite
complex. As illustrated in Figure 1, a typical IT system has multiple interconnected layers composed
of many software and hardware components, such as networks, caching proxies, routers, load balancers,
high-speed links, firewalls, and various types of e-business servers .

Figure 1: A Typical IT Environment

The e-business servers are often organized to have a multi-tiered architecture. Each tier has a cluster
of machines and may handle a particular set of functions. There are two tiers in Figure 1, for example.
The first tier is composed of Web and authentication servers, referred to as the Portal. The second
tier, referred to as the Commerce tier, is composed of a cluster of application servers that process most
of the business transactions. Incoming requests are routed to the Portal or the Commerce tier based
on their functional requirements. Within the Commerce (or Portal) cluster, again there are multiple
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layers, a front-end layer with several servers working in parallel, and a back-end layer composed of one
or several database servers. The front-end servers are responsible for obtaining static/dynamic pages for
clients. The back-end database server(s) handles database transactions. A network dispatcher (eND) is
commonly used to route incoming requests in a weighted round robin fashion, so as to evenly distribute
the load to the parallel front-end servers. The processed pages are usually returned directly to the clients.

The e-business workload, composed of transactions and requests to the e-business servers, is also quite
complex. Consider for example a typical enterprise online shopping scenario. It contains authentication
transactions such as login, and business transactions such as browsing the catalog, searching for products,
adding items to a shopping cart, proceeding to check out, etc. Each of these transactions uses the site’s
resources differently. Transactions such as browsing may only involve the front-end application server to
fetch static pages, which is relatively inexpensive, while other transactions such as searching or checking
out may involve composition of a dynamic page or multiple queries to the database that require a large
amount of processing time and involve both the front-end application server and the back-end database
server. In addition, user navigational patterns vary dramatically from person to person. Some users may
spend all their time browsing and searching, while some frequent buyers may directly jump in for buying.

It is thus a challenging task to assess an IT system’s capability of delivering end-to-end performance
assurance across the entire IT environment, given the variety of system architectures, numerous applica-
tions with different functions, and the vast diversity in user behaviors.

2.2 Queueing Model

In order to ensure the feasibility of the modeling framework yet still capture the fundamentals of the
complex e-business infrastructure, we require the queueing model to be neither too detailed nor too
general, and to rely on a controllable number of parameters.

We therefore use a high-level multi-class queueing network model. This form of model captures major
resource and delay effects and provides good traceability between the performance measures and the
system architecture. Each resource component that incurs non-negligible delays will be modeled by a
generic service station with queueing effect. Such a generic service station could have anywhere from one
to an infinite number of servers. For example, if we think the delay incurred at the firewall is constant
and non-negligible, one could then model the firewall as an infinite server station with constant service
time.

The next step is to characterize and profile the transactions into different classes, so that requests
within each class would follow similar paths through the various server stations and require similar service
demands at each station along the path. Such profiling can be based on prior engineering knowledge
or after careful workload analysis. For example, a login transaction is normally different from a buy
transaction and they would visit different set of server stations and make different resource demands.
Figure 2 shows the queueing network model corresponding to the IT environment in Figure 1.

Figure 2: An Example of Queueing Network Model

Suppose there are I generic service stations, and J different job classes in the corresponding queueing
model. However, the arrival rate of a particular job class may or may not be known.

We define the end-to-end delay of a particular job (or transaction) to be the total response time that a
user experiences from the time she issues that transaction to the time she receives the complete response
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as desired. For example, if a buy transaction traverses the firewall, network dispatcher, transaction server,
database server, and the network, its end-to-end delay is the sum of the delays incurred at each hop along
the path.

Different generic service stations can serve jobs under different service disciplines. For example, to
the model the user think time between two consecutive transactions, a delay center with infinite servers
can be used. to model the multi-threaded and time-shared processing/computing environment in most
application servers, one can assume the corresponding queues are served under the Processor-sharing
service discipline. Processor-sharing is considered as a limiting approximation to time sharing in which
the quantum length tends to zero. Hence, if there are n jobs in the system, they each simultaneously
receive 1/n of the resource.

The detailed service time information at each station is yet to be determined.

2.3 The Inference Problem

One of the biggest challenges in modeling complex IT systems using queueing network models consists
in the calibration of the queueing network parameters, such as the service requirements of the various
job classes at each station. The ideal way to capture these parameter values is to directly measure the
resource consumption of each class at each device. In real IT systems, however, it is very difficult to
measure the actual service time, without queueing delay, of a job. For example, in the Apache HTTP
server, a job may be admitted, but then it actually stays in the accept queue, waiting to be picked up by
a server thread. Because there are many such queueing effects inside a computer system, it is impossible
to measure each service time in detail.

We therefore have to rely on performance metrics that are measurable and are also relatively inexpen-
sive. For example, it is relatively easy to collect server utilization data or system throughput. End-to-end
delay, defined as the time from initiation of a request from the user until the time that the user receives a
response, can also be measured easily. In fact, quite often end-to-end delays are continuously monitored
in order to make sure that the service level delivered in accordance with service-level agreement (or service
contract). Usually such contracts stipulate performance (such as end-to-end delay) guarantees. Server
utilization information is another metric frequently used for IT system performance monitoring.

In practice, experiments are often set up to collect above end-to-end measurements. These experiments
could be aimed at measuring the performance under different load combinations, different load intensity,
or a down-scaled or up-scaled configuration. Each of these experiments can be expensive and time
consuming, requiring both efforts in setting up the experiments and data collection. Therefore one
cannot afford to carry out too many of these experiments.

Given that such experiments are carried out under different conditions (in terms of the traffic intensity,
transaction flows, system configuration, or system maintenance), naturally there are some experiments
more trustworthy than others. We will refer to the less trustworthy experiments as outliers as they
would simply produce inconsistent conclusions thus needed to be filtered out. Such outliers maybe
caused by some unintentional human faults in setting up one experiment, or simply by some temporary
environmental changes (e.g. system maintenance) while running the experiment. In addition, we consider
the fact the measurement data within a particular experiment may be noisy.

In what follows, we will refer to an experiment as a set of end-to-end measurements collected under
a particular load combination. We assume we have a finite and limited number of such experiments.
Using these N different set of experiments as input, we present a tractable, optimization framework to
infer the optimal set of service requirement parameters so that the resulting performance predicted by
the model is the closest to the end-to-end measurements. That is, for given measurements (Em, ρm)
where Em denotes the end-to-end delay measurements, and ρm denotes the observed server utilization,
the optimal parameter setting will produce an estimation (Ee, ρe) that is closest to the measured under
certain distance metric:

min ‖(Em, ρm) − (Ee, ρe)‖

Here the distance metric ‖ · ‖ is quite general, e.g. absolute difference, maximum difference, weighted
sum of absolute differences, or weighted sum of least square errors,etc.
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3 Queueing Dynamics

In this section, we describe the queueing model and the underlying dynamics in more detail. Consider
an open Kelly-type network [7] with I service stations and J different job classes. Jobs of class j visit
the stations along a deterministic path

h(j, 1), h(j, 2), · · · , h(j, Lj). (1)

If h(j, l) = i, we say that a class j job visits station i at hop l. In total, a job j makes Lj hops before it
exits the system. Let H(j) be the set of all server stations that class j jobs visit. Denote vji the number
of times that a class j job visits station i.

We assume that the J different job classes have independent Poisson arrival processes, with rate λj

for class j jobs. In addition, suppose jobs of class j incur i.i.d. random service demands Sji at station i,
where Sji is a general distribution, with mean sji = E[Sji]. Let Rji be the mean response time of class j
jobs at station i. Denote by Ej the mean end-to-end delay of a class j job after it visits all of the stations
along its path (1).

To make the model tractable, we assume the generic service stations are either delay centers, typically
modeled modeled as an infinite server(IS) queues (and will later be referred as IS-stations), or finite
capacity service stations operated under the processor-sharing (PS) service discipline (will later be referred
as PS-stations).

Denote λji = vjiλj as the arrival rate of class j jobs at station i. Then, the total job arrival rate at
station i is

λ(i) =
J∑

j=1

λji i = 1, ..., I.

Similarly, let ρji = λjisji. Then, total traffic intensity ρi at station i is

ρi =
J∑

j=1

ρji

=
J∑

j=1

vjiλjsji, i = 1, ..., I. (2)

Throughout the paper, we shall assume that

ρi < 1, for all i = 1, ..., I,

so that the queueing network is stable.
Since all service stations are assumed to be either infinite server (IS) or processor-sharing(PS) stations,

(both are symmetric queues), the underlying queueing network is a quasi-reversible network [7]. We
further have the following properties:

a) The state variables for each station are independent of those for other stations; hence the product
form holds;

b) The arrival process for every class of jobs at each station has the PASTA property.
It is well-known [13] (§6-8 Theorem 26) that the number of jobs at PS station i has the same distribu-

tion as that of the corresponding M/M/1 queue. Moreover, the probability that a job belongs to class-j
is ρji/ρi. Hence, the mean number of jobs Li at PS station i is

Li =
ρi

1 − ρi
,

and the mean number of class-j jobs Lji at PS station i is

Lji =
ρji

1 − ρi
.

Applying Little’s law, the mean response time Rji for class j jobs at station i is then given by

Rji =
Lji

λji
=

sji

1 − ρi
. (3)
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Clearly if station i is an IS queue (i.e. a delay center), we have that

Rji = sji. (4)

Therefore, the end-to-end delay for class j jobs can be derived as follows,

Ej =
∑

i∈H(j),i∈IS

sji +
∑

i∈H(j),i∈PS

sji

1 − ρi
.

4 A quadratic program

4.1 Notation

Here we summarize the notation we use in the queueing inference problem. The following input parameters
and performance measures are assumed to be given

J :=number of job classes;
I :=number of service stations;

λj :=arrival rate for class j jobs;
vji :=number of times that a class j job visits station i;

Em
j :=measured end-to-end delay of class j jobs;

ρm
i :=measured utilization of service station i.

The following parameters and performance metrics are to be estimated:

sji :=mean service requirement of class j jobs at station i;
Rji :=mean response time of class j jobs at station i;
Tji :=vjiRji, total mean response time of class j

jobs (sum of multiple visits) at station i;
Ee

j :=estimated end-to-end delay of class j jobs;

ρe
i :=estimated utilization of service station i.

Denote further in matrix format that:

Λ = {λj}J×1; (Arrival Rate)
S = {sji}J×I ; (Service Times)
T = {vjiRji}J×I ; (Multiple-visit Response Time Matrix)

Em = {Em
j }J×1; (Measured End-to-end Delay)

Ee = {Em
j }J×1; (Estimated End-to-end Delay)

ρm = {ρm
i }I×1; (Measured Server Utilization)

ρe = {ρm
i }I×1; (Estimated Server Utilization)

4.2 Single Experiment

We shall focus on a single experiment first in order to derive the corresponding quadratic parameter
inference program. The extension to multiple experiments is presented below.

Let us suppose that the matrices Λ, ρm, Em are given. We can estimate the total response times (sum
of multiple visits) for a class-j job at a PS-station i as follows:

Tji = vji · sji

1 − ρm
i

, if i is a PS-station. (5)
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Similarly, the total response times (sum of multiple visits) for a class-j job at an IS-station i is given by

Tji = vji · sji, if i is an IS-station. (6)

We define β = {βi}I×1, where

βi =
{ 1

1−ρm
i

, if i is a PS-station
1, if i is an IS-station

Let us define further: Z = {zji}J×I where

zji = vjisji.

Therefore, zji = 0 whenever vji = 0. Then in matrix format we have

T = Z · D(β),

where D(β) stands for the diagonal matrix of β.
Therefore the estimated total end-to-end delay is given by

Ee = T · 1I×1 = Z · D(β)1I×1 = Z · β. (7)

Similarly, based on the fact that ρe
i =

∑J
j=1 λjvjisji, we have that the estimated server utilization is:

ρe = (Λ)T ZD. (8)

The parameter estimation optimization problem is to thus to find the service requirements S =
{sji} such that the weighted least squared error is minimized. We have rewritten this problem so that
the the differences between measures and estimated values of the parameters appear in the definitional
constraints, and we minimize the sum of squared deviations from those differences. In other words, we
solve a quadratic program subject only to non-negativity constraints on the service requirements, sji,
i.e.,

min
s

J∑
j=1

wjδ
2
j +

I∑
i=1

ε2i (9)

s.t. ρe
i (s) − ρm

i = εi, i = 1, ..., I. (10)
Ee

j (s) − Em
j = δj , j = 1, ..., J, (11)

sji ≥ 0, j = 1, ..., J ; i = 1, ..., I. (12)

Here we use the weighted least square as our distance metric in this paper, where wj = λj∑
J
j=1 λj

, ∀j, define

the weights over the job classes based on the arrival rates. Denote in matrix format

W = {wj}J×1 =
Λ

ΛT1J×1
.

Note that both Ee(s) and ρe(s) are linear in s, and that the variables ε and δ are unrestricted in sign,
as we are minimizing the squared values.

Let us now define a new labeling of the unknowns, which we shall refer to as x, where

x =


 x̃

ε
δ


 ,

and x̃ is a column vector form for S, i.e. x̃k := sji if k = (j − 1) ∗ I + i. ε = {εi} and δ = {δj}. The
optimization problem can then be re-stated as the following quadratic program in standard form:

(QP) min
1
2
xT Hx (13)

s.t. Ax = b; (14)
xk ≥ 0, k = 1, ..., I × J. (15)
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where

A =


 As

Aε

Aδ


 , b =


 bs

bε

bδ


 ,

and

H =


Hs 0 0

0 Hε 0
0 0 Hδ




with

Hs = 0IJ×IJ

Hε = 2II×I

Hδ = 2D(W ).

Let L be the total number of vji’s such that vji = 0. Then,

Aεik =




λjvji, i = 1, ..., I; k = (j − 1) × I + i
−1, i = 1, ..., I; k = I × J + i
0, o.w.

Aδjk =




Tji, j = 1, ..., J ; k = (j − 1) × I + i
−1, j = 1, ..., J ; k = I × J + I + j
0, o.w.

Aslk =
{

1, l = 1, ..., L; k = (j − 1) × I + i and vji = 0
0, o.w.

bεi = ρm
i , i = 1, ..., I

bδj = Em
j , j = 1, ..., J

bsl = 0, l = 1, ..., L.

4.3 Multiple Experiments: General Formulation

The previous subsection showed that the inference, or parameter estimation, problem may be reduced to
that of minimizing the sum of squared deviations from the measured parameter values. For any particular
set of experimental results, the above model may be solved, to obtain the appropriate parameter set for
that experiment.

However, as is the case with any parameter estimation problem arising from a series of experiments, it
is insufficient to simply solve the above quadratic inference problem for a single experiment. In practice,
typically, multiple experiments can be carried out (e.g. under different load conditions). It is thus
important to include the entire set of experiments in the parameter estimation step to obtain as much
data on the full range of the parameters as possible, especially in the presence of nonlinear queueing
effects.

Suppose that we have data from N experiments, each providing an estimate of the matrix, Hn and
constraint values, Xn, based on the input parameters given within that experiment, ρn, En,. . . .

The goal of the inference problem over the set of multiple experiments is therefore to find a robust
vector of parameters, x that best represents the parameters obtained by solving the inverse parameter
estimation problem for each experiment, yet is able to detect and eliminate outlying experiments.

For notational simplicity, we shall make the following simplifying assumption, although our method
applies in general without this assumption.

Assumption 1 The network configuration, in terms of servers present (used), is identical across all
experiments.

The problem of reconstructing a 3-D scene from multiple 2-D images shares many features with
the problem of queueing network parameter inference, in that the multiple images, like the multiple
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experiments here, each contain some information on the true value (location) of each 3-D point based on
a different 2-D configuration (camera angle).

In the context of computer vision, a method called bundle adjustment is widely used to find the set
of 3-D points that best corresponds to all of the 2-D images. Bundle adjustment proposes a single least-
squares framework in which the distance from the observed and the measured positions of each point is
minimized. In effect, all of the 2-D images are treated together, and both the best 3-D positions of each
point and the best 2-D-to-3-D projection matrix are determined simultaneously. (See, for example, [9]).

The analog to bundle adjustment in the context of queueing network parameter inference is to combine,
in a single quadratic program, the data from all N experiments.
Bundle-adjustment-type algorithm: A single, large QP.

(single-QP) min
1
2
xT

N∑
n=1

Hn x

s.t. Anx = bn; n = 1, · · · , N

xk ≥ 0, k = 1, ..., I × J.

We use this single, large QP approach that combines all experiments into a single data set as a
benchmark in our numerical experiments, comparing it with our algorithm in terms of solution accuracy,
robustness to noise and outlying experiments, and computation time.

Before we present the algorithm, let us first examine the properties of the model.

4.4 Properties of the model

We have the following properties of the queueing-based quadratic parameter inference problem.

Lemma 1 The Hessian matrix H is symmetric and positive semi-definite for all x.

Proof: Notice that H is diagonal and Hkk ≥ 0 for any k. Thus, for any x, we have

xT Hx =
∑

Hkkx2
k ≥ 0

and H is positive semi-definite.

Note that the objective function of (QP) is convex in x and the constraint set is convex and closed.
The (QP) is therefore a convex program. It is well known, however, that the following property holds for
convex programs.

Theorem 1 Consider any convex minimization problem, min f(x) where x ∈ X ⊂ Rn, f is a finite con-
vex function and X a closed, convex, nonempty set. Then, the set of solutions of the convex minimization
problem is convex and any local solution is a global solution.

Proof: The set of solutions S to min f(x) over x ∈ X is given by

S = {x : x ∈ X, f(x) ≤ f(x∗)}, (16)

which is a convex set, since f and X are convex, and the intersection of convex sets is convex.

Corollary 1 The solution set, S, given by (16), where f is given by (13) and X by (14)–(15), defines a
set of linear-quadratic equalities and inequalities.

Proof: Follows from the definitions of X , and f(x).

Consider the optimization problem for an individual experiment, and recall that the optimal solution
is non-unique. Without any a prior knowledge, it is hard to tell whether one solution would be better
than any other. However, as the data set includes multiple experiments, and therefore multiple solution
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sets for the parameter values, we have additional information by which to reduce the size of the optimal
solution set. For example, consider two optimal different solutions (parameter vectors) for experiment 1.
We can say that one solution is ’better’ than another if it produces better objective value when used in
conjunction with data from experiment 2, and so on.

In other words, we can use the optimality condition from Theorem 1 to devise a nesting procedure for
solving successively the quadratic minimization programs from each experiment, incorporating at each
minimization the set of feasible and optimal solutions from the previous experiment(s).

Before doing so, however, note from the Corollary above that the solution set (16) is comprised of
linear-quadratic inequalities and equalities, as opposed to the original feasible set, X. The following
result shows that we can express the optimal solution set for the quadratic program without sacrificing
the linearity of the constraints.

Theorem 2 Consider as before any convex minimization problem, min f(x) where x ∈ X ⊂ Rn, f is
a finite convex function and X a closed, convex, nonempty set. Let x∗ be some optimal solution. Then,
the set of solutions of the convex minimization problem is convex and can be characterized by

S = {x : x ∈ X,∇f(x∗)T (x − x∗) = 0, ∇f(x∗) = ∇f(x)}. (17)

Proof: See [1][Thrm. 3.4.4].

Corollary 2 The solution set, S, given by (17), where f is given by 13 and and X by 14–15, defines a
set of linear equalities and inequalities. That is, we have that when f is quadratic and given by f(x) =
1
2xT Hx + hT x, and the feasible set X is polyhedral, the set of optimal solution set to min f(x), x ∈ X
is polyhedral, and is given by

S = {x : x ∈ X, H(x − x∗) = 0, hT (x − x∗) = 0}.

Proof: Substitute the gradient ∇f(x) into the solution set defined in (17). See also [1][Corr 3.4.4.2].

This latter characterization of the optimal solution set of each experiment’s inference problem will be
of direct use in defining the algorithm for obtaining a robust parameter vector from the set of multiple
experiments.

5 The self-adjusting nested optimization method

The algorithm that we propose is based upon a nesting of successive solution sets for the parameter
values across experiments. Indeed, as mentioned above, the solution vector for any experiment, n,
here referred to as (xn)∗, need not be unique, although the value of the quadratic program at that
solution, f((xn)∗), is unique. This nonuniqueness makes the combination of experimental results across
experiments quite challenging since, at each experiment, a set of optimal parameter values exists. What
we would like therefore is that, once we solve for one such set of optimal values from one experiment,
we consider, in the next experiment, not only those parameter vectors that are optimal (and feasible)
for that next experiment, but also the full set of solutions that are optimal from the first experiment.
This idea serves three objectives: on the one hand, we impose coherence across the multiple experiments,
in terms of the parameter vectors that they produce from their inference problems, and, on the other
hand, we successfully reduce the size of each solution set at successive experiments, by adding additional
constraints to each inference problem. Lastly, we are provided with an inexpensive way in which to detect
(and therefore remove) outlying experiments. The additional constraints are precisely the optimality of
the parameter vector to all (or some) of the previous experiments’ inference problems.

11



5.1 Basic Idea of the Method

The fundamental idea of the nested procedure is that we would like to nest the solution sets, one after the
other, in the successive parameter estimation problems, so that in each experiment, n > 1, we consider
a subset of the set of solutions to problem n + 1. The subset that we are interested in is precisely the
intersection of set of feasible solutions to the current n + 1st problem and the set of optimal solutions to
the previous, nth, problem, and so on.

Proceeding in this manner, while the solution set for the final experiment, that is the N th parameter
set, may still not be a singleton, it will be considerably reduced in size through the intersection with
all other optimal solution sets. In addition, it will be both optimal and feasible for all experiments.
Furthermore, we will have guaranteed coherence across the multiple experiments’ solutions.

Hereafter, for the n-th experiment’s quadratic minimization problem, n = 1, . . . , N , we refer to the
feasible set as Xn, the optimal solution set as S∗

n, and the optimal solution value as f∗
n.

For simplicity in motivating the algorithm, let us first make an additional assumption to ensure
feasibility of the results of performing the nesting procedure. We shall relax this assumption in the when
we present the complete algorithm.

Assumption 2 The intersection of the sets of optimal solutions to each experiment’s quadratic mini-
mization problem, S∗

n, is nonempty, in other words, ∩n=1...NS∗
n 6= ∅.

Under Assumptions 1 and 2, we are in a position to devise a basic, self-adjusting method for combining
data from the N experiments with the aim of obtaining a robust set of parameters that best takes into
account the results of all experiments. Based upon Theorem 2 and Corollary 2, the self-adjusting nested
optimization method involves the addition of polyhedral constraints only, with respect to each experiments
original inference problem.

1. Solve the quadratic minimization problem from experiment 1. Obtain an optimal solution, x1,∗.

2. Solve the quadratic minimization problem from experiment number `, ` = 2 . . .N , adding the
following linear constraints at each iteration, `:

x ∈ ∩n=1..`X
n (18)

Hn(x − xn,∗) = 0, n = 1..` − 1. (19)

(hn)T (x − xn,∗) = 0, n = 1..` − 1. (20)

Proposition 1 Under the Assumptions 1, 2, the order in which the experiments are considered does not
change the final solution set of the nested optimization procedure.

Proof: Suppose the above nested optimization procedure is applied on N experiments in the order
l = 1, . . . , N . Denote the optimal solution set to the nested optimization problem at step l as Ŝl. By
construction of the nested method, we have Ŝl ⊆ Xl ∩ Ŝl−1, for l = 2, . . . , N . Thus, Ŝl = Ŝ1 ∩ . . . ∩ Ŝl.
We claim that Ŝl = S∗

1 ∩ . . . ∩ S∗
l , for all l. By Assumption 1 the solution set S∗

n, l = 1 . . .N exists,
and by Assumption 2, the intersection S∗

1 ∩ . . . ∩ S∗
N is nonempty. It is therefore equivalent to consider

the experiments in any order, since it does not change the value of the overall intersection of optimal
solution sets, S∗

1 ∩ . . . ∩ S∗
N . It suffices to show the claim for l = 2. The arguments are similar for larger

numbers. Clearly, Ŝ1 = S∗
1 . For any y ∈ S∗

1 ∩ S∗
2 , we have y ∈ X2 ∩ Ŝ1, and f2(x) ≥ f2(y) for all x ∈ X2.

We then must have y ∈ Ŝ2. Therefore, S∗
1 ∩ S∗

2 ⊂ Ŝ2. To show the converse, suppose on the contrary
that there exists z ∈ Ŝ2 such that z 6∈ S∗

1 ∩ S∗
2 . Since Ŝ2 ⊂ Ŝ1 = S∗

1 , it follows that z 6∈ S∗
2 . Thus for all

y ∈ S∗
1 ∩S∗

2 , we must have f2(z) > f2(y) = f∗
2 . Since y is also a feasible point in X2∩Ŝ1, z cannot be op-

timal for the nested problem, contradicting to the fact that z ∈ Ŝ2. We therefore must have Ŝ2 = S∗
1 ∩S∗

2 .

Corollary 3 If any one of the Assumptions 1, 2 is not satisfied, then the order of the nesting of the
multiple experiments has an effect on the final solution set.
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Proposition 1 implies that, under Assumptions 1, 2 we may in fact identify the intersection of all
optimal solution sets in any order, whereas when the data is significantly noisy, or contains outliers, the
ordering of the experiments will be apparent in the outcome. It is precisely this fact that enables the
method, at a low computational surcharge, to self-adjust, i.e. to detect (and allow removal of) outlying
or highly noisy experiments.

Indeed, the method is able to self-adjust, with minimal cost, to significantly noisy data, outlying
experiments, by monitoring the residual error after each level of the nesting procedure, that is, each
experiment, and detecting any significant jumps in the objective value. (Recall that the objective value is
precisely the residual error of the estimation). By making use of a user-defined threshold, the experiment
that caused the large jump in objective value can be eliminated from the data set and the procedure
continued. The cost of this self-adjustment to noisy data is limited to the detection test performed, and
hence is minimal.

5.2 Steps of the Self-adjusting Nested Estimation Method

The self-adjusting feature of the method requires that the user define a given tolerance, or a way to
compute a tolerance depending upon the residual error of the estimation. The residual error is obtained
at no addition cost, as it is precisely the objective value at each nest.

Let us refer to this (possibly state-dependent) tolerance as τ`, for state, or nest, `.
When the Assumption 2 is not satisfied, it is necessary to relax the feasible set, that is, to allow an

optimal solution to the nth problem to be infeasible with respect to the intersection of the optimality set
number (n − 1) and the feasibility set of the nth problem. The idea is then to minimize the amount of
this infeasibility. When a feasible solution exists, therefore, this amount will be minimized to zero, and
we recover the original nested optimization method.

1. Solve the quadratic minimization problem from experiment 1. Obtain an optimal solution value,
x1,∗ and the optimal solution, f1(x1,∗) which we refer to as f∗

1 .

2. Solve a modified version of the quadratic minimization problem from experiment number `, ` =
2 . . .N , adding the following additional linear constraints:

x ∈ ∩n=1..`X
n(y1), (21)

Hn(x − xn,∗) = y2, n = 1..` − 1, (22)

(hn)T (x − xn,∗) = y3, n = 1..` − 1, (23)
y1 ≥ 0.

where Xn(y1) is the feasibility set for experiment n, relaxed uniformly by the scalar y1; that is,
for any general set of constraints X = {g(x) ≤ 0}, the relaxed feasible set in y1 is given by
X(y1) = {g(x) ≤ y1}. We have thus the following dimensions for the relaxation parameters:
y1 ∈ <+ , y2 ∈ <`∗I∗J

+ , y3 ∈ <`
+ , and the following modified quadratic objective:

RE` = min
x,y

f`(x) + y1 + y2
2 + y2

3 .

3. If, at nest ` > 2, the residual error, RE` ≥ τ`, then experiment ` is an outlier, and is discarded.
Return to step 2 and set ` = ` + 1. If ` = 2, then set ` = ` + 1 and return to step 1.

The self-adjustment step, 3, discards an experiment whose inclusion in the nesting procedure causes
the residual error to increase more than the tolerance, τ`. If the first or second experiment (nest) causes
this increase, it is impossible (without further testing) to determine which of the two is the outlier. The
simplest solution, which is proposed in the algorithm, is to simply discard both experiments 1 and 2.

5.3 Further Uses of the Characterization of the Nested Optimality Set

Since the most common scenario in queueing network parameter inference is that the number of variables
greatly exceeds the number of measurements available, the solution sets at each nest will likely not be
singletons. In this case, it is of great interest to have a measure of how large the solution sets are, and
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in particular, how large the final nested solution set is. Indeed, in practice, it is often more important to
give an optimal range of parameter values than one single value.

Using the self-adjusting nested method, it is straightforward to obtain a measure of the size of the
final solution set (after having eliminated any outlying experiments), i.e., that of the N th experiment,
S∗

N , by solving a sequence of linear programs with particular objectives, described below. Solving this
sequence of LPs gives in effect the smallest multi-dimensional bounding box that contains the solution
set.

To do so, solve the following pair of linear programming problems for every i = 1 . . .dim(x):

max xT ei,

min xT ei

each objective subject tox ∈ S∗, where ei = (0, . . . , 1, . . . 0) and the 1 is in the ith row of the (column)
vector, S∗ is the solution set of the N th experiment, S∗

N , and dim(x) is the dimension of the vector x.
This provides an outer approximation of the final intersection of all (non-outlying) optimality sets,

which can be used e.g. to provide a range of input data to the queueing network, after calibration.
Furthermore, note from Step 3, above, that the method detects outliers at no additional cost. An

additional use of the outlier detection step is in identifying malfunctions or configuration/software defects.
To do so, one need only collect the outliers and information about the experiments from which they were
drawn. Using either problem determination or autonomic management tools, one can then attempt to
identify if a fundamental problem has caused the measurement data to differ dramatically from the other
measurement data by analyzing the patterns of the outliers. Indeed, while in most cases, an outlying
experiment will be a random occurrence, it may be that a more structural change has occurred in the
system.

6 Analysis and numerical experience

In this section, we illustrate the use of the algorithm on both synthetic and real data. On the synthetic
data, the numerical tests demonstrate the accuracy of the estimates produced by the method, and its
robustness to both noise and insufficient data. By insufficient data, we mean that the number of ex-
periments performed is quite low as compared to the number of parameters to estimate. On the data
obtained from a real IT system, the tests validate the use of the proposed queueing network inference
approach.

6.1 Comparative results on synthetic data

As mentioned previously, we also compare our method with a version of the bundle-adjustment method
used widely in 3-D image reconstruction, in which all experiments are lumped together as a single, large
data set; in that approach, the problem is formulated as a single QP. We compare the two approaches in
terms of estimation quality and computation time. Solution quality can be defined in a number of ways;
here we consider two such metrics: the sum of squared error of the end-to-end measurements, and the
values predicted by the model with the estimated parameters.

To test the robustness of the algorithm, it is necessary to vary the noise level in the data. Here, a
noise level of 0 means that the (synthetic) data has no bias. A noise level of 1% means we have generated
experiments with uniform noise throughout, at 1% deviation from the true values. The quality of the
solution is evaluated with respect to the measured data, in particular, the first quality metric is defined
by

∑N
n=1(

∑J
j=1 wj,n

(
Ee

j,n − Em
j,n

)2 +
∑I

i=1

(
ρe

i,n − ρm
i,n

)2), that is, the total weighted least square error
across all experiments. The second quality metric is measured with respect to the true parameter value;
since this first set of tests have been run on generated data, we know the true values of the S. Thus
we can also measure solution quality as ||Strue − Spredicted||/||Strue||, i.e., the percentage deviation with
respect to the true values of the parameters.

Several random sets of data were generated for each error level, and the solution quality obtained was
averaged over those instances with the same error characteristics. In Figures 3 to 5, all problems were of
the same size, with I = J = 10, and therefore 100 problem variables (i.e., not including dunny variables
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that permit handling infeasibility). The 6th figure illustrates the computation time for our algorithm and
the benchmark method as problem size increases, from 9 to 625 problem variables.

Let us investigate how the the quality of the algorithm degrades with noise. Figure 3 gives a first
indication of the robustness of the method. When the noise level is 0 and if we have a sufficient number
of experiments, we should be able to determine the parameters exactly, i.e., no least squares estimation
is needed in this case. Indeed, observe that the least squares error is 0, as shown in Figure 3. Note
further that the least squares error increases very gradually with increasing noise. Indeed, even when
the measurements are badly degraded by noise, the quality of the estimation produced is still very good,
with a residual error of less than 0.1.
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Figure 3: The auto-filtering nested algorithm scales well in the presence of (uniform) noise

Figure 4 compares the quality of the algorithm. in terms of the least squares error, with the single
QP approach when one of the experiments is an “outlier”, i.e., significantly biased with respect to the
other experiments. We use a set of 6 experiments in total. The outlier has a bias of ||Soutlier −S||/||S|| =
1.5. The position of the outlier in the 6 experiments is randomized. We plot the ratio of least square
error(LSE), i.e., LSEsingleQP /LSEnestedQP . The larger the value of the ratio is, the larger benefit we
get by using the nested method vs the single QP method. As before, the data is averaged over several
different runs to provide reliable statistics.

Note that outliers especially degrade the quality of the single QP approach, since all experiments
are considered simultaneously and it is impossible to isolate the effect of a single bad experiment on the
estimation. In this respect, the sequential, nested approach of our algorithm is really much more robust, as
experiments are added one-by-one and the effect of any bad experiment is immediately visible. Further,
with the self-adjustment capability, the nested algorithm automatically removes the bad experiment
resulting in a much improved estimate. In fact, we find in these cases that the least squares error is 2
orders of magnitude better using our algorithm than that of the single QP, even when there is significant
noise in all of the experiments.

Figure 5 compares the robustness of the auto-filtering nested algorithm with that of the single QP
method when insufficient data is used. That is, the number of experiments available to estimate the
parameters increases from 1 to 5, where 5 experiments provide an equal number of equations as there are
unknowns. Furthermore, note that when there is only 1 experiment, the nested method and the single
QP are identical, as is the case, in the absence of noise, when there is complete data (5 experiments in
this example). Here the quality of the solution is measured with respect to the second metric, using the
true parameter value.

We consider two scenarios. First, we consider an ideal scenario, i.e., the measurement is not degraded
by noise and there is no outlying experiments. The second scenario is more realistic. We generate a set of
5 experiments with fixed 10% uniform noise and an 100% outlier, i.e., ||Soutlier − S||/||S|| = 1.0. Again,
the position of the outlier is randomized.

In Figure 5, the normalized difference in solution deviation is traced as the amount of data increases.
As expected, the difference is null when there is 1 experiment for both cases and when there is complete
data for the first case. However, of interest is what happens between those extremes; observe that the
nested algorithm gives quality improvements of up to more than 30% for the first case and more than
60% for the second one.
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Figure 4: When an outlying experiment is included in the data, the solution quality of the auto-filtering
nested algorithm is significantly better than the single QP approach
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Figure 5: Normalized quality difference across the two methods as the amount of available data in-
creases. At both extremes, the two methods are identical, in between the auto-filtering nested algorithm
is superior.

Figure 6 compares the computation times of the two procedures. Here we have fixed the number of
experiments at 3, and have varied the size of the optimization problem in each experiment from 9 to 625
problem unknowns (not including the dummy variables used to ensure feasibility). One would expect that
the single QP is faster, since solving a single quadratic program, even if it has N times as many constraints
and variables, would be faster than solving N separate quadratic programs; this is indeed true for the
most part. The important point to take away from Figure 6 is that the improvement in robustness of
the auto-filtering nested algorithm comes at a very modest computational surcharge (roughly a doubling
of the computation time over the benchmark algorithm) yet it does not break down in the presence of
outliers and non-uniform noise. Note that this behavior scales with problem size; as the problem gets
larger, the more robust, nested method remains at roughly double the computation time of the single QP
approach.

6.2 Validation Results from a real IT system

The proposed modeling framework and inference procedure have been tested as well on measurement
data collected from a real IT environment for Web services with similar architecture to that shown in
Figure 1.

Figure 7 illustrates the modeling results. In this figure, the light-gray bars represent the measured
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Figure 6: Computation times (in seconds) across methods on noise-free data as problem size increases.
The second figure shows that the ratio of computation times of the two methods remains constant with
increasing problem size.

end-to-end response time for each transaction. The dark-gray bars are those predicted by the model.
Note that the values on the y-axis have been suppressed for reasons of confidentiality.

We have obtained the model parameters based on the measurements of one experiment when the
system is experiencing 100% of its average workload. The input measurement data used for the experiment
includes the end-to-end response times of all requests and utilization numbers at the different layers of
the Web service architecture. Based on the inferred model, we then plot the mean response time for each
transaction side by side with the measured mean response time in Figure 7. One can observe that the
model matches well to all the measurements.

Figure 8 and Figure 9 illustrate the validating results against measurements. Here we use one ex-
periment when the system is experiencing 150% of its average workload. Based on the inferred model
we calibrated with the previous experiment, we calculate (and predict) the mean end-to-end response
times for all transactions. The prediction results, shown as the dark-gray bars in Figure 8, are compared
side-by-side along with those we measured which are shown in light-gray bars. The predicted versus the
measured resource utilization at various servers in the Web service architecture are shown in Figure 9.
Note that the model matches well not only all the transactions, but also the utilization at all the servers,
to the measurements even though they are not used for calibration of the model. If we define relative
accuracy RA = 1 − |prediction−measurement|

measurement , then more than 50% of time the relative accuracy is above
95%, and more than 90% of time the relative accuracy is higher than 80%. The quality of these results on
real system data further validates the use of the Kelly-type network assumption; although the conditions
for its applicability were not met, the system behaves closely enough so that it gives a very accurate
prediction to the real system behavior.

7 Conclusions and future research directions

We have presented a formulation for estimating the parameters of queueing networks with processor
sharing queues, using a quadratic programming framework. Based upon the properties of the quadratic
program, we proposed a novel and robust algorithm for obtaining the best parameter values across a set of
possibly incompatible experiments. The method is validated on a number of randomly-generated problem
instances, and compared and contrasted against a benchmark algorithm used widely for the related
problem of 3-D image reconstruction. It is demonstrated that at a modest computational surcharge, it
is possible to get significantly more robust estimates through the proposed algorithm. The approach of
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Figure 7: Modeling effect

using queueing network models to infer parameters of a typical IT system is then further validated on
data coming from real IT systems, as they are used in practice.

Several areas for potentially valuable future research have emerged from this work. One such direction
is an exploration into the use of the outer approximation presented in 5.3. The advantage of being able
to describe each solution set in terms of simple box constraints is that any point can be very quickly said
to lie inside or outside the box. Thus, rapid heuristics may be developed based upon that representation
of the parameter solution sets, and of their intersection. Note that these methods are clearly heuristic
since there are points in the boxes that are not in the true solution sets. For the purpose of practical
studies, however, this approximation would be sufficient, and would allow very rapid analysis.

Second, we have raised the possibility of using the outlier-detection scheme within a problem determi-
nation or autonomic management role, in order to assist in detecting structural changes to the IT system.
It would be of value to develop the methods to make best use of this data.

Third, note that we have assumed that the system is of the Kelly-type; however, observe that our
work can readily be extended to the case of general Kelly-type networks with possibly FCFS queues.
More generally, it can be extended to networks where the end-to-end delays can be decomposed to local
delays.

Finally, another direction of research is the inference of higher moments of the service requirements,
or even their distributions. For this, there will be a need of more detailed measurement data including
higher moments of end-to-end response times.
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Figure 9: Validation against measured utilization
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