
RC23176 (W0311-170) November 24, 2003
Computer Science

IBM Research Report

An Effective, Java-Friendly Interface to the CAS

Marshall Schor
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Effective, Java-Friendly interface to the CAS

Introduction
A paper in the IBM the Systems Journal [CAS article in Systems Journal] describes the Common
Analysis System (CAS) and gives motivations for it. We extend these motivations further, and describe
an approach to working with the CAS from Java that is effective in many dimensions including type
safety, maintainability, readability, performance, and composablility.

We call this approach the JCas, short for the Java interface to the CAS. The CAS, as part of UIMA (see
[UIMA article in Systems Journal]), is not language specific; we have both a Java version and a C++
version that interoperate – in that one part of an analysis may be done by an annotator executing in one
language/environment, and the results transferred to an annotator executing in the other environment.

The CAS paper focuses on the functionality of the CAS; this paper focuses on an effective Java interface
to the CAS and compares it with other contemporary approaches for user-friendly interfaces, including
Visual Basic [Visual Basic] and the Eclipse Modeling Framework (EMF) [EMF].

This paper is not self-contained; it presumes a previous understanding of the CAS system and UIMA,
which can be obtained from the references.

Motivations
In addition to the motivations described in the
CAS paper (Component Assembly, supporting
Data-driven inference to aid in component
assembly and interoperability, and an efficient
serialization/marshalling capability), we observe
that a significant success factor in delivering new
platforms/frameworks like UIMA is ease-of-
learning for the target intended audience. We
expect most adopters of UIMA will use the Java
version. In early prototypes, we observed users
implementing their own ad-hoc approaches to
making the CAS functions available in a familiar
Java form.

XML is used as a declarative specification of the
CAS types that an annotator works with. A
second observation from the local user
community was feedback that although XML
might be a good way for computers to
interchange information and meta-data, it was a
continual source of difficulty for developers.

This led to a second goal for JCas – that of
having a “developer-friendly” specification
approach that would be easy to read and write
(by a human), in a syntax that was familiar to
Java programmers, and which could be used to
generate the required XML, whenever changes
occurred.

The CAS implementation has made many
specific choices. Because we are early in the
exploration of alternatives for some of the details
of the architecture, it may be useful to
experiment with alternative implementations.
This is another motivation for having the JCas,
because it is a layer on top of the base CAS
implementation, and allows for this
experimentation without source code re-writing.
It architects an interface for the CAS that allows
alternative implementations to be used
underneath.

All of this layering could be objectionable if it
caused extra overhead. A final motivation was to
explore how to provide a Java-familiar

1

interface to the CAS while not introducing
additional overhead. In fact, the current
implementation allows a more efficient use of the
CAS – which we will describe in the section on
type safety, following.

The JCas interface to CAS
objects
The Basic CAS interface

There is a common API supported in both C++
and Java for accessing the CAS directly. It
involves obtaining handles for all types and
features (a feature is a field within a type), and
then using those handles in operations to create
new type instances and get/set the fields within
those types.

Typical code using this basic interface first
declares variables to hold handles to the type and
features of that type. Next, code that sets these
via CAS methods that extract meta-data needs to
run at some initialization point in the user’s code.
Once initialized, these handles are then used in
getting and setting features.

Using common naming conventions to
make a friendlier interface

Both Visual Basic, Java Beans [Java Beans], and
EMF, among many others, adopt a convention of
automatically-generated names that follow
conventions. We adopt the same conventions:
each field within a type named “xyz” will have
generated methods named getXyz and setXyz, to
read (get) and write (set) the field “xyz”; these
methods are specific to the type. Of the various
methods in the marketplace that have been tried
to ease the learning curve, this approach seems to
have gained a large following. Informal feedback
from users attests to its ease-of-use and rapid
learning curve.

We create new objects by using either the
common “new” operator in Java or a common

Java form for object creation: the create() method
on a type-specific “factory”.

Here’s the same code fragment above, done with
this syntax:

/* Create a new “Token” object */
Token aToken = new Token(jcas);
/* or – an alternate form if Token is an
Interface, not a Class */
Token aToken =
Token.factory.create(jcas);
/* set a features */
aToken.setTokenType = 1;

Because UIMA supports the notions of multiple
CASs at runtime, the “jcas” parameter selects
which instance of a CAS the token should be
created in. We currently are using the “new”
operator approach – as it is more familiar to Java
programmers; however, for future extensibility,
we will most likely be shifting to the “Interface”
style which will require the “factory” approach.

By adopting this widely used standard convention
for getting and setting fields, we expect to benefit
from the form’s familiarity, as well as from the
same kind of tooling developed around this
approach.

Specifying the types

The Java classes that define these types all have a
similar structure. The declarative information
about CAS types allows these classes to be
automatically generated; this removes a potential
source of error. EMF uses this same approach.

When classes are generated, what are they
generated from? What is the specification input?
In our design we have 2 sources. One is
optimized for developer creation and
maintenance; the other allows generation of the
classes directly from a loaded CAS type system
via reflection.

2

The CAS Type Specification file

The type specification for JCas is contained in a
.cts file (.cts – the file type, meaning CAS Type
Specification). The syntax of this file is modeled
closely after Java syntax. But it isn’t Java. There
is an additional build step which converts it into
Java classes. It contains all the information
needed by the CAS type system. In designing this
file format, we strove for something that would
be notationally compact, do maximal factoring of
things like name-space prefixes, and be easy to
learn, easy to remember the meaning (easy to
read), and easy to maintain. We use this file as
input to a program which will generate the Java
Class files that implement the interfaces, and also
generate the XML type specification needed by
UIMA. Having a generator reduces the sources
of errors – the XML type specification is
guaranteed to be in sync with the generated Java
classes.

Human Readable Type Specifications

Here’s a sample of a .cts file:

/** CAS type definition for ParseFrame
 * @author someAuthor@a.b.com **/

casNameSpace com.b.a.projectName;
// multiple casType specs follow –
// each looks like this:

casType ParseFrame extends Annotation {
 Integer seqNo; //unique id
 Word headWord;
 StringArray features;
 FSArray<ParseFrame> lMods;
 String slotName;
 ParseFrame parent;//null for top node
}

Some comments on the example: The feature
types are either built-in to the CAS system (e.g.
Integer, StringArray, FSArray, String,
Annotation) or refer to other defined CAS types.
The “extends” keyword specifies the super-type,
with identical semantics to Java’s use of
“extends”. The FSArray built-in type is followed

by a specification <ParseFrame> which uses the
coming syntax in Java 1.5 for Generics [Java 1.5
Generics], and has the same semantic meaning.
(Although we support generic-like arrays, we do
not require the use of a Java level that supports
templates, for instance, Java 1.5.)

Wherever possible, we follow Java conventions.
The casTypes look like Java Class declarations,
except that they have no methods, only fields
(CAS Features). The range-types of those fields
are the allowed types in the CAS system, instead
of being Java types. Comments follow Java
conventions; javadoc [JavaDoc] comments are
supported.

For the same reasons that Java implemented
packages and imports, we use a casNameSpace
statement to specify both the name space for the
type names in the CAS, and the package name for
the generated Java Classes. Import statements are
carried over into the generated Java code to allow
referring to types in other name spaces (packages)
while factoring out the package name, resulting in
easier-to-read and maintain source code.

The result is a notationally compact form of the
type specification, which can generate both the
Java classes implementing the JCas getter/setter
interfaces as well as the type description XML
that the UIMA architecture uses. As would be
expected, this syntax-rich notation is much more
compact than its corresponding XML
specification, and much easier to read and
maintain by developers.

Alternative specification approaches

EMF has a very similar approach to data
modeling. It also provides for a generator to go
from a specification to Java classes which have
getter/setter methods. The input sources for EMF
models can be a UML data model, or a Java
interface specification annotated with additional
information contained in comments using
Javadoc-like tags, or XML forms of the
specifications. The XML spec form is very

3

Stronger-than-Java type checking similar to the CAS XML type specification form,
so the capabilities here are similar.

The normal type checking done by languages
such as Java is being extended in Java 1.5 via the
new template mechanism. This mechanism
allows specifying for collections, the class of the
objects in the collection. A major value claimed
for this is the elimination of repetitive casting
operations during accessing; these are in a sense
factored out into the collection type specification,
resulting in cleaner, easier to read, understand,
and maintain code.

The UML data model approach for the CAS
could be done, but UML data modeling supports
a much broader set of capabilities than are
currently architected in the CAS. For example,
UML data modeling allows modeling of non-
CAS concepts, such as two-way links among
instances, containment, etc.

The Java interface specification annotated with
additional information is a notation that is not as
compact and easy to read as the .cts notation.
However, this form of adding additional (meta)
information to Java classes, information needed
by other processes, is becoming more common;
Java 1.5 itself uses more of this approach. For
now, we feel the notational compactness may aid
wider adoption because it may be easier to learn
and use.

We add this same kind of strengthening of the
type system for collections to CAS arrays, by
allowing the developer to specify for arrays of
Objects the type of the object in the array. This
type information is specified using the same
syntax proposed for this function in Java 1.5; it is
used for both compile-time checking the
arguments of values passed to “setter” functions,
as well as for eliminating the need to cast results
retrieved from these CAS arrays. CAS Arrays

In addition to getters and setters for fields, we
extend the getter/setter capability to include
getting/setting an element of a CAS Array, when
the field is a CAS array.

EMF has a similar approach to type-safety-
strengthening.

Java Load Time operations

Here is an example of the use of this: Java design supports operations done at class load
time, such as initialization of static fields. When
these fields are declared “final”, the Java JIT
compilers can use this information to do
optimizations that compilers do when variables
are treatable as constants. For instance, it can
depend on the fact that the variables will never be
modified and cache their values in registers. We
take advantage of this to move most of the run-
time checking (done by the basic CAS interface)
so that it occurs at load time and results in
constants the Java JIT compiler can benefit from
optimize around.

/* get a value from an array */
aToken.getTokenFeature(myIndex);
/* set a value into an array */
aToken.setTokenFeature(
 myIndex+1, valueToSet);

Having these kinds of additional getters/setters
allows for more efficient implementation of these
functions; in particular, we avoid creating extra
temporary Java Array objects whose only purpose
is to allow getting or setting an element within it.

Type Checking
When the CAS is initialized, the corresponding
JCas classes are loaded. During this loading
process, checks and initialization are done to
validate the dynamically created CAS type

A cornerstone of modern language and notations
is the concept of type checking – both at run-time
and compile time.

4

system matches the JCas class definitions. Java
“final” constants are initialized based on the
instantiated CAS type system, and these constants
are later compiled into the JIT generated code for
the class.

We were able to move most of the run-time type
checking previously done in the basic CAS
interface into this load-time initialization, which
works with the compile-time Java type checking.
As a consequence, the JCas interface to the CAS
runs significantly faster than the basic CAS
interface design, with full type checking.

Using .cts files
To use the .cts files in an UIMA application, a
developer runs (typically, as a part of his build
process) a utility called JCasGen which reads the
.cts file and creates corresponding Java classes
that implement the get/set interfaces. These
classes are added to the classes the developer is
coding, as part of his application. The JCasGen
utility also produces the XML specifications for
the defined types, needed by UIMA when
applications are assembled and deployed.

Type Augmentation at
“Assembly time”
The companion CAS paper describes a scenario
where one annotator might want to add additional
features to the output of an existing annotator, by
adding a field. This capability is not natively
supported in Java. One approach to doing this
has been to extend a base class. Here’s the
scenario:

Let’s imagine Annotator A outputs “Token”
annotations. Annotator B wants to augment this
Token annotation with an additional field,
perhaps a part-of-speech tag. In the basic CAS
support, Annotator B can define the Token type
with this additional field. At Assembly / Load
time, all type descriptors are read for all
annotators that will be sharing a CAS, and their

type definitions merged. The resulting
augmented type is used at run time. (Assembly
time is an optional step that allows the
computations otherwise done at load time, every
time an application is loaded, to be done once, so
loading can be faster).

The common approach to this kind of type
augmentation in Java is subclassing. In this
scenario – Annotator B would define a subtype of
Annotator A’s Token type, called, for instance,
TokenB; the body of TokenB would be the
additional Part-of-Speech field. In practice, this
doesn’t work very effectively, because Annotator
A runs with its type definition, and when
Annotator B starts, it has to copy the Annotator
A’s Token types into instances of its type (which
have the extra field).

Other approaches to extending types are found in
the “Adapter” pattern described in the EMF book.
In this approach, an instance of type A is
“adapted” to have another set of methods and
fields. These methods and fields actually exist in
another Java object instance, which is associated
with the original instance, frequently via a hash
table. This approach is used also in the Eclipse
[Eclipse] technology, for connecting data models
with UI data.

To emulate the basic CAS capability while
keeping the additional type checking possibilities
that come with the “subclassing” approach, we
implement an Assembly / Run-time equivalent
for adding fields to a type, in Java. In this
approach, Annotator B would use subclassing,
but things would be done at Assembly / Load
time to allow types of Annotator A’s Token to be
“downcast” into types of Annotator B’s.

This capability is only installed for types marked
“downcastable”, since Annotators commonly
subclass annotations with no expectation of those
types needing to be downcastable. An example is
the type “Annotation” which defines only two
integer fields, the beginning and the end of the
annotation, and which is used by CAS type

5

developers as a supertype of their particular
annotation type.

When an Annotator designer wants to add a field
to an existing type in a downcastable manner (to
avoid the overhead of copying), they designate in
the .cts file not only the type it extends, but also
that it should be downcastable from that type. At
assembly or load time, when the type
specifications are gathered together, the JCas
implementation arranges for the implementation
of both the super and subtype to be that of the
subtype; an upstream annotator, only knowing
about the supertype, makes instances of a richer
type structure but only accesses the fields it
knows about. A subsequent downstream
annotator can then down-cast the instances to that
of the subtype, and add its information.

In Java, this is done using the Java interface
mechanism, which allows alternative concrete
implementations supporting a common interface
definition.

Need for multiple-inheritance

Consider now an annotator A, and two down
stream annotators B and C, each of which,
independently, declare a type defined in A as a
supertype of two different types in B and C, each
marked downcastable. The implementation now
must be the union of A, B and C. In the Java
interface language, the implementation must
implement A, B, and C. Fortunately, this works
fine – Java interfaces support multiple
inheritance.

Implementation at Assembly or Load
time

To implement the a concrete class that has the
union of these types, we choose an approach that
merges the .cts files and generates and compiles
the required Java implementation, at assembly
time, when the Annotators that are to run together
for a particular application, are specified. This
can be also done at Load time, but it would

involve invoking the Java compiler (which may
not be available) on the generated classes at load
time, and arranging for the class loader to find the
generated implementation classes.

Comparison: JCas and EMF
EMF has become a cornerstone of WebSphere
applications. It has many of the same
capabilities that the JCas brings to data modeling,
but has a somewhat different set of goals it is
trying to achieve. Both approaches have at their
core the idea of generating Java code from
“specifications”. The JCas defines a compact,
notationally convenient Java-like syntax, with
maximal factoring for its input. EMF takes as
input either comment-tagged Java interface
sources, or UML data models. Both JCas and
EMF can additionally take an XML specification
as their input.

Data Model comparison

Basic data model

CAS Types include integers, floats, strings,
references to other instances of CAS types, and
arrays of these. EMF supports essentially all of
the data types available in Java, plus types
defined in EMF. The more restrictive approach
taken in the CAS design allow for high-speed
interoperability between Java and C++
implementations.

EMF capabilities not present in JCas

EMF has its roots in UML data modeling. It
implements the UML concepts of bi-directional
links, and containment (with an implicit inverse
link). These result in the generated setter
methods for the types implementing code that
maintains the inverse relationships. JCas could
do this too – but so far we haven’t had the
requirements to support these more complex
kinds of data linkages for data in the CAS.

6

EMF supports a rich structure for keeping
instances of the data being modeled in secondary
storage, in a serialized form. It has support for
“lazy” loading – avoiding reading in data until the
references are actually followed, for references
which cross package boundaries. Packages serve
as containers of sorts for saved instances.

CAS as a container

The JCas/CAS is an in-core design, without any
special focus on secondary storage. As a
container, there is a richer support for accessing
objects via indexes. A CAS instance itself serves
as a container for object instances; the package
system is orthogonal to this, and serves the same
purpose as packages do in Java – that of being
separable name spaces to avoid unwanted name
collisions. A particular CAS could hold objects
whose types are in many different packages.

Editors

The EMF generator concept is also applied to
create a customizable, Eclipse-based editing
environment for EMF type instances. The
envisioned CAS use, being that it used as an
inter-component communication vehicle, not as a
persistent storage model, hasn’t given rise (at
least yet) to the need for this kind of function.
We do have general viewers and editors for
annotations, for instance, however, that are driven
by the run-time meta-type-data that is the
cornerstone of the CAS design. (EMF has a
similar capability derived from similar run-time
meta-type-data information, in addition to being
able to generate a customized editor for particular
sets of types).

JCas/CAS capabilities not in EMF

JCas/CAS supports a dual environment (Java and
C++) capability, with very efficient marshalling
of the CAS data between these environments.

The JCas/CAS design is based on a separation of
concerns – envisioning a role for a code

writer/developer, and separate roles for
“assemblers” and people doing deployment,
perhaps across multiple servers, running different
language environments.

The JCas places functionality at “Assembly” or
“load” time, moving, for instance, aspects of run-
time type checking, in a way to couple this with
Java compile-time type enforcement to have a
highly efficient type safe runtime. This supports
the downcastable capability for directly
augmenting types at Assembly/Load time.

Experimental and Future
Extensions
Future directions for JCas include Eclipse-based
developer support, along the lines that EMF has
already done.

The .cts specification allows the type
specification to incorporate arbitrary Java code
that can define additional fields and methods for
the Java class implementation; these fields and
methods are not part of the CAS itself, but are
generated into the JCas class definition that is
built for the CAS type. This extension can make
the assembly process more manual, when
multiple .cts files with perhaps conflicting
arbitrary Java extensions need to be merged. We
continue to evaluate the pros and cons of this
capability. EMF likewise has a similar capability
– the generated classes can be arbitrarily modified
by the developer, and EMF is careful to preserve
those modifications when regeneration occurs.

Some additional meta-data concepts being
explored include marking data use as read-only –
this could allow the UIMA component that
orchestrates flow among annotators to multi-
thread read-only annotators without worrying
about locks.

We have prototyped versions of the JCas that
extend the generator ideas to support a faster-
than-Java Java – a scheme for accessing data in
the CAS which doesn’t actually use or produce

7

Java objects as a side effect. A common rule-of-
thumb for Java has been the 1-10-100 rule for
performance (1 = time to access a field in an
object, 10 – time to call a method (that isn’t
inlined), 100 = time to create an object (including
amortizing the Garbage Collection time); it may
be interesting to have this alternative for very-
high performance users of the CAS.

The availability of meta-data may allow semi or
fully automatic adapting of annotators by
mapping different accessing names into the same
objects. For example, if two annotators should
run sequentially, and the first one produces what
the second one wants, only that the names chosen
for the types are different, the Assembly
operation can detect this, and (perhaps with
human guidance) construct the mapping to bridge
this. The existence of the JCas interface means
that the annotator code would remain the same,
only the JCas implementation of the classes
would change to bridge the components. In this
case, one implementation type implementing both
interfaces would be defined.

Conclusion
The JCas interface to the CAS was designed to be
very easy to use and learn. It uses a set of
conventional styles familiar to Java programmers;
the generator approach insures correct Java
Classes and corresponding UIMA XML type
specifications are produced from a common,
easy-to-maintain source definition.

The JCas interface to the CAS is allowing a
unique blend of compile-time, load-time, and run-
time type checking that performs very well
compared with the basic CAS interface. The
ability in the CAS to support combining
annotators where one adds fields to another’s
Type is supported in the JCas thru a mechanism
labeled downcastable. JCas has different and
somewhat more specific goals than the EMF
approach, although the two share many aspects in
common. JCas provides an architected layer that
permits future experimentation with

implementation alternatives, with minimal impact
to existing Annotators.

Acknowledgements
The author benefited greatly from extended
discussions regarding the CAS with David
Ferrucci, Thilo Goetz, Thomas Hampp, and
Adam Lally. Graeme Dixon and Herb Derby
graciously helped the author achieve a more
global and complete understanding of EMF and
its significance. Alan Marwick gave several
useful recommendations on the syntax of the .cts
specification. Finally, the author thanks Arthur
Ciccolo for his support and encouragement in this
undertaking.

References
[Eclipse] http://www.eclipse.org

[EMF] http://www.eclipse.org/emf

[Visual Basic] http://msdn.microsoft.com/vbasic

[UIMA article in Systems Journal] D.Ferrucci and
A.Lally, "Building an example application with UIMA,"
IBM Systems Journal 43, Number 3, xxx-xxx (2004).

[CAS article in Systems Journal] T.Goetz and
O.Suhre, "Design and Implementation of the UIMA
Common Analysis System," IBM Systems Journal 43,
Number 3, xxx-xxx (2004).

[Java Beans]
http://java.sun.com/products/javabeans/docs

[Java 1.5 Generics]
http://jcp.org/aboutJava/communityprocess/revie
w/jsr014

[JavaDoc] http://java.sun.com/j2se/javadoc

8

http://www.eclipse.org/
http://www.eclipse.org/emf
http://msdn.microsoft.com/vbasic
http://java.sun.com/products/javabeans/docs
http://jcp.org/aboutJava/communityprocess/review/jsr014
http://jcp.org/aboutJava/communityprocess/review/jsr014
http://java.sun.com/j2se/javadoc

	Introduction
	��
	Motivations
	The JCas interface to CAS objects
	
	The Basic CAS interface

	Using common naming conventions to make a friendlier interface
	Specifying the types
	The CAS Type Specification file
	Human Readable Type Specifications
	Alternative specification approaches

	CAS Arrays
	Type Checking
	Stronger-than-Java type checking
	Java Load Time operations

	Using .cts files
	Type Augmentation at “Assembly time”
	Need for multiple-inheritance
	Implementation at Assembly or Load time

	Comparison: JCas and EMF
	Data Model comparison
	Basic data model
	EMF capabilities not present in JCas

	CAS as a container
	Editors
	JCas/CAS capabilities not in EMF

	Experimental and Future Extensions
	Conclusion
	Acknowledgements
	References

