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Abstract

The number of ways to factor a natural number into an ordered product of integers, each
factor greater than one, is called the ordered factorization of n and is denoted H(n). We show
upper and lower bounds on H(n) with explicit constructions.

1 Introduction

For n € Z*, let H(n) denote the number of ordered factorizations of n, by which we mean expres-
sions of n as the product of integers r; > 2 where the order of factors is essential. Equivalently,
H(n) is the number of tuples (r1,r2,...,r;) with r; > 2 and [[r; = n, without restrictions on k.
H(1) =1 by convention, the only factorization being () with & = 0. H(20) = 8, the factorizations
being (20), (10,2), (5,4), (5,2,2), (4,5), (2,10), (2,5,2), (2,2,5). Newberg and Naor[3] use H(n) as a
lower bound for an application in computational biology.
Define
p=C12) ~ 1.7264724,

where ( is the Riemann zeta function, so that
o
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and more usefully,
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Hille [2] showed the existence of a constant ¢ such that H(n) < ¢n”; Chor et al. [1] improved this
toc=1:

H(n) <nf. (1)
Hille also gave an existential lower bound: for all € > 0,
hrnnsup e = (2)

Newberg and Naor show an explicit construction lower bounding H(n) with nlog®n for some c.
Chor et al. gave explicit constructions for certain values of e.
In this note we give simplified proofs of both upper and lower bounds.
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2 Upper bound

The upper bound H(n) < n” is proven by induction on n. The base case n = 1 is satisfied.
Suppose the result is true for all n’ < n. We count the ordered factorizations of n according to
their first element r1, which is a factor of n larger than 1. The remainder (ro, ..., 7)) is an ordered
factorization of n/ri. So we have

H(n)= Y H(n/d).

dn,d>1

By induction,
H(n/d) < (n/d)”,

so that . 1
H(n) = Zd\n,d>l H(n/d) < Zd|n,d>1 7 <X g
= n°(((p) —1) =n(2-1) =n’,

completing the induction. In fact we see that the inequality is strict for n > 1.

3 Lower bound

For a = p — € we will give a family of integers n for which limsupH (n)/n® = co.
Because ((t) is strictly monotone decreasing in ¢, we know "
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There is a finite integer b for which already
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Use monotonicity again to claim there is v with a < v < p satisfying
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or, more usefully,
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Fix such «, b, 7.
Now select a large integer t. For k =2,3,...,b, we define

cn = [t/K7].

Set u =Y ¢, so that 0 <t —u < b — 2. Define

b
n = H ke
k=2



We will compare H(n) to n®. Among the ordered factorizations counted by H(n) are the
orderings of (cy copies of 2, ..., ¢ copies of b). The number of such orderings is given by the

multinomial coefficient

u!
v(n) = ——.
HZ:Q C!

From Stirling’s approximation,

w\ 27u
v(n) =] (&) “\ Hiren * (14 0(1)],

k

where the o(1) term goes to 0 with increasing ¢, and hence with increasing n.
To estimate the first product, recall ¢, < t/k7, so that

1 <ﬁ> 11 (%) = o

C
& k

We have (u/t)* > e~(=%) > ¢=b+2 while the other factor is simply n”. So our first product is at
least e~0+2p7,
The second product is

2mu
[1(27e)

Notice that logn = ) ¢ logk which implies that logn < > (cxlogb). Hence, u = > ¢ >
(logn/logb). On the other hand, for any k, cx < > (cxlogk/log2) = logn/log2. Therefore, for
some constant d, we can lower bound the second product as follows

2mu

— = > dy(logn)” /2
e ~ 08"

Summarizing,
H(n) = v(n) = " (log n)~=2/2dy(1 + o(1)).

Since v > «, we have
limsupH (n)/n® = oo,
n

as required.

References

[1] B. Chor, P. Lemke and Z. Mador. On the number of ordered factorizations of natural numbers.
Discrete Mathematics, 214:123-133, 2000.

[2] E. Hille. A problem in factorisation numerorum. Acta Arithmetica, 2(1):134-144, 1936.

[3] L.A. Newberg and D. Naor. A lower bound on the number of solutiuons to the probed partial
digestion problem. Advanced Applied Math., 14:172-183, 1993.



