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Constructive bounds on ordered factorizations

Don Coppersmith∗ Moshe Lewenstein†

April 13, 2004

Abstract

The number of ways to factor a natural number into an ordered product of integers, each
factor greater than one, is called the ordered factorization of n and is denoted H(n). We show
upper and lower bounds on H(n) with explicit constructions.

1 Introduction

For n ∈ Z
+, let H(n) denote the number of ordered factorizations of n, by which we mean expres-

sions of n as the product of integers ri ≥ 2 where the order of factors is essential. Equivalently,
H(n) is the number of tuples (r1, r2, . . . , rk) with ri ≥ 2 and

∏
ri = n, without restrictions on k.

H(1) = 1 by convention, the only factorization being () with k = 0. H(20) = 8, the factorizations
being (20), (10,2), (5,4), (5,2,2), (4,5), (2,10), (2,5,2), (2,2,5). Newberg and Naor[3] use H(n) as a
lower bound for an application in computational biology.

Define
ρ = ζ−1(2) ≈ 1.7264724,

where ζ is the Riemann zeta function, so that

∞∑
n=1

1
nρ

= 2,

and more usefully,
∞∑

n=2

1
nρ

= 1.

Hille [2] showed the existence of a constant c such that H(n) ≤ cnρ; Chor et al. [1] improved this
to c = 1:

H(n) ≤ nρ. (1)

Hille also gave an existential lower bound: for all ε > 0,

lim sup
n

H(n)
nρ−ε

= ∞. (2)

Newberg and Naor show an explicit construction lower bounding H(n) with n logc n for some c.
Chor et al. gave explicit constructions for certain values of ε.

In this note we give simplified proofs of both upper and lower bounds.
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2 Upper bound

The upper bound H(n) ≤ nρ is proven by induction on n. The base case n = 1 is satisfied.
Suppose the result is true for all n′ < n. We count the ordered factorizations of n according to
their first element r1, which is a factor of n larger than 1. The remainder (r2, . . . , rk) is an ordered
factorization of n/r1. So we have

H(n) =
∑

d|n,d>1

H(n/d).

By induction,
H(n/d) ≤ (n/d)ρ,

so that
H(n) =

∑
d|n,d>1 H(n/d) ≤ ∑

d|n,d>1
nρ

dρ < nρ
∑

d>1
1
dρ

= nρ(ζ(ρ) − 1) = nρ(2 − 1) = nρ,

completing the induction. In fact we see that the inequality is strict for n > 1.

3 Lower bound

For α = ρ − ε we will give a family of integers n for which lim sup
n

H(n)/nα = ∞.
Because ζ(t) is strictly monotone decreasing in t, we know

ζ(α) =
∞∑
1

1
nα

> 2.

There is a finite integer b for which already

b∑
1

1
nα

> 2.

Use monotonicity again to claim there is γ with α < γ < ρ satisfying

b∑
1

1
nγ

= 2,

or, more usefully,
b∑
2

1
nγ

= 1.

Fix such α, b, γ.
Now select a large integer t. For k = 2, 3, . . . , b, we define

ck = �t/kγ�.

Set u =
∑

ck, so that 0 ≤ t − u ≤ b − 2. Define

n =
b∏

k=2

kck .
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We will compare H(n) to nα. Among the ordered factorizations counted by H(n) are the
orderings of (c2 copies of 2, . . ., cb copies of b). The number of such orderings is given by the
multinomial coefficient

v(n) =
u!∏b

k=2 ck!
.

From Stirling’s approximation,

v(n) =
∏
k

(
u

ck

)ck

×
√

2πu∏
(2πck)

× [1 + o(1)],

where the o(1) term goes to 0 with increasing ck and hence with increasing n.
To estimate the first product, recall ck ≤ t/kγ , so that

∏
k

(
u

ck

)ck

≥
∏
k

(
ukγ

t

)ck

= (u/t)u(
∏
k

kck)γ .

We have (u/t)u ≥ e−(t−u) ≥ e−b+2, while the other factor is simply nγ . So our first product is at
least e−b+2nγ .

The second product is √
2πu∏
(2πck)

.

Notice that log n =
∑

ck log k which implies that log n <
∑

(ck log b). Hence, u =
∑

ck >
(log n/ log b). On the other hand, for any k, ck ≤ ∑

(ck log k/ log 2) = log n/ log 2. Therefore, for
some constant db we can lower bound the second product as follows√

2πu∏
(2πck)

> db(log n)−(b−2)/2.

Summarizing,
H(n) ≥ v(n) ≥ nγ(log n)−(b−2)/2db(1 + o(1)).

Since γ > α, we have
lim sup

n
H(n)/nα = ∞,

as required.
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