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Abstract 

The spins of localized electrons in silicon are strong candidates for quantum information 

processing because of their extremely long coherence times and the integrability of Si 

within the present microelectronics infrastructure.   This paper reviews a strategy for 

fabricating single electron spin qubits in gated quantum dots in Si/SiGe heterostructures.  

We discuss the pros and cons of using silicon, present recent advances, and outline 

challenges. 

I. Introduction 

The seminal paper by Loss and DiVincenzo (1) outlined essential components of 

quantum dot quantum computing (QDQC):  (1) spin qubits in single electron dots, (2) 

qubit initialization by thermalization in a magnetic field, (3) qubit rotations performed 

using electron spin resonance (ESR), (4) two-qubit gates enabled by electrostatic control 

of exchange coupling in neighboring dots, and (5) readout by spin-charge transduction.  

Subsequent theoretical work has shown that two-qubit gates can be sufficiently fast (sub-

nanosecond) (2, 3), and that these same interactions can be harnessed for single-qubit 

rotations (4, 5), albeit with some encoding overhead.  The most challenging aspect of 
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scalable QDQC is fast readout: spin-dependent tunneling schemes have been proposed (6, 

7), as well as microwave-enabled, fast initialization and readout in a closed dot (8). 

Quantum dots in semiconductors have a long history, much of which is reviewed 

in the excellent book (9).  An important step forward for quantum computing was the 

realization of dots in GaAs containing controlled numbers of electrons as few as 0 and 1 

(10-12).  Spin spectroscopy has been performed in dots, indicating that they are indeed 

viable candidates for qubits (13, 14).  More recently, the ability to readout a single spin 

inside a quantum dot was demonstrated by Elzerman et al. (15).  These and other important 

advances are reported in the paper by Kouwenhoven and Marcus of this volume. 

Many techniques developed in atomic physics can be directly adapted for 

quantum dots, at least in principle.  Examples include readout and initialization (8), as 

well as a recent proposal by Lukin and coworkers to enable long-range interactions 

between quantum dots (16).  However, the flexibility of quantum dots comes at the price 

of embedding the qubits in a solid matrix, with consequent issues related to decoherence.  

For this reason, materials properties are crucial for quantum dot-based devices.  A major 

motivation for the development of the silicon quantum dot architecture is that the 

materials properties of silicon result in unusually long electron spin coherence times. 

II. Strained Silicon Quantum Dot Qubits 

Here we outline the main challenges to QDQC in silicon, and we describe solutions for 

many of these problems.  We discuss six critical areas: growth of strained silicon, silicon 

two dimensional electron gas (2DEG) based quantum dots, valley degeneracies and their 

consequences, tolerance to impurities, decoherence, and bandwidth concepts at both high 

and low frequency limits. 
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Strained Silicon Growth  
 

Unlike the AlGaAs system, SiGe structures inherently involve strain, as the lattice 

parameter of Ge is 4% larger than that of Si. Thus, Si0.75Ge0.25 strain-relaxed buffer layers 

provide a template for silicon growth resulting in silicon with biaxial tensile strain of 

about 1%. As a result, the cubic symmetry of Si is broken and the six conduction band 

valleys are no longer degenerate. In the case of biaxial tensile strain, the two 

perpendicular ∆2 valleys having electrons with a light in-plane effective mass are lower in 

energy than the four in-plane ∆4 valleys with a heavy in-plane effective mass, and the 

energy level of the lowest two ∆2 valleys is lower than that of the conduction band in 

bulk SiGe. Thus, the quantum well formed in such a strained Si layer is occupied by light 

effective mass electrons. Because of the large energy splitting of the conduction band 

valleys, intervalley scattering is also reduced, resulting in higher electron mobility. 

One challenge in attaining high mobility Si/SiGe heterostructures is to minimize 

the threading dislocation density arising from the lattice mismatch between Si and SiGe. 

Since bulk SiGe substrates are not available, structures with strained Si layers having a 

high mobility two-dimensional electron gas are achieved by first growing a strain-relaxed 

SiGe buffer layer on a Si(001) substrate, which provides a “virtual substrate” for the 

growth of a pseudomorphic Si layer under biaxial tensile strain. When a Si0.7Ge0.3 layer is 

grown directly on Si(001), strain-induced roughening occurs, leading to the random 

nucleation of misfit dislocations and a threading dislocation density on the order of 

1010 cm-2 (17). In contrast, at lower mismatch strain, e.g. SiGe x=0.15, the surface remains 

flat and dislocation nucleation takes place by a multiplication mechanism that results in 

much lower threading dislocation densities. The strain-relaxed buffer layer typically used 
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for modulation-doped field-effect transistors (MODFETs) is a thick structure in which 

the Ge concentration is increased linearly or in small steps up to 25 or 30% plus a thick 

uniform composition Si0.7Ge0.3 layer. Grading allows dislocation nucleation to occur at 

low mismatch strain and threading dislocation densities are reduced to the 105-108 cm –2 

range, depending on the grading rate and growth conditions (17). A strained Si quantum 

well is grown on this virtual substrate and is then modulation doped by capping with a 

thin intrinsic alloy layer, followed by a P-doped alloy layer, and finally a thin Si layer as 

shown in Fig. 1(a).  For some experiments, the strained Si quantum well is grown with 

isotopically pure 28Si.  

To obtain high mobility, scattering must be minimized.  Scattering is induced by 

local changes in electric field and strain, as well as interfacial roughness on short length 

scales.  Increasing the setback of the donors from the well decreases Coulomb scattering, 

increasing mobility until other scattering mechanisms are dominant. It has been shown 

that threading dislocation densities that exceed 3 x 108 cm-2 reduce the electron mobility 

in modulation-doped strained Si (18). Additionally, the strained Si layer must be below the 

critical thickness for misfit dislocation formation at the Si/SiGe interface to avoid 

scattering by the strain fields of misfit dislocations at the interfaces between the strained 

Si and the SiGe layers (19). Roughening of the surface of the SiGe virtual substrate, the so-

called cross-hatch roughness, is inherent in the strain relaxation process (17). This 

roughness appears as interface roughness in the pseudomorphic layer structure that forms 

the 2DEG, specifically the strained Si quantum well. Fortunately, the length scale of this 

roughness is long enough that it does not reduce the electron mobility (20). Low 

temperature electron mobility in the range of 1-6 x 105 cm2/Vs has been achieved in 
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modulation-doped strained Si/SiGe structures grown epitaxially by various growth 

methods (21-24). 

In addition to low temperature 2DEG and quantum dot formation, these 

developments are also critical for non-cryogenic applications.  The room temperature 

electron mobility in modulation-doped strained Si structures is typically 2000-2800 

cm2/Vs, about 3-5 times that in n-type Si metal-oxide semiconductor field-effect 

transistors (MOSFETs). Thus, faster transistors are anticipated using strained Si 

structures, provided the device dimensions remain favorable. High-speed modulation-

doped field-effect transistors (MODFETs) have been fabricated with Si/SiGe layer 

structures (25). Recently MODFETs having 70-79 GHz fT and record 194 GHz fMax at 

room temperature were reported (26). 

Quantum Dots 

A critical challenge for single-electron stained Si dots is the fabrication of high 

quality Schottky contacts on Si/SiGe heterostructures.  Although it is relatively easy to 

fabricate large barrier Schottky contacts on silicon, it is challenging to create ultra-low 

leakage contacts on Si/SiGe heterostructures, due to the proximity of high P doping (i.e. 

> 1019 /cm3) near the interface of the gate electrode (27). Possible alternative approaches 

are the use of dielectric films to create metal-insulator-semiconductor (MIS) structures 

and the relocation of the P-doped supply layer underneath the Si quantum well.  Bottom 

doping has been demonstrated by MBE growth techniques, but for CVD this is extremely 

difficult to achieve due to memory effects associated with phosphorous doping from PH3 

(27). 
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A second strategy is to avoid metal top-gates entirely, and instead to use 2DEG 

side gates, separated from the active region of the device by etch trenches.  We have 

observed Coulomb blockade in such quantum dots with multiple gates to independently 

control the tunneling to the leads as well as the overall electron occupation of the 

quantum dot (28).  Quantum dots are fabricated by electron beam lithography and 

subsequent CF4 reactive-ion etching.  An AFM image of such a device is shown in Fig. 

1(b).  The electron density in the 2DEG from which the dot was formed is 4x1011 cm-2 

and the mobility is 40,000 cm2/Vs at 2K.   Ohmic contacts to the 2DEG are formed by a 

Au/Sb alloy.  Fig. 2 shows a Coulomb blockade trace at T = 1.8 K. Control of the dot 

electron population and the lead resistances is achieved with three separately tunable 

gates. Each gate is fabricated from the same 2DEG from which the quantum dot is 

created. Such in-plane coupling of one 2DEG to another has been used to monitor the 

electron population in GaAs quantum dots (12).  Here we have inverted this idea and used 

the 2DEG-2DEG coupling to control the dot.   

Etched gates are very effective for individual dots, and can likely be used by 

themselves to create two coupled quantum dots.  However, due to the relatively large size 

of 2DEG side gates it is likely that truly metallic top-gates will be required to couple 

many dots together.  A second important aspect of coupled quantum dots is the 

achievement of low charge noise.  Switching events in the dot shown in Fig. 1(b) occur 

on the time scale ~ 1 hour.  Improving this charge noise is an important goal.   It is 

known that the charge noise in some types of silicon quantum dots, for example, oxide 

confined dots, can be extremely low, allowing repeatable measurement over very long 

time periods (29). 
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Valley States 

As described above, strain in Si/SiGe heterostructures reduces the six-fold silicon 

valley degeneracy to two-fold.  This remaining two-fold valley degeneracy is a potential 

complication in 2-qubit gates mediated by inter-dot exchange coupling (1).  Fortunately, 

the two-fold valley degeneracy in strained silicon quantum wells is split by the quantum 

well confinement potential.  As shown in Fig. 3, recent work has demonstrated that the 

valley splitting can be engineered both by varying the well width and by applying electric 

fields, and that the splitting, in some cases, can be quite large (30).  The valley splitting is 

most easily understood in the infinite square well limit.  Because the valley minimum is 

not at the center of the Brillouin zone (k = 0), the electron wavefunctions experience 

atomic-scale modulations.  In a semiconductor with two degenerate valleys, the 

oscillations of the two lowest energy states have very similar envelopes, but are out of 

phase by 90˚. For an infinite square well, the energy eigenstates are linear combinations 

of four different k-values, yielding an energy splitting that decays as (width)-3; the 

splitting for a 4 nm well is 1.5 meV. In nonzero electric field the potential is asymmetric, 

and the energy difference between the two lowest energy states increases with increasing 

external electric field (31).  Typical modulation doped heterostructures experience internal 

electric fields of order 10 mV/nm.  In calculations involving isolated electrons in a 

quantum well, we obtain splittings larger than 1 meV – quite a large energy (30).   

A potential concern is whether the exchange coupling between two qubits will 

oscillate uncontrollably as a function of position, in analogy with donor-bound electrons 

in silicon (32).  In fact, the situation in strained silicon quantum dots is quite different.  

Because of strain, the charge density in the plane of the quantum well does not have 
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atomic-scale oscillations.  Perpendicular to the quantum well the oscillations self-align 

because of the presence of the strong confining heterostructure potential.  Because the 

length scale of the quantum well potential is so much shorter than that of variations in the 

quantum well plane, the Born-Oppenheimer approximation is appropriate and 

immediately shows that the oscillations in charge density perpendicular to the quantum 

well plane follow any slow variations in quantum well width and position (33). 

It is important to mention that it is also possible to view valley degeneracy as a 

resource.  It may be possible to use valley states rather than spin states to store quantum 

information.  Such states would be charge qubits with little difference in charge 

distribution for the two states, possibly leading to weak decoherence.  In a different 

approach, using spin, conceivably one could access all low-lying eigenstates to form a 

four-dimensional qubit Hilbert space. 

Tolerance to Impurities 

For scalable QDQC, it is important that quantum dot exchange couplings be 

tolerant to the presence of low concentrations of impurities.  It is well known that charged 

impurities such as ionized donors cause scattering effects which limit the 2DEG mobility 

(19, 34).  These charges also have some effect on electrostatic control of qubit gate 

operations.  However, a more important issue from the standpoint of decoherence and 

scalability is the influence of neutral dopant impurities like P in Si and Si in GaAs.  Such 

impurities can potentially act as renegade qubits, siphoning off quantum information in 

an uncontrolled way.  When the exchange coupling between qubit and impurity becomes 

large enough, fault-tolerant quantum error correction schemes (35, 36) are no longer 

effective.  Such donor-bound spins are abundantly present in the modulation-doped 
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supply layer of semiconductor 2DEGs, and they also occur at low densities throughout 

the sample.  

To investigate this issue, we have computed the qubit-impurity exchange coupling 

J for two cases (37): an impurity in the supply layer, and an impurity in or near the 

quantum well.  In the first case, due to the potentially large numbers of neutral donors in 

the supply layer, the important quantity is the distance between the supply layer and the 

quantum well.  We obtain the following minimum set-back distances between the 

quantum well and the supply layer: 18 nm for Si in GaAs and 8 nm for P in Si.  These 

numbers are only weakly dependent on the details of the structure or on the choice of 

fault-tolerance schemes and error correction coding, because of the exponential 

dependence of the exchange coupling on qubit-impurity separation.  The results do 

depend on choice of barrier materials and, in particular, on the height of the quantum well 

barriers.    Fortunately, these distances are consistent with typical experimental set-backs 

of ~20 nm for GaAs and ~10 nm for Si. 

We have also studied the effect of impurities in or very near the quantum well.  

We find that impurity spins in the quantum well pose a threat to qubits at a distance of 

~100 nm for Si in GaAs and ~60 nm for P in Si.  The results are somewhat sensitive to 

specific details of the qubit confinement potential.  A crucial observation, from the 

perspective of scalability, is that the computed impurity danger zones are approximately 

equal to the radius of a single electron dot.  That is, a single impurity can only kill one, or 

at most two qubits in a 1D array.  Therefore, a modest amount of parallel connectivity 

would enable scalable computations, provided the impurity density is somewhat smaller 

than the qubit density.  We can estimate this critical impurity density by assuming that 
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only impurities in the quantum well can trap electrons.  For Si in GaAs the critical 

density is about 1.0×1015 cm-3 (assuming a 25 nm quantum well), while for P in Si the 

density is 1.6×1016 cm-3 (assuming a 6 nm quantum well).  Both of these impurity density 

limits are achievable in good materials. 

Decoherence 

Silicon-based quantum dots have the compelling attribute that the spin coherence 

time T2 can be very long.  The reasons for long coherence times are the availability of the 

spin-zero 28Si isotope, use of which greatly reduces relaxation via nuclear spins 

(hyperfine coupling), and silicon’s small spin-orbit coupling (SOC), which suppresses 

phonon and SOC-based decoherence mechanisms.  

Each electron spin S interacts with all nuclear spins Ii with which it overlaps 

spatially.  As pointed out in Ref. (38, 39), in the QC operational regime the external 

magnetic field B will exceed 100 gauss, so that electron spin-flips accompanied by one 

nuclear spin flip are not allowed energetically.  This suppresses the single-spin-flip 

mechanism considered in Refs. (40, 41), and the dominant ESR relaxation mechanism 

becomes spectral diffusion (39).  Measurements (42) and theory (39) have made it clear that 

in the spectral diffusion regime the relaxation rate increases with the density of the 

nuclear moments. 

Natural Si has isotopic fractions 95.33% spin 0 (mostly 28Si and a small fraction 

30Si) and 4.67% spin ½ (29Si).  Spins in naturally occurring silicon have T2 in the range 

0.1 ms to 1 ms at low temperatures, and the dominant source of decoherence is coupling 

to the 29Si nuclei (43).  (One must note here that the decay of spin echoes is not purely 

exponential, and more than one time scale may enter.  Nevertheless, all are in this general 
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range.)  Measured T2 values for low doped isotopically purified 28Si are substantially 

longer (44).  In 1958 Gordon and Bowers (43) observed a T2 of around 0.5ms at 1.4K for 

phosphorus-doped isotopically pure 28Si, versus 0.24 ms for similarly doped natural Si:P.  

Tyryshkin et. al (44) recently compared T2 times with different doping levels in 

isotopically pure silicon.  Below 12K the relaxation time T2 in isotopically pure 28Si was 

as large as 3ms.  Furthermore, by comparing different doping levels and attributing the 

remaining linewidths to a magnetic dipole-dipole interaction of neighboring phosphorus 

donors (via instantaneous diffusion) (45, 46), they extrapolated from their data T2 = 62ms 

(at 7K) for isolated donors in 28Si.  The presence of non-zero nuclear spin isotopes clearly 

results in shorter electron spin coherence times. 

Electron spins in qubits can dephase even at zero temperature, because the 

quantum computer itself is not in equilibrium, and excited states are populated.  Because 

of spin-orbit coupling, there is an effective spin-phonon coupling, and spins can flip by 

spontaneous emission of phonons.  This process contributes to the relaxation rate T1
-1, 

which is usually a lower bound to the decoherence rate T2
-1.  Generally, transition rates 

are proportional to (g-2)2.  This leads to very long T1 and T2 values in Si donor states (48), 

and these favorable numbers are expected to extend also to dot-confined electrons (49).  

Additional spin-orbit mixing due to the Rashba field (50), typically prevalent in 

asymmetrically doped semiconductor heterostructures, is also expected to be quite weak 

in silicon (51).  Thus, spectral diffusion should be the predominant decoherence limiting 

mechanism in silicon QDQC. 

For electrons in a Si/SiGe two-dimensional electron gas, Tyryshkin et. al (52) have 

measured T2 =2.98 µs in a sample with a phosphorus delta-doping layer above the well 
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that was illuminated and thermally annealed.  The relatively short decoherence time is 

due to the increase in scattering mechanisms in a mobile, 2D electron system, as 

explained recently in the context of Rashba spin-orbit coupling and the D’yakanov/Perel’ 

(DP) spin-relaxation mechanism (53).  Confinement of the electrons laterally in a quantum 

dot suppresses the dominant 2DEG relaxation mechanism, greatly increasing the 

coherence time (54, 55).  Since there should be very few phosphorus donors within the well 

to contribute to magnetic dipole-dipole driven instantaneous diffusion, quantum dots 

fabricated in isotopically pure small 28Si quantum wells in principle should have better 

coherence times. 

Bandwidth Issues 

It is important to note that bandwidth in quantum computing is limited on both the 

high and the low end.  At low frequencies, decoherence forms a fundamental, yet device 

dependent limit.  As we have seen, the natural decoherence timescale for a SiGe QDQC 

should be ~10 ms.  Threshold theorems for fault-tolerant quantum computing vary 

according to qubit architectures and coding sophistication (36).  In particular, schemes 

have been devised for local gates (56), and can even be extended to 1D arrays with 

nearest-neighbor coupling (57).  Nonetheless, the exact probability threshold for fault 

tolerance in a QDQC is not available yet.  Somewhat arbitrarily, we estimate it here as 

10-6-10-4.  Thus, quantum gate operations must be at least as fast as 0.01 to 1 µs in SiGe.  

Furthermore, fault-tolerance requires that readout and initialization steps must be 

performed at these same speeds.  This does not imply that spins cannot be read out at 

much slower speeds, only that high speeds are required for scalability. 
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High-bandwidth constraints include non-adiabatic gating effects (58, 59), and 

sensitivity limits for readout.  Based on shot noise analysis, the upper bound (60, 61) on 

detection sensitivity for charge induced on the island of an optimized rf-SET (the lowest 

noise detector currently available) is about 4×10-6 e/√Hz.  Simulations suggest that fast 

readout and initialization in SiGe can meet the stringent high and low-bandwidth criteria 

(8), but experimental confirmation of this result is required. 

The technical criteria for scalable QDQC are also challenging.  On the low-

bandwidth side, computations should be completed at speeds consistent with laboratory 

or human timescales (probably less than days!).  If the necessary structures can be built, 

this limit is not a problem for solid state QC implementations.  However, high-bandwidth 

technical limits are set by control and measurement electronics.  We mention here a 

single example, discussed in Refs. (47, 62).  In these papers, we investigated the control 

sensitivity of the exchange coupling J to voltage pulses ∆V for particular SiGe devices.  

We found that, because of the exponential dependence of J on ∆V in typical architectures, 

small fluctuations in ∆V produced relatively large errors in J.  As consistent with fault 

tolerant computing, the total exchange pulse (consisting of J integrated over pulse time 

∆t) should have an error less than 10-3-10-2 (63).  However, the accuracy of control 

electronics is strongly sensitive to bandwidth, in terms of both the height and width of the 

pulse.  As shown in Fig. 4, using specially designed “pseudo-digital” dot architectures 

greatly decreases the electronics requirements in these simulations. 

III. Outlook for Quantum Dots  

As described above, recent advances point to a promising future for QDQC.  

Nonetheless, important challenges remain.  A major goal for silicon 2DEG-based 
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quantum dots is the fabrication of highly tunable, coupled dots, and the demonstration of 

spin measurement.  A challenge for quantum dots in all materials is connectivity: is it 

possible to develop systems that are more highly connected than linear arrays?  It is well 

known that such connectivity is an important aid in algorithm and error correction 

development, and there is an inverse relation between connectivity and resource 

requirements and operating timescales.  Perhaps the greatest challenge is the development 

of long-distance couplings between qubits.  Although not required, such couplings would 

be a great benefit to QDQC.  Cross-fertilization from other QC disciplines should play an 

important role in meeting this challenge. 
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Figure 1 (a) Cross sectional TEM image of the modulation-doped layer structure. The 
strained Si quantum well is grown on a uniform composition Si0.7Ge0.3 layer, which is 
grown on top of a step-graded buffer layer (not shown).  The spacer and supply layers are 
also Si0.7Ge0.3.  (b) AFM image of an etched dot fabricated from the heterostructure 
shown in (a).  Three 2DEG side gates are visible. 
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Figure 2  Coulomb blockade trace for the dot shown in Fig. 1(b).  The temperature was 

1.8 K, and the gate voltage Vg was applied to gate 2 
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Figure 3  Computed valley splitting E21 vs number of atomic monolayers in the quantum 
well.  Solid line corresponds to zero applied field; oscillations reflect transitions of valley 
ground state from even to odd symmetry.  Dotted and dashed lines correspond to finite 
applied E fields between 1-4 mV/nm.  Inset: even and odd symmetry traces of tight-
binding coefficients for a pair of valley split ground states. 
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Figure 4  Computed exchange coupling as a function of reduced gate voltage.  The 
pseudo-digital technique allows a flat-top working point to replace the usual exponential 
dependence of J(v).  Lower right: pseudo-digital top-gate scheme for coupled double 
dots, each with a single electron.  Upper left: computed electron densities for “off” and 
“on” configurations. 
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