RC23193 (W0404-133) April 23, 2004
Computer Science

IBM Research Report

Secure Client-Managed Authentication:
A Passport-free Solution

Reiner Sailer, James Giles, Anca Dracinschi Sailer
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Secure Client-Managed Authentication:
A Passport-free Solution

Reiner Sailer, James Giles, and Anca Dracinschi Sailer
IBM T.J. Watson Research Center
Hawthorne, NY 10532, USA
Email: {saller, gilesjam, anca®@watson.ibm.com

Abstract—This paper presents a novel authentication ser- In the case of the electronic services, studies [1], [2],
vice that enforges security by assi;ting the management of[3], [4], [5] have shown that users typically avoid the in-
the overwhelming and constantly increasing collections of ~qnvenience of having to remember different credentials
user identifiers and passwords. As the number of these by choosing simple, easy-to-guess passwords for mul-

authentication credentials (i.e., userid and password) in- tiole services. bv storina basswords insecurely. and b
creases, maintaining and recalling them on demand be- P » DY 9P Y y

comes a challenge. Studies show that users typically choos&100Sing default passwords (see for example the recent

the same easy-to-guess password for multiple services and?assword-guessing virus [6]). While this behavior results
store it unprotected. This behavior implies that credential in weakened security, related problems are compounded

leaks within poorly protected services can compromise or if some services offer less secure methods for credential
disrupt better protected critical services. exchange than others. Hence, a leak of a user’s credential
The new secure client-managed authentication service from one service allows an attacker to replay it when try-
proposed in this paper is suitable for a large spectrum of ;4 14 40cess another service. More cautious users would
applications, including Internet Services and network man- like to avoid giving the same easy-to-guess passwords for

agement services. Our main contributions are (1) the del- itiol - he Kev | s
egation of credential management to a local secure agentMultiplé services. However, the key issue is how to conve-

while keeping the users in control of their credentials, (2) hiently and securely manage a large number of credentials
a three-level user control of credential release, and (3) gen- authorizing the access to numerous services.

erality, i.e., allowing secure credential release to authorized |, i haper we develop a new authentication service
server applications without requiring client application or

operating system modifications. Offering a key differenti- th,at addres.ses.thls need for a secure solution t‘? mgm-
ation to centralized solutions such as Microsoft Passport, tain authentication credentials. The proposed service is a
our authentication service empowers users to control the client-based solution thatallows users (e.g., Internet users,
release of their identity and related credentials on demand. network administrators, network management tools) to
We compare the performances of our prototype (fully func- maintain control over their credentials for privacy and ac-
tioning implementation) to those of a conventional user au- countability. It is also autonomous in the sense that it does
thenticaﬁon service and we show that our prototype is faster ¢ require changes to the operating system or client ap-
and easier to use. plications making use of its service. Note that other ap-
Index Terms— Access Control, Authentication, Security proaches to secure authentication have been proposed in
Management the literature, by using a third party centralized server like
Microsoft Passport [7] and Liberty Alliance [8], by us-
ing a client-based agent as Gator [9], Freedom [10] or
|. INTRODUCTION Factotum-Plan 9 [11], or by using client certificates on

The problem of securely maintaining authenticatiopenalf of the user. However, all these approaches have
credentials as considered in this paper is motivated lfitations in terms of either user control over personal
the increasing attention focused on security issues in dpormation in the case of the server approaches, applica-
plications and communication networks. The proliferdlon/system compatibility in case of client-based agents,
tion of user identifiers and passwords required for af management overhead and complexity in the case of
thentication purposes by new electronic services confirfient certificates.
that providers of these services are more and more con©Our approach takes into account all of the above is-
cerned about the security of their applications and neties by providing seamless backward compatibility with
works. Therefore, the secure maintenance of the autheptievious authentication mechanisms, by providing sim-
cation credentials becomes of major importance. ple client and server migration paths, and by supporting

multiple types of network services. We choose a client- T S G
centric approach rather than the server-centric approach %J:ll Authenticaion Credeniial

Vault i Exchange

of passport and Liberty Alliance so that users have more D)
control over releasing their identity and credentials. AC s comson: Sevee | T Sproetos 0P Gomecten /| sysem.
ditionally, denial-of-service attacks against decentralized S\ Authenicaton

TCP Data Connection >

authentication services are less profitable and more diffi-
cult than against centralized credential servers.)

As a last remark, security enhancements to ensure tha T —— W ol Protected System (0., Web
unauthorized users cannot disrupt critical communication =~ """ Senen ortetorm peees)
between system components or network devices is a eigt 1. Architecture of the Proposed Secure Authentication Service
area of research that, besides authentication, includes en-

cryption, filtering, registration access control lists, etc.

The overall security of a system depends on its architeg1€"€ aré two important requirements to ensure system
ture, implementation, and operation; security issues cSfUrity with our solution. Foremost, user credentials
exist in any of these. In this paper we focus on secure Sould only be released securely to authorized services at

thentication and discuss its architecture, implementatigiPPropriate times. Second, data streams must be tied to
and operational issues. appropriate authentication credentials. Therefore, a cor-

The rest of the paper is organized as follows: We ﬁrgprstone of our solution is the correlation of credential re-
outline in Section Il the key ideas and requirements fguests with a user’s data connection and authorization of

the secure authentication design. Then, in Section Il WwEedential releases. The proposed authentication passively
describe in detail the components of our architecture, thificks & user’s outgoing data connections, noting which
implementation, options and features, and how to use Ff/Vers and services are bel_ng actively used. When a ser-
service in order to achieve the desired authentication se¥(#® réquests a credential, it does so over an encrypted
rity level. Section IV is dedicated to performance studig@nnection (e.g., SSL) so that (a) the credential is pro-
where we show that our solution performs very well, arfgcted regardless of the protechon; for.t_he data stream,
i faster and easier to use compared to a conventional @& (b) the server can be securely identified. The overall
authentication service. Section V presents a comparisggrational process is illustrated in Figure 2.

to existent authentication models. We conclude in Section

‘ User Client Aulh(e::'i\izglion Rsezruviir?:g
VI . Application Service Authentication
o4 1: Sign-in >
3
II. KEY IDEAS AND DESIGN REQUIREMENTS 2 Start Clenp, %{
In this section, we give a description of the key ideas < {4 Credental Request }—
. " ionally: : Authorize
used in the proposed authentication solution, the require- | fsaavesor A * Regues < Network
H H : Credential Response
ments to ensure security, and the different steps of the op- Le:Credental Response |,
erational functionality. The main objective is to assistthe U iy i {7 Servio Response bﬁ

management of authentication credentials and authentica-

tion tasks and, in the same time, improve the consistengy > operational Functionality of the Proposed Secure Authentica-
of the security protection provided during credential exion Service

changes without requiring modifications in the operating

systems or client applications. A user’s credentials aBnce the user has activated the client authentication ser-
managed by a&lient authentication servicen his or her vice by logging into it (1) and starts requesting remote
electronic device. Before any credentials will be releaseskrvices (2 and 3), the service uses the server certificate
the user must first log into the client authentication servi¢é) and its record of active, client-initiated data sessions
on the user’s device. Whenever a server needs to authetatiletermine (5) the credentials the server may be autho-
cate a user, it requests credentials from the client authenitted to receive (6). Optionally (only for the maximum
cation service at a well-known port. The client authenticgrotection among the three user interaction preferences),
tion service securely correlates this request for credentigie service can check with the user interactively (5°) be-
with the user’s active sessions to determine which creddore sending any credential to a service (6). Finally, when
tials, if any, should be returned to tisystem requiring the user has been successfully authenticated, the service
authentication The architecture of the proposed authersends the requested response (7).

tication service is illustrated in Figure 1. Threat Model. Our focus is to defend against attacks

involving the theft of user credentials. Our service dodke user is to sign into the authentication client applica-
not defend against trusted services, but only against nian to enable it to retrieve the user credentials from the
licious services that can easily divulge and misuse amgult file and decrypt them.

user’s credentials for that service. Thus, it ensures thatA user signs into the client by proving his or her iden-
credentials are securely stored on the user’s device aitgl enabling at the same time the client application to
that authorized services can obtain credentials from thecrypt the selected credential vault. For this purpose,
client authentication service. The proposed authenticatithie user identity and the password are hashed into a de-
also protects against disclosure of credentials to an eavasption key for the vault. If user identity and password
dropping attacker. However, attackers that obtain senae correct, the vault decrypts into the credential file and
certificates may be able to masquerade as a server gakhibits the proper format; if user identity or password
ing access to user credentials. Our service also does a@ wrong, then the file decrypts into some file that does
defend against vulnerabilities and exploits in the cliemiot satisfy the syntax rules for the credentials, and which
specific operating system: an attacker gaining sufficiemtakes the sign-in fail.

privileges on a client system could make changes to theThe vault password is not stored in the system and is
network subsystem or user interface that could circurdnly available throughout the sign-in phase to decrypt the
vent some of our solution’s protections. Our service cop@gult content. We call the decrypted vault contemra:

with Denial of Service (DoS) attacks by detecting invalifile. A profile consists of user credential entries, each of
authentication requests as soon as possible. As we Wjhich is structured as illustrated in Figure 3.

briefly describe in the next section, only authentication

requests from servers to which the client has an open out-

going connection are considered valid; other requests &ROFILE[user@work]

rejected before computing-intensive operations are started®REDENTIALENTRY {

i P SERVER=www.intranet.ibom.com:
(e.g., SSL certificate validation). SERVICE=HTTP:

REALM=ANY:
[1l. SERVICEFEATURES AND IMPLEMENTATION PROXY=proxy.intranet.ibm.com:
. . o) i CREDS=me@us.ibm.com:passwOrd:
In this section, we describe in more detail the four main PROTECTION=SSL: }
components of our service: the credential vault, the client CREDENTIALENTRY {
authentication service, the server authorization mecha- SERVER=www.esorics.org:
nism, and the user control. Before we describe these com- SERVICE=TELNET:
ponents in detail, we shall sketch their cooperation that REALM=ANY:
PROXY=NONE:

implements the service. The client authentication service
starts as a thread as soon as the user signs in successfully.
To sign in, a user selects a credential vault file and enters
the correct user identity and password to decrypt the vag}{[prOHLE[user@Work]
file. The decrypted content of the vault file represents the

credentials that are used by the authentication servicerlg 3. example Profile
respond on behalf of the signed-in user to remote creden-

tial requests. This file is especially sensitive as it contains

all the credentials of the user. In Section IV we descril : , _
in more detail how we particularly protect those credefi€!d- Those fields together should specify unambiguously

tials. The client authentication service thread is stopp_@B entry. The realm field offe_rs an addmo_nal grgnularlty
when the user signs out of the service. The graphical udeft USer needs to store multiple credential entries for a

interface (GUI, c.f. Appendix I, Figure 6) allows the usef!"9!€ Server; it can also be empty. Terviceentry dis-
to edit and save the credential file. tinguishes credentials for different services offered by the

same server.
_ The proxy field can either be empty (NONE) or spec-
A. Credential Vault ify a proxy server that is expected to request credentials
The client authentication service needs access toombehalf of the server providing the service. Running a
user’s credentials (e.g., user identity and password) to pgexy server represents an easy way to enable the services
spond on behalf of this user to authorized credential n@ithout the need to change the actual server, but it must
quests from remote services. Therefore, the first tasklwd as trusted as the original server. The client authentica-

CREDS=admin:s3cre7:
PROTECTION=: }

ch credential entry contains thervername andealm

3

tion service responds with the contents of tnedsfield
to authorized credential requests. ClientAuthenticationService() {

The credential exchange itself is always independently /* Authentication Client Logic */
protected; however, therotectionfield enforces protec- it (tsign_in_user())

. . return;
tion of the data exchange between the user client (web while(EXIT) {

browser) and the server (web server). This field—if request = SelectNextRequest();

used—adds requirements to the authorization of a request. if (IParseSyntax(request)) {
The user profile is read completely into a hash-table in reply(error); continue;

non-persistent memory. The key to the hash table is the

proxy entry if available, or the server entry otherwise. The if (‘Authorized(request)) {

client authenticator searches this hash-table to find the re- reply(error); continue;

quested credentials. ;

creds = FindCreds(request);
if ('UserApproved(request)) {

B. Client Authentication Service reply(error); continue;

}

The major purpose of the client authentication service reply(creds):
is to respond to an authorized server request with the
proper user credentials allowing the signed-in user to use sign_out_user();
this service. For this purpose, the client listens on a well-
known port (our prototype uses port number 10000) an
the client system for credential requests from servers. Fy. 4. Client Logic of the Proposed Authentication Service
server must set up an SSL connection to the well known
client port and authenticate against the client using a valid . .

o . IN the active profile whose server or proxy name matches

certificate. As clients do usually not run a web server, th

authentication service can optionally listen on port 80 (%ﬁe server's name in the SSL. certificate, and (iif) fie-

. : : ctionrequirement field of this credential entry matches
443 as wel, taking advantage of the firewalls COﬂfIgUI’E{ﬁe protection type of the TCP data connection between
to allow traffic only through port 80 and 443.

) , . the client and server. The order of the steps ensures that
The pseudo-code in Figure 4 shows how the client P

. . . invalid authentication requests are discarded as soon as
authentication service handles credential requests from

o S ._possible, while the lightweight mechanism that correlates
server applications. After signing in the user and retrlee— g g

) .) . . Incoming requests with outgoing connection data thwarts
ing his or her credentials from the vault file (tliecondi- greq going

tion holds). the client authenticati . i g[:omputing power based DoS attacks.
lon holds), the client authentication service continues 0, Correlating client requestTo validate (i), the client

handle requests until an exit condition holds. At this tim?naintains one hash-table that stores all active TCP con-
the user is signed outand the client authentication S€Vif&ctions that were initiated by the client system. Our ser-

_stop;,.SI'_I'he malnt_loop (Ethh”e Iociﬁ) a}cceptg an mcomt-vi e monitors the setup and release of TCP connections
g connection and parses the Incoming request. ing the packet capture library for Windows [12]. To

the request has f"lv"’_l“d syntax, and the server Cert'f'_cat?n_aintain the table, the service starts a separate thread for
used for authentication throughout the SSL connection @Sich network interface that has an 1P addrelisr(t IP)

tablishment phase—is valid, then the request is accept% 'd compiles and sets the PCAP packet filter rule detailed
in Figure 5.

C. Server Authorization Mechanism

_With the credential request, the server provides F"(‘&tcp[tcpﬂags]&(tcp-fin|tcp-rst)!:0) or
client port number belonging to the TCP data connection ((icp[tcpflags] & tcp-syn'=0) and
for which the credential request was issued (and in case of (tcp[tcpflags] & tcp-ack=0))
HTTP optionally the original URL that triggered the cre-)
dential request), the server certificate (implicitly throughand (src ‘client IP))
SSL authentication), and optionally the realm for the au-
thentication. Acredential request is considered valfdt ~ Fig. 5. PCAP Filter Rule
is received from an authorized server (or proxy). A server
is considered authorized if (i) there is a pending request toThe authentication service considers that the client has
this server from this client, (ii) there is a credential entriitiated a TCP connection to the server if the TCP con-

4

nection hash table contains an entry with the client sourPe User Feedback Control
port as stated in the credential request and destination IP
address equal to the server IP address. This client port

number is not used for authentication purposes, but togafore any credential reply is sent to the server, the au-
distinguish between multiple client requests to the samigntication client checks whether the user needs to ac-
server. On multi-user operating systems, the client pfioyjedge the authentication. This allows fine-grained
number of the request could be used to determine the USgkr control regarding the release of credentials. The
identifier under which the client application is runninggjient offers three interaction levels to its user: Low,
this could be used to determine whether this user identifm%dium, and High. An interaction level set to Low indi-
is the one under which the client is running. Requiremegkias that the user asks the service to autonomously au-
(i) ensures that there is always a correlated client requgitnticate the user if possible; i.e., if credential entries
to a server credential request. for a requesting service are unambiguous. The High in-
teraction level indicates that the user wants control over
ii. Matching credential entry:We validate (ii) by all authentications that are handled by the service. Each
searching the profile data for a credential entry whosiéne a credential request is received, the user is prompted
server or proxy field matches the server name of the Stdgarding whether or not the credentials shall be sent to
certificate that was used by the server to establish the Sk server; the user is thereby additionally informed about
connection to the client authentication service. Using th@authorized requests. The Medium interaction level en-
client port number as submitted within the credential retles user feedback and confirmation for the initial au-
quest, the service can find the server port number of thentication against a service. Subsequent authentica-
client connection in the TCP hash-table (see validatigions within the same session for the same service are au-
step i) and the client application. Thus, our solution cabnomously satisfied by the client authentication service.
distinguish credential requests for multiple client applia session ends when the TCP connection (with which the
cations accessing the same server. Additionally, we caitial request was correlated) ends. For Web browsers
assume well-known port numbers to determine the seiing multiple TCP connections to access a Web server,
vice entry of the requested credential by looking up thexperience shows that it is more appropriate to relate the
server port in the TCP connection data. If this does nehd of the session with the exit of the client application,
unambiguously determine a credential, the service askg user’s sign-out, or a global timeout (whichever occurs
the user which entry to use, i.e., which user identity to afirst) rather than with the end of individual TCP connec-
thenticate. As an enhancement, the server certificate ¢an.

be checked against a local or remote certificate revocation _ _ _ _
list. Our authentication service lends itself as well to us- E2ch credential entry in the profile can overwrite these

ing client certificates for authentication. In this case, tl‘ﬁ‘uI settings by |nc.Iu.d|ng amteractionfield in the en-
SSL server authentication required for an authenticati- Thus. the decision whether to pop up a user con-
request is extended to include an SSL client authentid§mation window before replying to a credential request
tion based on the related client private key, and to pdSsdone based on the matched credential (dominant) and

the client certificate of the public key instead of passwoflf! the GUI setting. Independently of the user interaction
credentials to the server. level, the activity indicator at the upper left corner of the

authentication GUI visualizes the processing of creden-

. , . _ tial requests by our client authentication service (see Ap-
iii. Matching protection policy:We validate (iii) by Lﬁ)endix I, Figure 6).

retrieving additional connection characteristics from our
TCP connection hash table. Our prototype supports theThe authentication client is programmed in C and com-
protection policies ANY and SSL. If the protection fielcprises about 1600 lines of code, including the GUI, the
reads SSL, our authentication service validates whetlodient authenticator, and the handlers for the credential
the outgoing TCP connection that proves the correlatigault. We implemented the client as an application for
in requirement (i) is using SSL. The service currently suphe Windows 32-bit architecture (Windows 2000, Win-
ports the validation of SSL for HTTP services simply bgows XP). We use standard Microsoft libraries [13] and
checking for the well-known HTTPS server port (443the Packet Capture (PCAP) library for Windows operat-
This is a heuristic that shall protect from accidentally usag systems [12]. Our prototype processes user identities
ing HTTP instead of HTTPS, and not from more sophistand passwords as user credentials, and it can be easily ex-
cated attacks. tended to include certificates and one-time passwords.

IV. EVALUATION AND PERFORMANCESTUDIES request and that they must decide whether to go ahead

In this section, we evaluate the proposed authenticati$h the authentication or not. Even in this case, a valid
solution. The performance objectives that we consider &@ver must supply the client port number of the open con-

security, overhead, compatibility, and ease of use. nection in order to “get through” to the user. Neverthe-
less, with our solution this is the only restriction, while
A. Security existing models (see Section V) cannot even securely de-

Our security goal is that credentiale) (are released termine if there is an initial client request for the server
(Rel) to authorized servers only. A served) (s autho- that demands authentication. To make sure that the user is

rized (4) regarding a request if and only if it has a aware of the authentication (and of the following authen-

client request pending that requires authentication and'fi2t€d actions), our service provides both a permanent

its identity is proven. The released credentials are thd3gicator and a user approval option. As the credential
that are found F) in the users profile for this server andExchange is protected by client-server authenticated and
request. They are released only if the user appraves (encrypted SSL, the released credentials can be disclosed

to release respective credentials. Formally, our design gh¢the server only. Some of the above correlation consid-
implementation ideally enforces: erations could be overcome by having the client authenti-

cation service in the data path between the client and the
Rel(c,s) — A(r,s) && (¢ == F(r,s)) && UA(c) server. However, this would destroy the client-server end-
to-end relationship, especially by using SSL or TLS, and,

We do not try to satisfy the-, i.e., the reciprocal relation- ") . .
) y o fy ; P :) additionally, would make the client authentication service
ship, because it is not possible to prevent situations where

all assertions are fulfilled and still a reply cannot be Serﬁllatforrr_\-spemflc, which our S(_)I.utlon avoids by providing
For instance, this could happen if the client memory grenerallty'and broad a.ppllcablll.ty. _
CPU is exhausted or the network connection fails. Thus,2- 1h€ implementationA major known implementa-
it is not possible to guarantee availability of service. Howion Problem is that of programming errors, which can
ever, proving the above assertion holds in our implement§2d 0 security breaches. The service implementation
tion merely requires an analysis of the flow control of off?MPrises about 1600 lines of code, not including the
application (see Section I1I-B). Therefore, it is more inteﬁharEd libraries. Extensive stuqlles showed [14] that even
esting to examine whether the predicates reflect the refwell-tested cod'e, there remain about 3-8 programming
world assumptions, e.g., th(r, s) holds if and only if a errors per 1000 Imes_ of code. Hence, we must assume
server is actually authorized. For this reason, we focus Eﬁﬂ any |mp!ementat|on of the S'Zej O_f our prototypg may
analyzing the implementation of the predicates when W&Flude multiple errors. However, it is more effective to
evaluate possible limitations of our solution with regaravaluate_and securely lmplememmg single authent!ca-
to the above assertion in the context of attacks that explt? Service as the proposed solution, rather taklif-
vulnerabilities of (1) the architecture, (2) the implementd€reént specific authentication clients for applications and
tion, (3) the network, and (4) the client system. network management services needing authentication cre-
1. The architecture:Correlating a client's service re-dentials today (HTTP, Telnet, Secure Shell).
quest with a server’s credential request (this is determin-3. Network:We protect credentials when they are trans-
ing the A(r,s) predicate) constitutes a major problenfitted by SSL, independent of the protection of the ser-
when trying to separate service and authentication. O(i¢e data connection (e.g., HTTP, telnet). When authen-
solution solves this problem by ensuring that the cliefi€ating the server using the server’s trusted SSL certifi-
has initiated an open TCP connection to the server (feite (and the ASCIl name given therein), our service will
the initial request). Additionally, the server identity ig10t be deceived by spoofing or DNS attacks—this ensures
verified using the SSL certificate that the server usesttat theF(r, s) predicate holds. Our service can addition-
authenticate. Ideally, we would like to also verify that thally check certificate revocation lists before authorizing a
client request actually requires authentication. Howevégrver. However, our solution is susceptible to denial of
our service cannot always read (and thus verify) the cliesrvice attacks by any server because setting up the SSL
request because it might be protected by SSL or other ea@inection requires CPU processing power for public key
to-end encryption. In this case, our authentication servigdthentication. We mitigate this risk by validating that the
validates the remote SSL endpoint; actual authenticatigent has an outgoing connection to a server before going
requests are only accepted if they originate from thef@rough the SSL authentication for this server’s credential
Users are made aware that the authentication client c&gduest.
not validate whether authentication is necessary for this4. Client systemThe credential vault is represented by

6

a flat encrypted file. We use the Triple-DES algorithm arttvely small, since the client authentication service is only
a 128-bit key that is derived by hashing the sign-in usactive when a service makes a credential request, or when
identity and password (optionally including a salt value)he client sets up outgoing TCP connections. When han-
This file can be stored on a USB token and accompadiing a credential request, the client authentication service
the user. The hardware token can be write-protected bgaecepts the SSL connection, checks the server certificate,
hardware switch, which protects against integrity attackzarses the request, looks up appropriate credentials, veri-
Additionally, we can store the authentication client applfies that there is an active TCP data connection, and then
cation on the USB token as well because the code sizeopftionally asks the user if the credentials should be sent.
our implementation is rather small. Therefore, the tokekccepting the authenticated SSL connection contributes
content cannot be corrupted. Noteworthy is also thatn@ost to the overhead introduced by our solution. For le-
hardware token need only be attached to the client systgitimate requests, checking for credentials and checking
when the authentication service is used and this restrifds active connections is rather fast even for a large num-
the time frame for disclosure attacks. ber of credentials and active connections (e.g., in the case

The authentication service stores multiple credentiad$ network management) as binary search algorithms per-
within the authentication client application. This majorm search with negligible (fractions of millisecond) re-
seem attractive to attackers. However, compared gponse time and caches can be added as needed. Moni-
network-centered approaches that store credentials tming the outgoing TCP connections requires a relatively
hundreds of users, our service is of small interest to aimple PCAP filter, and the rate of new outgoing connec-
tackers. Nevertheless, users can mitigate the exposuréiais is generally low when they are opened as a result of
the service by using multiple profiles (such as @work arsduser action (e.g., a new telnet connection or browsing to
@home, or @MPLSore and @MPLXdge) allowing a new web page). Even in case of software originated au-
them to make only certain credentials available deperndmatic connection establishment (e.g., in network man-
ing on the context. agement professional software services) the PCAP filter

Finally, the credentials are stored in clear-text in theas no impact in the service performances as it helps the
main memory between sign-in and sign-out. If they amutgoing connection monitoring.

swapped out onto persistent memory, they are easily eXThe second overhead required by our solution is the ad-
posed. We are currently exploring possibilities to mawitional communication between the server and the client.
the memory that holds the credentials as non-swappaip|gs |argest fraction comes from the establishment of the
or to protect memory that is swapped out [15]. We als§s|_ connection from the server to the client and from the
catch signals sent to the authentication client and the fgne required to make the credential request over this con-
spective signal handlers overwrite the memory area holgkction. To reduce the impact of the connection set-up,
ing the clear-text credentials before exiting or at sign-o{e SSL connection can be cached and later resumed or
time—this does not help in case of power failures or pugstt in place for subsequent credential requests. For initial

posely manipulated client systems. authentication, most protocols (e.g. telnet, HTTP) require
a round-trip message for credential requests like the pro-
B. Overhead posed authentication does. Note that unlike our solution,

The main benefit of our solution resides in its suppot@’ Subsequent access requests, protocols like HTTP may
to facilitate and secure the credential management for fRglude credentials in the HTTP header such that addi-
user. In this section our goal is to additionally determirféonal round-trip messages for credential requests are not
the cost of using the proposed service in terms of user pBgeded again. A similar result can be achieved for au-
ception as compared to the current legacy. We first qug]entication in case of HTTP traffic if servers set a cookie
itatively analyze the service overhead in terms of extP the client side, via the data stream, with an encrypted,
computation and communication required by the Systeﬁ'me—limited credential for the user after the initial authen-
These two performance metrics reflect the time-impact égation (c.f. [16]).
using the service from the user’s perspective. Based orPerformance Testing Environmeni/e present below
this study we have proceeded to test the prototype sytse performance results of our service using HTTP traf-
tem. We provide here the most relevant performance fe. The results obtained by using telnet traffic, which are
sults that we have obtained. even easier to generate as there is no HTTP interface in-

Qualitative Analysis.The first component of overheadvolved, show similar performances. The serveris a 2 GHz
is the additional processing required by the client autheRentium 4 (Windows 2000) workstation running the IBM
tication service. The contribution of this overhead is rel&dTTP Server. The client system is a 1.2 GHz Pentium Il

7

(Windows XP) IBM Thinkpad running a Netscape 4.7%he reply of the credentials to the server (over resumed
HTTP client. We enabled the authentication for the servB6L), and the content response of the server. Table Il com-
by using a server-side HTTP proxy. All machines where

lightly loaded on the same 100 Mbps Ethernet segment. Authentication Method Time (ms)
The measurements were taken using IBM Page Detailer Legacy 12
and reading the time between the HTTP request and the Our Service 52
reception of the related HTTP response on the client. TABLE Il

Initial Authenticationcounts the time needed for the PERFORMANCE REPEATED AUTHENTICATION

first authentication within a session after a user has re-

quested access protected data. Initial authentication for

the legacy HTTP case includes the time for the client datares the performance of repeated authentication for the
request, the related server authentication request (HTiEBacy case and for our service. It shows that the legacy
401 - Authorization Required), the User Response Tinglthentication requires about 12 ms. In the case of our ser-
(URT) for entering the user identity and password for thigce, the repeated authentication requires about 52 ms and
service, the sending of the user identity and passwordifgludes additional protection of the credential exchange
the server, and the final content response of the sery@ client-server-authenticated SSL (resuming the former
Initial authentication for the case of our solution includeSSL session). However, the absolute response time of 52
the time for the client data request, the related server cfas is insignificant from a human perspective.

dential request (over SSL), the reply of the credentials toln conclusion, using our solution brings its creden-
the server (over SSL), and the final content responseti@ management benefits at a very low time cost for the

the server. Table | compares the performance of initigger in case of repeated authentication (which can be fur-
ther reduced for HTTP by using authentication-cookies as

Authentication Method Time (ms) sketched in the next section) and improves the response
Legacy 24 + several seconds of URT time substantially for the initial authentication.
Our Service 92
TABLE | C. Interoperability and Compatibility
PERFORMANCEINITIAL AUTHENTICATION In this section we focus on compatibility issues when

our service interacts with existent systems. Thus, we first

describe backward compatibility and migration from ex-
authentication for the legacy case and for our service.idting authentication techniques. Next, we consider com-
shows that the legacy authentication requires about 24 pagibility with NAT routers and firewalls. Finally, we de-
at which the variable user response time (of the order sdribe the zero interaction repeated authentication solu-
seconds) is to be added. In the case of our proposed saivn for HTTP(S) connections.
tion, the initial authentication requires only 92 ms in all, Backward Compatibility and Migration PatHht is im-
i.e., including the additional protection of the credentigdortant to note that our service does not use the client’s
exchange via client-server authenticated SSL using 1024ta connections for its signaling. That is, the com-
bit RSA key certificates. We used the Low interaction sefaunication for the client applications does not require
ting to avoid user confirmation prompts and related dany modification when using the proposed authentication.
lays. Given that the user response time to authenticatithis fact allows seamless backward compatibility and a
requests in the legacy case usually requires multiple seraightforward migration path as described by the two
onds, our result shows that our solution significantly infellowing scenarios.
proves the initial authentication performance, while addi- Let us first consider a legacy authentication client con-
tionally enhancing the credential security. necting to our server. When the client application requests

Repeated Authenticatiorounts the time required forrestricted content, our server will issue an authentication

subsequent requests of access controlled data. Repeatedential request specific to our service. Since the client
authentication for the legacy HTTP case includes the tirdees not support our solution, there will not be a client
for the client data request (the browser includes the usarthentication service listening on a well-known port on
credentials automatically in the request) and the final care client, so the server will receive a connection-refused
tent response of the server. Repeated authentication usigponse. In this case, the server reverts to the legacy cre-
our solution includes the time for the client data requestential request over the data connection and manual au-
the related server credential request (over resumed SShgntication follows as supported by the existent system.

8

Let us now consider the case when a client using ooperating multiple clients connected by a single broad-
authentication application communicates with a legatyand cable or DSL connection. In these settings, it is pos-
server that doesn’t support our solution. When the cliesible to use port forwarding to expose our client authenti-
application communicates with the server application, tleation service for one machine behind the NAT. This port
server will issue its legacy credential requests over thmwarding can be automated using NAT traversal with
data connection. Since the client application is not modiPnP [19] in the case of NAT devices. Our authentication
fied and our service does not modify the data connecti@iso works via VPN connections to remote clients with-
the legacy credential request will be received by the clientit enabling port forwarding on the router since the server
application and satisfied as it is currently supported, e.gredential request is tunneled through the NAT router with
requiring the user to manually provide userid and pad®SEC.
word. In this case the user cannot profit from the featuresZero Interaction Repeated Authenticatidim optimize
of our service. repeated authentication, a server aware of our service may

If the server cannot be controlled to send the credent&inbed credentials after the initial request into a protected
request to the port specific to our service—e.g., our séeokie [20] in the HTTP response and store it this way
vice is operated by an ISP that does not have control ot the client. The credentials are protected by using a
third party servers—we enable the clients to make usef@hdom symmetric encryption key and adding this key—
our service by introducing a proxy on the data stream b@acrypted with the public key of the server certificate—to
tween the client and the server. This proxy passes mée cookie. Future client requests will include this cookie
sages back and forth between the client and the serverdi§l the server can retrieve the protected information on
the data connection, passively watching the data streggimand from the cookie instead of requesting it from the
for a legacy credential request from the server. Rath@ient authenticator again. This extension only works for
than passing the legacy request to the client applicatibd TP and Web Browsers supporting cookies.
over the data connection, the proxy issues a credential re-
quest specific to our solution and then forwards the cre-
dentials to the server using the legacy authentication f&f- Ease of Use

mat. If the server does not accept the provided CredenExperience has shown that one of the key-points to ren-
tials, the proxy passes the legacy credential request @i} a service successful, beside powerful technical fea-
to the client application through the data connection rgyes; is the ease-of-use. As we have seen, our solution is
sulting in legacy user authentication; otherwise the proxyrajghtforward, does not introduce additional cost from
passes results from the server to the client and discardsihe yser perception point of view, and is easy to integrate
legacy credential request from the server. This approaglin existing systems. Additionally, the proposed service
requires an extension for our service to identify and hagiows users to off-load credential management and au-
dle the legacy authentication in the proxy. Additionallfnentication handling to the client authentication service.
any SSL connection on the data stream terminates at {irs store their credential profile in the vault and need
proxy. We have fully implemented and successfully testegh|y to update credentials if they change. If no creden-
these compatibility and migration options for our authefiy| information is found, the authentication service pops
tication prototype using a simple extended HTTP proxyp a window and asks the user explicitly for authentica-
java application and the Apache Web server [17] on thign credentials: a checkbox allows the user to decide if
local IBM network. Our authentication service only rethese credentials are permanently added to the credential
quires that the authenticating party can reach the cligRfyit. Aneditoption in the graphical user interface of the
and its authentication port. Thus, it supports Mobile IP ggjthentication service, c.f. Figure 6, allows users to edit
long as this client port is not blocked by a visited networlghe protected vault, to delete, or change entries manually.
NAT and Firewall Support.The current implementa- A syntax check ensures that the structure of the file is not
tion of our authentication solution requires the server tcidentally invalidated. Our authentication solution also
initiate the request for credentials and set up a conngermits the user to choose the level of involvement in au-
tion to the client system. This has technical drawbackstifentication among three levels of interaction (user pref-
used in an environment where network address translatenences). Note that specific interaction settings within a
(NAT) [18] is used or where firewalls block incoming traf-credential entry can be used to override the default settings
fic. Such a situation occurs if a user works remotely bér very sensitive or very insensitive services. Finally, the
hind a router that offers NAT to enable multiple clients tgault and the client authentication service program can be
share a single IP address—usually this is necessary wiseared on the very convenient and easily accessible USB

9

token (or other pervasive device) so that they can accoprevides decryption authority for laptops bound to the to-

pany a mobile user and be used to provide secure authleen once the user has authenticated with the token. The
tication. design of ZIA is focused on protecting a user’s sensitive
content from accidental disclosure with proximity being a

V. RELATED WORK key part of the access control. ZIA enhances user-to-client

uthentication, whereas our solution enhances client-to-

In this section we discuss some of the features of the L :
server authentication. Our service can use ZIA to prevent

most known authentication models proposed in the litera- I S :

. . L ent-hijacking due to forgotten authentication sign-outs.
ture and relevant to the issues considered in this paper. We_ _ ,
first give a brief description of the model, present its par- SNiPPoleth [23] is an open, standards-based solution

ticular limitations, and then compare to how our servi bthe Eegds for organizations (;0 exchange information
addresses them. about their users in a secure and privacy-preserving man-

The Factotum user agent in Plan 9 [11] addresses Dgr- This i_nformation exchange typically det_err_nines if a
cure storage of credentials and considers flexible, pRESON using a web browser has the permissions to ac-
tected authentication for services. Factotum requires {ieSS @ target resource based on information such as be-
authentication services to be integrated into the operatiig 2 membgr of an institution ora partlgular class. Like
system, the client applications, as well as into the sen/e#SSPOIt, this model places an intermediate party between
applications. For this reason, Factotum’s security deperiti VICES and users; users must trust this intermediate party
on changing the operating system and specific ”brari%esga_rdmg their privacy, a.nd services must trus'_[this inter-
that support the client applications, which is impractic{ﬁ]ed'ate party to authenticate users. Our solu'Flon enables
for most deployed operating systems. As mentioned gesers to kee_p (_:ontrol over their private data without need
fore, our authentication service does not require chand@sNtermediaries.
to the operating system or client applications making useThe Security Assertion Markup Language (SAML
of its service. [24]) is an XML-based [25] security standard for exchang-

Microsoft Passport [7] is a third-party cookie-baseld authentication and authorization information that is
technology that allows automatic, repeated authenticatiffly t0 be used to encode information that is exchanged
for applications using the HTTP protocol. Passport coRétween Passport-like servers and merchants or clients. In
trols highly sensitive information about a large number &Ur case, SAML offers one possibility for encoding infor-
users including their buying habits, preferences, accodR@tion exchanged between the servers and clients.
information, and credibility. It relies on a centralized The Simple Authentication and Security Layer
architecture and, therefore, it is inherently vulnerable {$ASL [26], [27]) specification describes how to integrate
concerted attacks that can use the system to compron@igéhentication support to connection-based protocols.
or manipulate confidential information of its users withThe authentication provided by our solution can be
out consent or knowledge of those users. Users must fullggotiated as a so-called EXTERNAL SASL authenti-
trust Microsoft Passport to handle their information (prication mechanism matching the requirements specified
vacy, credentials) in accordance with the user's wishd@l SASL similarly to the methods exemplified in [28].
The users must additionally trust Microsoft to protect thidaving our solution available as an EXTERNAL SASL
Passport infrastructure against strongly motivated attadithentication mechanism, the server would directly use
(see [21] for a description of vulnerabilities in Passpofur service to determine the client identity and whether
and the corresponding Wallet service) aimed at the vafiie client is authorized [26].
able information of users and merchants. Liberty Al- Kerberos [29] allows client applications modified to
liance [8] is similar to Microsoft Passport. However, iwork with Kerberos the ability to have automated, re-
allows groups of merchants to share federated user infpgeated authentication to a particular service through the
mation reducing thereby the risks associated with a singlee of the Kerberos ticket. Our solution is orthogonal
repository. Our service originality consists in allowing auo Kerberos services because it supports the authentica-
tomatic secure authentication while keeping the inform#on of users to the Kerberos user agent, whereas Kerberos
tion totally decentralized and fully under the control of theupports the authentication of client applications to server
user. applications. The service we propose mitigates the risk of

Zero Interaction Authentication [22] offers a tokenoffline password guessing attacks against Kerberos tick-
based single sign-on solution for protecting user data 6ts [30] by enhancing the likelihood of strong passwords.
devices such as laptops. In this model, the files are stored@he Identification Protocol [31] provides a means to
encrypted on a laptop, and the user’s authentication tokagtermine the identity of a user of a particular TCP con-

10

nection. Given a TCP port number pair, it returns a chantegrates seamlessly with existing systems, is highly se-
acter string which identifies the owner of that connectiarure and convenient to use. Our service supports users in
on the client side to the server system. This mechanismcurely storing and maintaining their credentials for dif-
has been used, for example, by FTP servers to get addrent types of applications. An immediate extension to
tional information about users that log into the systerthis work will be the integration of non-password based
The identification protocol is not used as a secure way ¢oedentials and the integration of our service into the con-
authenticate clients, rather as a supplement to the existiagt of pervasive devices. Finally, integrating our au-
client-server password authentication. The proposed stentication into the Simple Authentication and Security
vice uses a similar call-back mechanism. However, ouayer (SASL) framework as sketched in Section V en-
solution provides a complete call-back mechanism for tlables seamless invocation and broad use of our solution
client-server authentication, and, in addition, is secure. from any SASL-enabled client-server application.

VI. CONCLUDING REMARKS ACKNOWLEDGMENT

The authors would like to thank Dinesh Verma, Suresh

We considered the problem of securely managing te&,,i and Alan Bivens for helpful discussions of our ar-
authentication credentials in the context of the security ispitecture. useful comments and suggestions.

sues of applications and communication networks. Au-
thentication requirements of newly emerging services and
vulnerabilities regarding denial-of-service attacks against
centralized credential servers have motivated our developThe Authentication Service GUI is implemented in C.
ment of a secure client-managed authentication servicelhe design is straightforward, containing six elements as

We introduced a client-based solution that keeps tHescribed below:
users in control of their credentials and, thereby, avoids

APPENDIX. AUTHENTICATION SERVICE GUI

the user-unaware credential manipulation risks of central- ‘:\1_') ‘;‘b‘

ized models. The proposed service maintains a database / A

of user identifiers, credentials (e.g., passwords), and

server information through which the client assists in au- ll:l — / !

thenticating users and applications. We described our au- / ’Wk’ S y v | ‘

thentication service, which securely correlates the server f

credential requests with the established data connections .’\E‘)

and validates the server’s identity before authorizing any

credential release. The service we propose allows a three Sl

level user control of the credential release. It does not s o L ‘

require changes to the operating system or client applica- *\

tions making use of its service, and provides a common, ‘\ EXIT

consistently high protection level (SSL) for credential ex- 3 —‘T \\—

changes. s \. ol
We implemented our service to support HTTP-based, 2z} 3 &)

HTTPS-based, and Telnet-based services, which account o))

for most interactive Internet traffic today. The service cdnd- & The Authentication Service Graphical User Interface

be extended to support local applications, such as SSH or

Kerberos user agents, as well; these applications can bé. Profile indicating a specific collection of credential

adapted to transform their local interactive user authegnatries that determines the context in which the user wants

tication requests into our authentication. In Linux, foto operate (e.g., related to work, or personal accounts;

instance, our solution naturally fits into the pluggable ate MPLS core routers, or MPLS edge routers, or ATM

thentication module (PAM [32]) abstraction and through #witches, etc.).

can be made accessible to any PAM-enabled application.2. Edit Profile to fill in the details (e.g., userid, pass-
We presented sample experimental results charactevimrd, server, protection, etc. cf. Section IlI-A) of the

ing the performance of the proposed service and showaddentials for a given profile.

that our fully implemented prototype performs well in 3. User Interaction to choose the appropriate level of

terms of overhead from the user perception point of viemteraction as explained in Section IlI-D.

11

4. Sign In - Sign Out to start - stop the authenticatiop3] Internet2,

client and, thereby, the service.

5. Activity Indicator to visualize the processing of cre*
dential requests by the client authentication service.

(24]

(25]

6. Exit the application GUI.
[26]
REFERENCES [27]

(1]
(2]

3

—_—

[4

—_—

(5]

(6]
(7]
(8]
9]
(10]

(11]

[12]
[13]
[14]
[15]

(16]

(17]
(18]
(19]
(20]

(21]

(22]

Robert Morris and Ken Thompson, “Password security: A case
history,” CACM, vol. 22, no. 11, pp. 594-597, 1979. (28]
David C. Feldmeier and Philip R. Karn, “UNIX password secu-
rity - ten years later,” irlCRYPTQ 1989, pp. 44—63.

Daniel V. Klein, “Foiling the cracker’ — A survey of, and im- [29]
provements to, password security,”Rnoceedings of the second
USENIX Workshop on Securitgummer 1990, pp. 5-14. (30]
Philip Leong, “UNIX password encryption considered unse-
cure,” in USENIX Conference Proceedingkanuary 1991, pp.
269-280. [31]
Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H.
Saltzer, “Protecting poorly chosen secrets from guessing &2
tacks,”|[EEE Journal on Selected Areas in Communicatjmag.

11, no. 5, pp. 648-656, 1993.

“Virus description for BAT.Mumu.A.Worm,” June 2003,
http://securityresponse.symantec.com/ avcenter/ venc/ data/
bat.mumu.a.worm.html.

Microsoft Corporation, “.NET Passport 2.0 Technical overview,”
http:// www.microsoft.com/ myservices/ passport/ technical.doc,
October 2001.

“Liberty alliance project,” 2004, http:// www.projectliberty.org.
GAIN Publishing, “Gator eWallet,” 2004, http://
www.gator.com/home2.html.

Zero-Knowledge Systems, “Freedom security and privacy suite,”
2002, http:// www.freedom.net/ products/ suite.

Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quin-
lan, “Security in Plan 9,” inl1th USENIX Security Symposium
August 2002.

L. Degioanni et. al.,
http://winpcap.polito.it/.
“Microsoft developer network
http://www.msdn.microsoft.com/.

T. Drake, “Measuring software quality: A case studyFEE
Computervol. 29, no. 11, pp. 78-87, November 1996.

N. Provos, “Encrypting Virtual Memory,” i9th Usenix Security
SymposiumUSENIX, 2000.

J. Giles, R. Sailer, D. Verma, and S. Chari, “Authentication
for Distributed Web Caches,” idth European Symposium on
Research in Computer Security (ESORIGSgtober 2002, pp.
126-145.

“Apache project,” http://www.apache.org.

P. Srisuresh and K. Egevang, “Traditional ip network address
translator (traditional nat),” January 2001, IETF RFC 3022.
Microsoft Corporation, “Overview of network address transla-
tion in Windows XP,” http://www.microsoft.com/ WindowsXP/
pro/ techinfo/ planning/ networking/ nattraversal.asp, July 2001.
K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos and don'’ts of
client authentication on the web,” ifhe 10th USENIX Security
SymposiumUSENIX, August 2001.

David Kormann and Aviel Rubin, “Risks of the Passport single
signon protocol,"Computer Networkssol. 33, pp. 51-58, 2000,
http://avirubin.com/ passport.html.

Mark Corner and Brian Noble, “Zero-interaction authentication,”
in ACM MOBICOM 2002MOBICOM, September 2002.

“Windows packet capture library,”

(msdn) library,”

12

“Shibboleth project,” 2004,
ware.internet2.edu/shibboleth.

OASIS, “Security assertion markup language (SAML),” 2004,
http:// www.oasis-open.org/committees/security.

World Wide Web Consortium (W3C), “Extensible markup lan-
guage XML,” 2002, http:// www.w3.0rg/XML.

J. Myers, “Simple authentication and security layer (SASL),”
October 1997, IETF RFC 2222.

C. Newman and J. Myers, “ACAP — application configuration
access protocol,” November 1997, IETF RFC 2244.

IETF Charters, “Simple authentication and security layer
(SASL) working group,” http://www.ietf.org/ ietf/ sasl/ sasl-
charter.txt.

J. Kohl and C. Neuman, “Kerberos network authentication ser-
vice (V5),” September 1993, IETF RFC 1510.

Thomas Wu, “A real-world analysis of Kerberos password secu-
rity,” in Internet Society Network and Distributed System Secu-
rity Symposium1999.

M. St. Johns, “Identification protocol,” February 1993, IETF
RFC 1413.

“Pluggable authentication modules
http://www.kernel.org/ pub/ linux/ libs/ pam/.

http:// middle-

for linux,”

