
RC23193 (W0404-133) April 23, 2004
Computer Science

IBM Research Report

Secure Client-Managed Authentication:
A Passport-free Solution

Reiner Sailer, James Giles, Anca Dracinschi Sailer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Secure Client-Managed Authentication:
A Passport-free Solution

Reiner Sailer, James Giles, and Anca Dracinschi Sailer
IBM T.J. Watson Research Center

Hawthorne, NY 10532, USA
Email: {sailer, gilesjam, ancas}@watson.ibm.com

Abstract—This paper presents a novel authentication ser-
vice that enforces security by assisting the management of
the overwhelming and constantly increasing collections of
user identifiers and passwords. As the number of these
authentication credentials (i.e., userid and password) in-
creases, maintaining and recalling them on demand be-
comes a challenge. Studies show that users typically choose
the same easy-to-guess password for multiple services and
store it unprotected. This behavior implies that credential
leaks within poorly protected services can compromise or
disrupt better protected critical services.

The new secure client-managed authentication service
proposed in this paper is suitable for a large spectrum of
applications, including Internet Services and network man-
agement services. Our main contributions are (1) the del-
egation of credential management to a local secure agent
while keeping the users in control of their credentials, (2)
a three-level user control of credential release, and (3) gen-
erality, i.e., allowing secure credential release to authorized
server applications without requiring client application or
operating system modifications. Offering a key differenti-
ation to centralized solutions such as Microsoft Passport,
our authentication service empowers users to control the
release of their identity and related credentials on demand.
We compare the performances of our prototype (fully func-
tioning implementation) to those of a conventional user au-
thentication service and we show that our prototype is faster
and easier to use.

Index Terms— Access Control, Authentication, Security
Management

I. I NTRODUCTION

The problem of securely maintaining authentication
credentials as considered in this paper is motivated by
the increasing attention focused on security issues in ap-
plications and communication networks. The prolifera-
tion of user identifiers and passwords required for au-
thentication purposes by new electronic services confirms
that providers of these services are more and more con-
cerned about the security of their applications and net-
works. Therefore, the secure maintenance of the authenti-
cation credentials becomes of major importance.

In the case of the electronic services, studies [1], [2],
[3], [4], [5] have shown that users typically avoid the in-
convenience of having to remember different credentials
by choosing simple, easy-to-guess passwords for mul-
tiple services, by storing passwords insecurely, and by
choosing default passwords (see for example the recent
password-guessing virus [6]). While this behavior results
in weakened security, related problems are compounded
if some services offer less secure methods for credential
exchange than others. Hence, a leak of a user’s credential
from one service allows an attacker to replay it when try-
ing to access another service. More cautious users would
like to avoid giving the same easy-to-guess passwords for
multiple services. However, the key issue is how to conve-
niently and securely manage a large number of credentials
authorizing the access to numerous services.

In this paper we develop a new authentication service
that addresses this need for a secure solution to main-
tain authentication credentials. The proposed service is a
client-based solution that allows users (e.g., Internet users,
network administrators, network management tools) to
maintain control over their credentials for privacy and ac-
countability. It is also autonomous in the sense that it does
not require changes to the operating system or client ap-
plications making use of its service. Note that other ap-
proaches to secure authentication have been proposed in
the literature, by using a third party centralized server like
Microsoft Passport [7] and Liberty Alliance [8], by us-
ing a client-based agent as Gator [9], Freedom [10] or
Factotum-Plan 9 [11], or by using client certificates on
behalf of the user. However, all these approaches have
limitations in terms of either user control over personal
information in the case of the server approaches, applica-
tion/system compatibility in case of client-based agents,
or management overhead and complexity in the case of
client certificates.

Our approach takes into account all of the above is-
sues by providing seamless backward compatibility with
previous authentication mechanisms, by providing sim-
ple client and server migration paths, and by supporting

multiple types of network services. We choose a client-
centric approach rather than the server-centric approach
of passport and Liberty Alliance so that users have more
control over releasing their identity and credentials. Ad-
ditionally, denial-of-service attacks against decentralized
authentication services are less profitable and more diffi-
cult than against centralized credential servers.

As a last remark, security enhancements to ensure that
unauthorized users cannot disrupt critical communication
between system components or network devices is a vast
area of research that, besides authentication, includes en-
cryption, filtering, registration access control lists, etc.
The overall security of a system depends on its architec-
ture, implementation, and operation; security issues can
exist in any of these. In this paper we focus on secure au-
thentication and discuss its architecture, implementation,
and operational issues.

The rest of the paper is organized as follows: We first
outline in Section II the key ideas and requirements for
the secure authentication design. Then, in Section III, we
describe in detail the components of our architecture, their
implementation, options and features, and how to use the
service in order to achieve the desired authentication secu-
rity level. Section IV is dedicated to performance studies
where we show that our solution performs very well, and
is faster and easier to use compared to a conventional user
authentication service. Section V presents a comparison
to existent authentication models. We conclude in Section
VI.

II. K EY IDEAS AND DESIGN REQUIREMENTS

In this section, we give a description of the key ideas
used in the proposed authentication solution, the require-
ments to ensure security, and the different steps of the op-
erational functionality. The main objective is to assist the
management of authentication credentials and authentica-
tion tasks and, in the same time, improve the consistency
of the security protection provided during credential ex-
changes without requiring modifications in the operating
systems or client applications. A user’s credentials are
managed by aclient authentication serviceon his or her
electronic device. Before any credentials will be released,
the user must first log into the client authentication service
on the user’s device. Whenever a server needs to authenti-
cate a user, it requests credentials from the client authenti-
cation service at a well-known port. The client authentica-
tion service securely correlates this request for credentials
with the user’s active sessions to determine which creden-
tials, if any, should be returned to thesystem requiring
authentication. The architecture of the proposed authen-
tication service is illustrated in Figure 1.

Client
Authentication

Service

Client
Application

TCP Data Connection

SSL-protected TCP Connection

Credential
Vault

Client (e.g., Web Browser, or
Network Management Tools)

System
Requiring

Authentication

Application/
Management Data Protected System (e.g., Web

Server, or Network Devices)

Track outgoing
TCP connections

Authentication Credential
Exchange

EGSA Client

Fig. 1. Architecture of the Proposed Secure Authentication Service

There are two important requirements to ensure system
security with our solution. Foremost, user credentials
should only be released securely to authorized services at
appropriate times. Second, data streams must be tied to
appropriate authentication credentials. Therefore, a cor-
nerstone of our solution is the correlation of credential re-
quests with a user’s data connection and authorization of
credential releases. The proposed authentication passively
tracks a user’s outgoing data connections, noting which
servers and services are being actively used. When a ser-
vice requests a credential, it does so over an encrypted
connection (e.g., SSL) so that (a) the credential is pro-
tected regardless of the protections for the data stream,
and (b) the server can be securely identified. The overall
operational process is illustrated in Figure 2.

2: Start Client

Network

Client
Application

Client
Authentication

Service

Service
Requiring

Authentication
User

1: Sign-in

5: Authorize
Request

5': Optionally:
Acknowledge

3: Service Request

4: Credential Request

6: Credential Response

7: Service Response

T
im

e

Fig. 2. Operational Functionality of the Proposed Secure Authentica-
tion Service

Once the user has activated the client authentication ser-
vice by logging into it (1) and starts requesting remote
services (2 and 3), the service uses the server certificate
(4) and its record of active, client-initiated data sessions
to determine (5) the credentials the server may be autho-
rized to receive (6). Optionally (only for the maximum
protection among the three user interaction preferences),
the service can check with the user interactively (5’) be-
fore sending any credential to a service (6). Finally, when
the user has been successfully authenticated, the service
sends the requested response (7).

Threat Model. Our focus is to defend against attacks

2

involving the theft of user credentials. Our service does
not defend against trusted services, but only against ma-
licious services that can easily divulge and misuse any
user’s credentials for that service. Thus, it ensures that
credentials are securely stored on the user’s device and
that authorized services can obtain credentials from the
client authentication service. The proposed authentication
also protects against disclosure of credentials to an eaves-
dropping attacker. However, attackers that obtain server
certificates may be able to masquerade as a server gain-
ing access to user credentials. Our service also does not
defend against vulnerabilities and exploits in the client
specific operating system: an attacker gaining sufficient
privileges on a client system could make changes to the
network subsystem or user interface that could circum-
vent some of our solution’s protections. Our service copes
with Denial of Service (DoS) attacks by detecting invalid
authentication requests as soon as possible. As we will
briefly describe in the next section, only authentication
requests from servers to which the client has an open out-
going connection are considered valid; other requests are
rejected before computing-intensive operations are started
(e.g., SSL certificate validation).

III. SERVICEFEATURES AND IMPLEMENTATION

In this section, we describe in more detail the four main
components of our service: the credential vault, the client
authentication service, the server authorization mecha-
nism, and the user control. Before we describe these com-
ponents in detail, we shall sketch their cooperation that
implements the service. The client authentication service
starts as a thread as soon as the user signs in successfully.
To sign in, a user selects a credential vault file and enters
the correct user identity and password to decrypt the vault
file. The decrypted content of the vault file represents the
credentials that are used by the authentication service to
respond on behalf of the signed-in user to remote creden-
tial requests. This file is especially sensitive as it contains
all the credentials of the user. In Section IV we describe
in more detail how we particularly protect those creden-
tials. The client authentication service thread is stopped
when the user signs out of the service. The graphical user
interface (GUI, c.f. Appendix I, Figure 6) allows the user
to edit and save the credential file.

A. Credential Vault

The client authentication service needs access to a
user’s credentials (e.g., user identity and password) to re-
spond on behalf of this user to authorized credential re-
quests from remote services. Therefore, the first task of

the user is to sign into the authentication client applica-
tion to enable it to retrieve the user credentials from the
vault file and decrypt them.

A user signs into the client by proving his or her iden-
tity, enabling at the same time the client application to
decrypt the selected credential vault. For this purpose,
the user identity and the password are hashed into a de-
cryption key for the vault. If user identity and password
are correct, the vault decrypts into the credential file and
exhibits the proper format; if user identity or password
are wrong, then the file decrypts into some file that does
not satisfy the syntax rules for the credentials, and which
makes the sign-in fail.

The vault password is not stored in the system and is
only available throughout the sign-in phase to decrypt the
vault content. We call the decrypted vault content apro-
file. A profile consists of user credential entries, each of
which is structured as illustrated in Figure 3.

PROFILE[user@work]
CREDENTIALENTRY {

SERVER=www.intranet.ibm.com:
SERVICE=HTTP:
REALM=ANY:
PROXY=proxy.intranet.ibm.com:
CREDS=me@us.ibm.com:passw0rd:
PROTECTION=SSL: }

CREDENTIALENTRY {
SERVER=www.esorics.org:
SERVICE=TELNET:
REALM=ANY:
PROXY=NONE:
CREDS=admin:s3cre7:
PROTECTION=: }

...
ENDPROFILE[user@work]

Fig. 3. Example Profile

Each credential entry contains theservername andrealm
field. Those fields together should specify unambiguously
an entry. The realm field offers an additional granularity
if a user needs to store multiple credential entries for a
single server; it can also be empty. Theserviceentry dis-
tinguishes credentials for different services offered by the
same server.

The proxy field can either be empty (NONE) or spec-
ify a proxy server that is expected to request credentials
on behalf of the server providing the service. Running a
proxy server represents an easy way to enable the services
without the need to change the actual server, but it must
be as trusted as the original server. The client authentica-

3

tion service responds with the contents of thecredsfield
to authorized credential requests.

The credential exchange itself is always independently
protected; however, theprotectionfield enforces protec-
tion of the data exchange between the user client (web
browser) and the server (web server). This field—if
used—adds requirements to the authorization of a request.

The user profile is read completely into a hash-table in
non-persistent memory. The key to the hash table is the
proxy entry if available, or the server entry otherwise. The
client authenticator searches this hash-table to find the re-
quested credentials.

B. Client Authentication Service

The major purpose of the client authentication service
is to respond to an authorized server request with the
proper user credentials allowing the signed-in user to use
this service. For this purpose, the client listens on a well-
known port (our prototype uses port number 10000) on
the client system for credential requests from servers. A
server must set up an SSL connection to the well known
client port and authenticate against the client using a valid
certificate. As clients do usually not run a web server, the
authentication service can optionally listen on port 80 or
443 as well, taking advantage of the firewalls configured
to allow traffic only through port 80 and 443.

The pseudo-code in Figure 4 shows how the client
authentication service handles credential requests from
server applications. After signing in the user and retriev-
ing his or her credentials from the vault file (theif condi-
tion holds), the client authentication service continues to
handle requests until an exit condition holds. At this time,
the user is signed out and the client authentication service
stops. The main loop (thewhile loop) accepts an incom-
ing SSL connection and parses the incoming request. If
the request has a valid syntax, and the server certificate—
used for authentication throughout the SSL connection es-
tablishment phase—is valid, then the request is accepted.

C. Server Authorization Mechanism

With the credential request, the server provides the
client port number belonging to the TCP data connection
for which the credential request was issued (and in case of
HTTP optionally the original URL that triggered the cre-
dential request), the server certificate (implicitly through
SSL authentication), and optionally the realm for the au-
thentication. Acredential request is considered validif it
is received from an authorized server (or proxy). A server
is considered authorized if (i) there is a pending request to
this server from this client, (ii) there is a credential entry

ClientAuthenticationService() {
/* Authentication Client Logic */
if (!sign_in_user())

return;
while(!EXIT) {

request = SelectNextRequest();
if (!ParseSyntax(request)) {

reply(error); continue;
}
if (!Authorized(request)) {

reply(error); continue;
}
creds = FindCreds(request);
if (!UserApproved(request)) {

reply(error); continue;
}
reply(creds);

};
sign_out_user();

}

Fig. 4. Client Logic of the Proposed Authentication Service

in the active profile whose server or proxy name matches
the server’s name in the SSL certificate, and (iii) thepro-
tectionrequirement field of this credential entry matches
the protection type of the TCP data connection between
the client and server. The order of the steps ensures that
invalid authentication requests are discarded as soon as
possible, while the lightweight mechanism that correlates
incoming requests with outgoing connection data thwarts
computing power based DoS attacks.

i. Correlating client request:To validate (i), the client
maintains one hash-table that stores all active TCP con-
nections that were initiated by the client system. Our ser-
vice monitors the setup and release of TCP connections
using the packet capture library for Windows [12]. To
maintain the table, the service starts a separate thread for
each network interface that has an IP address (client IP)
and compiles and sets the PCAP packet filter rule detailed
in Figure 5.

(((tcp[tcpflags]&(tcp-fin|tcp-rst)!=0) or
((tcp[tcpflags] & tcp-syn!=0) and

(tcp[tcpflags] & tcp-ack=0))
)
and (src ’client IP’))

Fig. 5. PCAP Filter Rule

The authentication service considers that the client has
initiated a TCP connection to the server if the TCP con-

4

nection hash table contains an entry with the client source
port as stated in the credential request and destination IP
address equal to the server IP address. This client port
number is not used for authentication purposes, but to
distinguish between multiple client requests to the same
server. On multi-user operating systems, the client port
number of the request could be used to determine the user
identifier under which the client application is running;
this could be used to determine whether this user identifier
is the one under which the client is running. Requirement
(i) ensures that there is always a correlated client request
to a server credential request.

ii. Matching credential entry: We validate (ii) by
searching the profile data for a credential entry whose
server or proxy field matches the server name of the SSL
certificate that was used by the server to establish the SSL
connection to the client authentication service. Using the
client port number as submitted within the credential re-
quest, the service can find the server port number of the
client connection in the TCP hash-table (see validation
step i) and the client application. Thus, our solution can
distinguish credential requests for multiple client appli-
cations accessing the same server. Additionally, we can
assume well-known port numbers to determine the ser-
vice entry of the requested credential by looking up the
server port in the TCP connection data. If this does not
unambiguously determine a credential, the service asks
the user which entry to use, i.e., which user identity to au-
thenticate. As an enhancement, the server certificate can
be checked against a local or remote certificate revocation
list. Our authentication service lends itself as well to us-
ing client certificates for authentication. In this case, the
SSL server authentication required for an authentication
request is extended to include an SSL client authentica-
tion based on the related client private key, and to pass
the client certificate of the public key instead of password
credentials to the server.

iii. Matching protection policy:We validate (iii) by
retrieving additional connection characteristics from our
TCP connection hash table. Our prototype supports the
protection policies ANY and SSL. If the protection field
reads SSL, our authentication service validates whether
the outgoing TCP connection that proves the correlation
in requirement (i) is using SSL. The service currently sup-
ports the validation of SSL for HTTP services simply by
checking for the well-known HTTPS server port (443).
This is a heuristic that shall protect from accidentally us-
ing HTTP instead of HTTPS, and not from more sophisti-
cated attacks.

D. User Feedback Control

Before any credential reply is sent to the server, the au-
thentication client checks whether the user needs to ac-
knowledge the authentication. This allows fine-grained
user control regarding the release of credentials. The
client offers three interaction levels to its user: Low,
Medium, and High. An interaction level set to Low indi-
cates that the user asks the service to autonomously au-
thenticate the user if possible; i.e., if credential entries
for a requesting service are unambiguous. The High in-
teraction level indicates that the user wants control over
all authentications that are handled by the service. Each
time a credential request is received, the user is prompted
regarding whether or not the credentials shall be sent to
the server; the user is thereby additionally informed about
unauthorized requests. The Medium interaction level en-
ables user feedback and confirmation for the initial au-
thentication against a service. Subsequent authentica-
tions within the same session for the same service are au-
tonomously satisfied by the client authentication service.
A session ends when the TCP connection (with which the
initial request was correlated) ends. For Web browsers
using multiple TCP connections to access a Web server,
experience shows that it is more appropriate to relate the
end of the session with the exit of the client application,
the user’s sign-out, or a global timeout (whichever occurs
first) rather than with the end of individual TCP connec-
tion.

Each credential entry in the profile can overwrite these
GUI settings by including aninteractionfield in the en-
try. Thus, the decision whether to pop up a user con-
firmation window before replying to a credential request
is done based on the matched credential (dominant) and
on the GUI setting. Independently of the user interaction
level, the activity indicator at the upper left corner of the
authentication GUI visualizes the processing of creden-
tial requests by our client authentication service (see Ap-
pendix I, Figure 6).

The authentication client is programmed in C and com-
prises about 1600 lines of code, including the GUI, the
client authenticator, and the handlers for the credential
vault. We implemented the client as an application for
the Windows 32-bit architecture (Windows 2000, Win-
dows XP). We use standard Microsoft libraries [13] and
the Packet Capture (PCAP) library for Windows operat-
ing systems [12]. Our prototype processes user identities
and passwords as user credentials, and it can be easily ex-
tended to include certificates and one-time passwords.

5

IV. EVALUATION AND PERFORMANCESTUDIES

In this section, we evaluate the proposed authentication
solution. The performance objectives that we consider are
security, overhead, compatibility, and ease of use.

A. Security

Our security goal is that credentials (c) are released
(Rel) to authorized servers only. A server (s) is autho-
rized (A) regarding a request (r) if and only if it has a
client request pending that requires authentication and if
its identity is proven. The released credentials are those
that are found (F) in the users profile for this server and
request. They are released only if the user approves (UA)
to release respective credentials. Formally, our design and
implementation ideally enforces:

Rel(c, s) → A(r, s) && (c == F (r, s)) && UA(c)

We do not try to satisfy the↔, i.e., the reciprocal relation-
ship, because it is not possible to prevent situations where
all assertions are fulfilled and still a reply cannot be sent.
For instance, this could happen if the client memory or
CPU is exhausted or the network connection fails. Thus,
it is not possible to guarantee availability of service. How-
ever, proving the above assertion holds in our implementa-
tion merely requires an analysis of the flow control of our
application (see Section III-B). Therefore, it is more inter-
esting to examine whether the predicates reflect the real-
world assumptions, e.g., thatA(r, s) holds if and only if a
server is actually authorized. For this reason, we focus on
analyzing the implementation of the predicates when we
evaluate possible limitations of our solution with regard
to the above assertion in the context of attacks that exploit
vulnerabilities of (1) the architecture, (2) the implementa-
tion, (3) the network, and (4) the client system.

1. The architecture:Correlating a client’s service re-
quest with a server’s credential request (this is determin-
ing the A(r, s) predicate) constitutes a major problem
when trying to separate service and authentication. Our
solution solves this problem by ensuring that the client
has initiated an open TCP connection to the server (for
the initial request). Additionally, the server identity is
verified using the SSL certificate that the server uses to
authenticate. Ideally, we would like to also verify that the
client request actually requires authentication. However,
our service cannot always read (and thus verify) the client
request because it might be protected by SSL or other end-
to-end encryption. In this case, our authentication service
validates the remote SSL endpoint; actual authentication
requests are only accepted if they originate from there.
Users are made aware that the authentication client can-
not validate whether authentication is necessary for this

request and that they must decide whether to go ahead
with the authentication or not. Even in this case, a valid
server must supply the client port number of the open con-
nection in order to “get through” to the user. Neverthe-
less, with our solution this is the only restriction, while
existing models (see Section V) cannot even securely de-
termine if there is an initial client request for the server
that demands authentication. To make sure that the user is
aware of the authentication (and of the following authen-
ticated actions), our service provides both a permanent
indicator and a user approval option. As the credential
exchange is protected by client-server authenticated and
encrypted SSL, the released credentials can be disclosed
by the server only. Some of the above correlation consid-
erations could be overcome by having the client authenti-
cation service in the data path between the client and the
server. However, this would destroy the client-server end-
to-end relationship, especially by using SSL or TLS, and,
additionally, would make the client authentication service
platform-specific, which our solution avoids by providing
generality and broad applicability.

2. The implementation:A major known implementa-
tion problem is that of programming errors, which can
lead to security breaches. The service implementation
comprises about 1600 lines of code, not including the
shared libraries. Extensive studies showed [14] that even
in well-tested code, there remain about 3-8 programming
errors per 1000 lines of code. Hence, we must assume
that any implementation of the size of our prototype may
include multiple errors. However, it is more effective to
evaluate and securely implementone single authentica-
tion service as the proposed solution, rather thanall dif-
ferent specific authentication clients for applications and
network management services needing authentication cre-
dentials today (HTTP, Telnet, Secure Shell).

3. Network:We protect credentials when they are trans-
mitted by SSL, independent of the protection of the ser-
vice data connection (e.g., HTTP, telnet). When authen-
ticating the server using the server’s trusted SSL certifi-
cate (and the ASCII name given therein), our service will
not be deceived by spoofing or DNS attacks—this ensures
that theF (r, s) predicate holds. Our service can addition-
ally check certificate revocation lists before authorizing a
server. However, our solution is susceptible to denial of
service attacks by any server because setting up the SSL
connection requires CPU processing power for public key
authentication. We mitigate this risk by validating that the
client has an outgoing connection to a server before going
through the SSL authentication for this server’s credential
request.

4. Client system:The credential vault is represented by

6

a flat encrypted file. We use the Triple-DES algorithm and
a 128-bit key that is derived by hashing the sign-in user
identity and password (optionally including a salt value).
This file can be stored on a USB token and accompany
the user. The hardware token can be write-protected by a
hardware switch, which protects against integrity attacks.
Additionally, we can store the authentication client appli-
cation on the USB token as well because the code size of
our implementation is rather small. Therefore, the token
content cannot be corrupted. Noteworthy is also that a
hardware token need only be attached to the client system
when the authentication service is used and this restricts
the time frame for disclosure attacks.

The authentication service stores multiple credentials
within the authentication client application. This may
seem attractive to attackers. However, compared to
network-centered approaches that store credentials for
hundreds of users, our service is of small interest to at-
tackers. Nevertheless, users can mitigate the exposure of
the service by using multiple profiles (such as @work and
@home, or @MPLScore and @MPLSedge) allowing
them to make only certain credentials available depend-
ing on the context.

Finally, the credentials are stored in clear-text in the
main memory between sign-in and sign-out. If they are
swapped out onto persistent memory, they are easily ex-
posed. We are currently exploring possibilities to mark
the memory that holds the credentials as non-swappable
or to protect memory that is swapped out [15]. We also
catch signals sent to the authentication client and the re-
spective signal handlers overwrite the memory area hold-
ing the clear-text credentials before exiting or at sign-out
time—this does not help in case of power failures or pur-
posely manipulated client systems.

B. Overhead

The main benefit of our solution resides in its support
to facilitate and secure the credential management for the
user. In this section our goal is to additionally determine
the cost of using the proposed service in terms of user per-
ception as compared to the current legacy. We first qual-
itatively analyze the service overhead in terms of extra
computation and communication required by the system.
These two performance metrics reflect the time-impact of
using the service from the user’s perspective. Based on
this study we have proceeded to test the prototype sys-
tem. We provide here the most relevant performance re-
sults that we have obtained.

Qualitative Analysis.The first component of overhead
is the additional processing required by the client authen-
tication service. The contribution of this overhead is rela-

tively small, since the client authentication service is only
active when a service makes a credential request, or when
the client sets up outgoing TCP connections. When han-
dling a credential request, the client authentication service
accepts the SSL connection, checks the server certificate,
parses the request, looks up appropriate credentials, veri-
fies that there is an active TCP data connection, and then
optionally asks the user if the credentials should be sent.
Accepting the authenticated SSL connection contributes
most to the overhead introduced by our solution. For le-
gitimate requests, checking for credentials and checking
for active connections is rather fast even for a large num-
ber of credentials and active connections (e.g., in the case
of network management) as binary search algorithms per-
form search with negligible (fractions of millisecond) re-
sponse time and caches can be added as needed. Moni-
toring the outgoing TCP connections requires a relatively
simple PCAP filter, and the rate of new outgoing connec-
tions is generally low when they are opened as a result of
a user action (e.g., a new telnet connection or browsing to
a new web page). Even in case of software originated au-
tomatic connection establishment (e.g., in network man-
agement professional software services) the PCAP filter
has no impact in the service performances as it helps the
outgoing connection monitoring.

The second overhead required by our solution is the ad-
ditional communication between the server and the client.
The largest fraction comes from the establishment of the
SSL connection from the server to the client and from the
time required to make the credential request over this con-
nection. To reduce the impact of the connection set-up,
the SSL connection can be cached and later resumed or
left in place for subsequent credential requests. For initial
authentication, most protocols (e.g. telnet, HTTP) require
a round-trip message for credential requests like the pro-
posed authentication does. Note that unlike our solution,
for subsequent access requests, protocols like HTTP may
include credentials in the HTTP header such that addi-
tional round-trip messages for credential requests are not
needed again. A similar result can be achieved for au-
thentication in case of HTTP traffic if servers set a cookie
on the client side, via the data stream, with an encrypted,
time-limited credential for the user after the initial authen-
tication (c.f. [16]).

Performance Testing Environment.We present below
the performance results of our service using HTTP traf-
fic. The results obtained by using telnet traffic, which are
even easier to generate as there is no HTTP interface in-
volved, show similar performances. The server is a 2 GHz
Pentium 4 (Windows 2000) workstation running the IBM
HTTP Server. The client system is a 1.2 GHz Pentium III

7

(Windows XP) IBM Thinkpad running a Netscape 4.79
HTTP client. We enabled the authentication for the server
by using a server-side HTTP proxy. All machines where
lightly loaded on the same 100 Mbps Ethernet segment.
The measurements were taken using IBM Page Detailer
and reading the time between the HTTP request and the
reception of the related HTTP response on the client.

Initial Authenticationcounts the time needed for the
first authentication within a session after a user has re-
quested access protected data. Initial authentication for
the legacy HTTP case includes the time for the client data
request, the related server authentication request (HTTP
401 - Authorization Required), the User Response Time
(URT) for entering the user identity and password for this
service, the sending of the user identity and password to
the server, and the final content response of the server.
Initial authentication for the case of our solution includes
the time for the client data request, the related server cre-
dential request (over SSL), the reply of the credentials to
the server (over SSL), and the final content response of
the server. Table I compares the performance of initial

Authentication Method Time (ms)
Legacy 24 + several seconds of URT

Our Service 92

TABLE I
PERFORMANCEINITIAL AUTHENTICATION

authentication for the legacy case and for our service. It
shows that the legacy authentication requires about 24 ms
at which the variable user response time (of the order of
seconds) is to be added. In the case of our proposed solu-
tion, the initial authentication requires only 92 ms in all,
i.e., including the additional protection of the credential
exchange via client-server authenticated SSL using 1024
bit RSA key certificates. We used the Low interaction set-
ting to avoid user confirmation prompts and related de-
lays. Given that the user response time to authentication
requests in the legacy case usually requires multiple sec-
onds, our result shows that our solution significantly im-
proves the initial authentication performance, while addi-
tionally enhancing the credential security.

Repeated Authenticationcounts the time required for
subsequent requests of access controlled data. Repeated
authentication for the legacy HTTP case includes the time
for the client data request (the browser includes the user
credentials automatically in the request) and the final con-
tent response of the server. Repeated authentication using
our solution includes the time for the client data request,
the related server credential request (over resumed SSL),

the reply of the credentials to the server (over resumed
SSL), and the content response of the server. Table II com-

Authentication Method Time (ms)
Legacy 12

Our Service 52

TABLE II
PERFORMANCEREPEATEDAUTHENTICATION

pares the performance of repeated authentication for the
legacy case and for our service. It shows that the legacy
authentication requires about 12 ms. In the case of our ser-
vice, the repeated authentication requires about 52 ms and
includes additional protection of the credential exchange
via client-server-authenticated SSL (resuming the former
SSL session). However, the absolute response time of 52
ms is insignificant from a human perspective.

In conclusion, using our solution brings its creden-
tial management benefits at a very low time cost for the
user in case of repeated authentication (which can be fur-
ther reduced for HTTP by using authentication-cookies as
sketched in the next section) and improves the response
time substantially for the initial authentication.

C. Interoperability and Compatibility

In this section we focus on compatibility issues when
our service interacts with existent systems. Thus, we first
describe backward compatibility and migration from ex-
isting authentication techniques. Next, we consider com-
patibility with NAT routers and firewalls. Finally, we de-
scribe the zero interaction repeated authentication solu-
tion for HTTP(S) connections.

Backward Compatibility and Migration Path.It is im-
portant to note that our service does not use the client’s
data connections for its signaling. That is, the com-
munication for the client applications does not require
any modification when using the proposed authentication.
This fact allows seamless backward compatibility and a
straightforward migration path as described by the two
following scenarios.

Let us first consider a legacy authentication client con-
necting to our server. When the client application requests
restricted content, our server will issue an authentication
credential request specific to our service. Since the client
does not support our solution, there will not be a client
authentication service listening on a well-known port on
the client, so the server will receive a connection-refused
response. In this case, the server reverts to the legacy cre-
dential request over the data connection and manual au-
thentication follows as supported by the existent system.

8

Let us now consider the case when a client using our
authentication application communicates with a legacy
server that doesn’t support our solution. When the client
application communicates with the server application, the
server will issue its legacy credential requests over the
data connection. Since the client application is not modi-
fied and our service does not modify the data connection,
the legacy credential request will be received by the client
application and satisfied as it is currently supported, e.g.,
requiring the user to manually provide userid and pass-
word. In this case the user cannot profit from the features
of our service.

If the server cannot be controlled to send the credential
request to the port specific to our service—e.g., our ser-
vice is operated by an ISP that does not have control over
third party servers—we enable the clients to make use of
our service by introducing a proxy on the data stream be-
tween the client and the server. This proxy passes mes-
sages back and forth between the client and the server on
the data connection, passively watching the data stream
for a legacy credential request from the server. Rather
than passing the legacy request to the client application
over the data connection, the proxy issues a credential re-
quest specific to our solution and then forwards the cre-
dentials to the server using the legacy authentication for-
mat. If the server does not accept the provided creden-
tials, the proxy passes the legacy credential request on
to the client application through the data connection re-
sulting in legacy user authentication; otherwise the proxy
passes results from the server to the client and discards the
legacy credential request from the server. This approach
requires an extension for our service to identify and han-
dle the legacy authentication in the proxy. Additionally,
any SSL connection on the data stream terminates at the
proxy. We have fully implemented and successfully tested
these compatibility and migration options for our authen-
tication prototype using a simple extended HTTP proxy
java application and the Apache Web server [17] on the
local IBM network. Our authentication service only re-
quires that the authenticating party can reach the client
and its authentication port. Thus, it supports Mobile IP as
long as this client port is not blocked by a visited network.

NAT and Firewall Support.The current implementa-
tion of our authentication solution requires the server to
initiate the request for credentials and set up a connec-
tion to the client system. This has technical drawbacks if
used in an environment where network address translation
(NAT) [18] is used or where firewalls block incoming traf-
fic. Such a situation occurs if a user works remotely be-
hind a router that offers NAT to enable multiple clients to
share a single IP address—usually this is necessary when

operating multiple clients connected by a single broad-
band cable or DSL connection. In these settings, it is pos-
sible to use port forwarding to expose our client authenti-
cation service for one machine behind the NAT. This port
forwarding can be automated using NAT traversal with
UPnP [19] in the case of NAT devices. Our authentication
also works via VPN connections to remote clients with-
out enabling port forwarding on the router since the server
credential request is tunneled through the NAT router with
IPSEC.

Zero Interaction Repeated Authentication.To optimize
repeated authentication, a server aware of our service may
embed credentials after the initial request into a protected
cookie [20] in the HTTP response and store it this way
on the client. The credentials are protected by using a
random symmetric encryption key and adding this key—
encrypted with the public key of the server certificate—to
the cookie. Future client requests will include this cookie
and the server can retrieve the protected information on
demand from the cookie instead of requesting it from the
client authenticator again. This extension only works for
HTTP and Web Browsers supporting cookies.

D. Ease of Use

Experience has shown that one of the key-points to ren-
der a service successful, beside powerful technical fea-
tures, is the ease-of-use. As we have seen, our solution is
straightforward, does not introduce additional cost from
the user perception point of view, and is easy to integrate
with existing systems. Additionally, the proposed service
allows users to off-load credential management and au-
thentication handling to the client authentication service.
Users store their credential profile in the vault and need
only to update credentials if they change. If no creden-
tial information is found, the authentication service pops
up a window and asks the user explicitly for authentica-
tion credentials; a checkbox allows the user to decide if
these credentials are permanently added to the credential
vault. Aneditoption in the graphical user interface of the
authentication service, c.f. Figure 6, allows users to edit
the protected vault, to delete, or change entries manually.
A syntax check ensures that the structure of the file is not
accidentally invalidated. Our authentication solution also
permits the user to choose the level of involvement in au-
thentication among three levels of interaction (user pref-
erences). Note that specific interaction settings within a
credential entry can be used to override the default settings
for very sensitive or very insensitive services. Finally, the
vault and the client authentication service program can be
stored on the very convenient and easily accessible USB

9

token (or other pervasive device) so that they can accom-
pany a mobile user and be used to provide secure authen-
tication.

V. RELATED WORK

In this section we discuss some of the features of the
most known authentication models proposed in the litera-
ture and relevant to the issues considered in this paper. We
first give a brief description of the model, present its par-
ticular limitations, and then compare to how our service
addresses them.

The Factotum user agent in Plan 9 [11] addresses se-
cure storage of credentials and considers flexible, pro-
tected authentication for services. Factotum requires the
authentication services to be integrated into the operating
system, the client applications, as well as into the server
applications. For this reason, Factotum’s security depends
on changing the operating system and specific libraries
that support the client applications, which is impractical
for most deployed operating systems. As mentioned be-
fore, our authentication service does not require changes
to the operating system or client applications making use
of its service.

Microsoft Passport [7] is a third-party cookie-based
technology that allows automatic, repeated authentication
for applications using the HTTP protocol. Passport con-
trols highly sensitive information about a large number of
users including their buying habits, preferences, account
information, and credibility. It relies on a centralized
architecture and, therefore, it is inherently vulnerable to
concerted attacks that can use the system to compromise
or manipulate confidential information of its users with-
out consent or knowledge of those users. Users must fully
trust Microsoft Passport to handle their information (pri-
vacy, credentials) in accordance with the user’s wishes.
The users must additionally trust Microsoft to protect the
Passport infrastructure against strongly motivated attacks
(see [21] for a description of vulnerabilities in Passport
and the corresponding Wallet service) aimed at the valu-
able information of users and merchants. Liberty Al-
liance [8] is similar to Microsoft Passport. However, it
allows groups of merchants to share federated user infor-
mation reducing thereby the risks associated with a single
repository. Our service originality consists in allowing au-
tomatic secure authentication while keeping the informa-
tion totally decentralized and fully under the control of the
user.

Zero Interaction Authentication [22] offers a token-
based single sign-on solution for protecting user data on
devices such as laptops. In this model, the files are stored
encrypted on a laptop, and the user’s authentication token

provides decryption authority for laptops bound to the to-
ken once the user has authenticated with the token. The
design of ZIA is focused on protecting a user’s sensitive
content from accidental disclosure with proximity being a
key part of the access control. ZIA enhances user-to-client
authentication, whereas our solution enhances client-to-
server authentication. Our service can use ZIA to prevent
client-hijacking due to forgotten authentication sign-outs.

Shibboleth [23] is an open, standards-based solution
to the needs for organizations to exchange information
about their users in a secure and privacy-preserving man-
ner. This information exchange typically determines if a
person using a web browser has the permissions to ac-
cess a target resource based on information such as be-
ing a member of an institution or a particular class. Like
Passport, this model places an intermediate party between
services and users; users must trust this intermediate party
regarding their privacy, and services must trust this inter-
mediate party to authenticate users. Our solution enables
users to keep control over their private data without need
for intermediaries.

The Security Assertion Markup Language (SAML
[24]) is an XML-based [25] security standard for exchang-
ing authentication and authorization information that is
likely to be used to encode information that is exchanged
between Passport-like servers and merchants or clients. In
our case, SAML offers one possibility for encoding infor-
mation exchanged between the servers and clients.

The Simple Authentication and Security Layer
(SASL [26], [27]) specification describes how to integrate
authentication support to connection-based protocols.
The authentication provided by our solution can be
negotiated as a so-called EXTERNAL SASL authenti-
cation mechanism matching the requirements specified
for SASL similarly to the methods exemplified in [28].
Having our solution available as an EXTERNAL SASL
authentication mechanism, the server would directly use
our service to determine the client identity and whether
the client is authorized [26].

Kerberos [29] allows client applications modified to
work with Kerberos the ability to have automated, re-
peated authentication to a particular service through the
use of the Kerberos ticket. Our solution is orthogonal
to Kerberos services because it supports the authentica-
tion of users to the Kerberos user agent, whereas Kerberos
supports the authentication of client applications to server
applications. The service we propose mitigates the risk of
offline password guessing attacks against Kerberos tick-
ets [30] by enhancing the likelihood of strong passwords.

The Identification Protocol [31] provides a means to
determine the identity of a user of a particular TCP con-

10

nection. Given a TCP port number pair, it returns a char-
acter string which identifies the owner of that connection
on the client side to the server system. This mechanism
has been used, for example, by FTP servers to get addi-
tional information about users that log into the system.
The identification protocol is not used as a secure way to
authenticate clients, rather as a supplement to the existing
client-server password authentication. The proposed ser-
vice uses a similar call-back mechanism. However, our
solution provides a complete call-back mechanism for the
client-server authentication, and, in addition, is secure.

VI. CONCLUDING REMARKS

We considered the problem of securely managing the
authentication credentials in the context of the security is-
sues of applications and communication networks. Au-
thentication requirements of newly emerging services and
vulnerabilities regarding denial-of-service attacks against
centralized credential servers have motivated our develop-
ment of a secure client-managed authentication service.

We introduced a client-based solution that keeps the
users in control of their credentials and, thereby, avoids
the user-unaware credential manipulation risks of central-
ized models. The proposed service maintains a database
of user identifiers, credentials (e.g., passwords), and
server information through which the client assists in au-
thenticating users and applications. We described our au-
thentication service, which securely correlates the server
credential requests with the established data connections
and validates the server’s identity before authorizing any
credential release. The service we propose allows a three
level user control of the credential release. It does not
require changes to the operating system or client applica-
tions making use of its service, and provides a common,
consistently high protection level (SSL) for credential ex-
changes.

We implemented our service to support HTTP-based,
HTTPS-based, and Telnet-based services, which account
for most interactive Internet traffic today. The service can
be extended to support local applications, such as SSH or
Kerberos user agents, as well; these applications can be
adapted to transform their local interactive user authen-
tication requests into our authentication. In Linux, for
instance, our solution naturally fits into the pluggable au-
thentication module (PAM [32]) abstraction and through it
can be made accessible to any PAM-enabled application.

We presented sample experimental results characteriz-
ing the performance of the proposed service and showed
that our fully implemented prototype performs well in
terms of overhead from the user perception point of view,

integrates seamlessly with existing systems, is highly se-
cure and convenient to use. Our service supports users in
securely storing and maintaining their credentials for dif-
ferent types of applications. An immediate extension to
this work will be the integration of non-password based
credentials and the integration of our service into the con-
text of pervasive devices. Finally, integrating our au-
thentication into the Simple Authentication and Security
Layer (SASL) framework as sketched in Section V en-
ables seamless invocation and broad use of our solution
from any SASL-enabled client-server application.

ACKNOWLEDGMENT

The authors would like to thank Dinesh Verma, Suresh
Chari, and Alan Bivens for helpful discussions of our ar-
chitecture, useful comments and suggestions.

APPENDIX: AUTHENTICATION SERVICE GUI

The Authentication Service GUI is implemented in C.
The design is straightforward, containing six elements as
described below:

1. 4.

3. 6.2.

5.

Fig. 6. The Authentication Service Graphical User Interface

1. Profile indicating a specific collection of credential
entries that determines the context in which the user wants
to operate (e.g., related to work, or personal accounts;
to MPLS core routers, or MPLS edge routers, or ATM
switches, etc.).

2. Edit Profile to fill in the details (e.g., userid, pass-
word, server, protection, etc. cf. Section III-A) of the
credentials for a given profile.

3. User Interaction to choose the appropriate level of
interaction as explained in Section III-D.

11

4. Sign In - Sign Out to start - stop the authentication
client and, thereby, the service.

5. Activity Indicator to visualize the processing of cre-
dential requests by the client authentication service.

6. Exit the application GUI.

REFERENCES

[1] Robert Morris and Ken Thompson, “Password security: A case
history,” CACM, vol. 22, no. 11, pp. 594–597, 1979.

[2] David C. Feldmeier and Philip R. Karn, “UNIX password secu-
rity - ten years later,” inCRYPTO, 1989, pp. 44–63.

[3] Daniel V. Klein, “‘Foiling the cracker’ – A survey of, and im-
provements to, password security,” inProceedings of the second
USENIX Workshop on Security, Summer 1990, pp. 5–14.

[4] Philip Leong, “UNIX password encryption considered unse-
cure,” in USENIX Conference Proceedings, January 1991, pp.
269–280.

[5] Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H.
Saltzer, “Protecting poorly chosen secrets from guessing at-
tacks,” IEEE Journal on Selected Areas in Communications, vol.
11, no. 5, pp. 648–656, 1993.

[6] “Virus description for BAT.Mumu.A.Worm,” June 2003,
http://securityresponse.symantec.com/ avcenter/ venc/ data/
bat.mumu.a.worm.html.

[7] Microsoft Corporation, “.NET Passport 2.0 Technical overview,”
http:// www.microsoft.com/ myservices/ passport/ technical.doc,
October 2001.

[8] “Liberty alliance project,” 2004, http:// www.projectliberty.org.
[9] GAIN Publishing, “Gator eWallet,” 2004, http://

www.gator.com/home2.html.
[10] Zero-Knowledge Systems, “Freedom security and privacy suite,”

2002, http:// www.freedom.net/ products/ suite.
[11] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quin-

lan, “Security in Plan 9,” in11th USENIX Security Symposium,
August 2002.

[12] L. Degioanni et. al., “Windows packet capture library,”
http://winpcap.polito.it/.

[13] “Microsoft developer network (msdn) library,”
http://www.msdn.microsoft.com/.

[14] T. Drake, “Measuring software quality: A case study,”IEEE
Computer, vol. 29, no. 11, pp. 78–87, November 1996.

[15] N. Provos, “Encrypting Virtual Memory,” in9th Usenix Security
Symposium. USENIX, 2000.

[16] J. Giles, R. Sailer, D. Verma, and S. Chari, “Authentication
for Distributed Web Caches,” in7th European Symposium on
Research in Computer Security (ESORICS), October 2002, pp.
126–145.

[17] “Apache project,” http://www.apache.org.
[18] P. Srisuresh and K. Egevang, “Traditional ip network address

translator (traditional nat),” January 2001, IETF RFC 3022.
[19] Microsoft Corporation, “Overview of network address transla-

tion in Windows XP,” http://www.microsoft.com/ WindowsXP/
pro/ techinfo/ planning/ networking/ nattraversal.asp, July 2001.

[20] K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos and don’ts of
client authentication on the web,” inThe 10th USENIX Security
Symposium. USENIX, August 2001.

[21] David Kormann and Aviel Rubin, “Risks of the Passport single
signon protocol,”Computer Networks, vol. 33, pp. 51–58, 2000,
http://avirubin.com/ passport.html.

[22] Mark Corner and Brian Noble, “Zero-interaction authentication,”
in ACM MOBICOM 2002. MOBICOM, September 2002.

[23] Internet2, “Shibboleth project,” 2004, http:// middle-
ware.internet2.edu/shibboleth.

[24] OASIS, “Security assertion markup language (SAML),” 2004,
http:// www.oasis-open.org/committees/security.

[25] World Wide Web Consortium (W3C), “Extensible markup lan-
guage XML,” 2002, http:// www.w3.org/XML.

[26] J. Myers, “Simple authentication and security layer (SASL),”
October 1997, IETF RFC 2222.

[27] C. Newman and J. Myers, “ACAP – application configuration
access protocol,” November 1997, IETF RFC 2244.

[28] IETF Charters, “Simple authentication and security layer
(SASL) working group,” http://www.ietf.org/ ietf/ sasl/ sasl-
charter.txt.

[29] J. Kohl and C. Neuman, “Kerberos network authentication ser-
vice (V5),” September 1993, IETF RFC 1510.

[30] Thomas Wu, “A real-world analysis of Kerberos password secu-
rity,” in Internet Society Network and Distributed System Secu-
rity Symposium, 1999.

[31] M. St. Johns, “Identification protocol,” February 1993, IETF
RFC 1413.

[32] “Pluggable authentication modules for linux,”
http://www.kernel.org/ pub/ linux/ libs/ pam/.

12

