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Abstract 

The paper describes a new conversation management approach 
which may apply to a class of mixed initiative information 
seeking applications. It employs an application-independent 
conversation model inspired by the conversation theory of Grosz 
and Sidner [1]. Based on the model, we design a multi-layer 
conversation manager which employs instance-based learning 
(IBL) to determine conversation plans, while performs 
modularized realization of each conversation move in a 
conversation plan. Because we adopt IBL to determine 
conversation plans, new conversation behaviors are easy to 
incorporate. Our realization of conversation moves is also 
application-independent. We illustrate this method with a real 
estate application.  

1. Introduction 

In an information seeking application, a conversation manager 
needs to perform many tasks such as assisting data retrieval and 
data presentation, assisting data exploration and navigation and 
handling exceptions. To accomplish these tasks, some 
conversation systems adopt finite-state machine (FSM)-based 
approaches [2] in which control decisions are encoded in the 
FSM itself. Since these approaches have exponential complexity, 
it’s hard for them to handle complex information seeking tasks. A 
similar but more flexible approach makes conversation decisions 
based on form filing [3]. The slots in a form specify information 
to be obtained to complete a task such as data query. Since 
dialogue complexity is limited by form design, sophisticated 
control strategies are hard to accommodate. Unlike the FSM and 
Form-based approaches, a plan-based conversation manager 
treats conversations as collaborative planning processes [4,5,6].    
Because plan-based approaches are founded on a model of 
planning and fulfilling communicative goals, they are more 
flexible than the FSM and form-based approaches. However, 
because it employs expensive AI planning and plan recognition 
techniques, the computation is combinatorially intractable 
[7,8,9]. 
 
In this paper, we propose a flexible and yet efficient conversation 
management approach that employs instance-based learning 
(IBL) to decide conversation plans while performs modularized 
realization of conversation moves. It employs a representation of 
conversation history, which records all the past and present 
conversation moves by all the participants.   Since other than the 
conversation history, there is no task representation in the 
conversation manager, this approach is flexible and domain-
independent. Unlike the plan-based approaches which employ 
computationally expensive AI planning techniques, we do not 
explicitly use planning. Instead, we use IBL as the main decision 
making  mechanism.   Since  IBL  is   a  pattern  based    machine  

learning method that makes current decisions based on previous 
experience, it is more efficient than the plan-based approaches. 
We also separate high-level decisions on deliberating 
conversation plans from detailed decisions on modelling 
conversation moves. This multi-layer design makes it easier to 
incorporate new conversation plans. Moreover, we model each 
conversation move in a separate function module. Because new 
function modules can be plugged in easily, this modularized 
design improves a system’s flexibility and extensibility.  
 
In the rest of the paper, we first introduce a testbed system called 
Real Hunter. Then, in section 3, we focus on the representation of 
the conversation history because it is the main information carrier 
for reasoning and passing conversation decisions. In section 4, we 
illustrate a multi-layer conversation manager. Finally, we discuss 
results and draw conclusions. 

2. The Application 

Our approach is embodied in a testbed system called Real Hunter, 
which helps users search residential real estate information 
through multimodal conversations. Figure 1 shows Real Hunter’s 
main components. A user can interact with Real Hunter using 
multiple input channels, such as speech and gesture. Then, the 
multimodal interpreter exploits various contexts to produce an 
interpretation that captures the meanings of user inputs. Based on 
the interpretation, the conversation manager decides how the 
system should act/react by generating a set of conversation 
moves. At the same time, it also updates the conversation history 
so that decisions can be passed to the next component. Upon 
receiving the conversation history, the presentation manager 
sketches a presentation draft that expresses the outline of a 
multimedia presentation. Based on this draft, the language and the 
graphics generator work together to author a multimedia blueprint 
which is then sent to a media producer to be realized. To support 
all the components described above, the information server 
supplies various contextual information, including domain data, a 
conversation history, a user model, and a presentation 
environment model. In the following, we focus on the 
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conversation manager. We start with the representation of 
conversation history.   

3. Conversation History 

Our conversation history representation is inspired by the theory 
of [1]. There are three types of node in the conversation history: 
conversation segment, conversation unit and conversation act. 
The conversation segment aggregates system and user turns into a 
hierarchical structure. Each segment has a segment purpose 
called segment intention. Each segment may have embedded sub-
segments. Each sub-segment has its own segment intention. In 
addition, each segment has one user unit and one system unit, 
corresponding to a user or system turn. Each user/ system unit has 
one or more user/system acts. Each user/system act has its own 
purpose called act intention. Each act also has an attention 
indicating participants’ current focus space. Attentions can be 
either a simple attention or a complex attention. A simple 
attention describes simple data items while a complex attention 
describes a set, list, relation, predicate, action, etc.   In addition to 
conversation nodes, the conversation history also includes a 
presentation draft and a presentation blueprint.  Both of them 
provide essential information for discourse interpretation, 
especially, reference resolution.   

4. Multi-layer Conversation Management 

The multi-layer conversation manager has two components: an 
IBL-based conversation strategy manager and a conversation 
move realizer (shown in Figure 2). The IBL strategy manager 
deliberates a conversation plan that contains a sequence of 
conversation moves. Each conversation move later will be 
realized by the conversation move realizer as either a 
conversation segment or act to be added to the conversation 
history or as an action to be performed by a transaction manager 
to update application data. Most conversation context information 
used for IBL learning and conversation move realization is from 
the conversation history. Other contextual information, including 
characteristics of the retrieved data (domain data), knowledge on 
the operation and presentation environment (presentation 
preferences), knowledge about the current user (user 
preferences), as well as parameters maintained inside the 
conversation manager (conversation status), play important roles 
in supporting decision making. In the following, we present the 
details of the IBL strategy manager and the conversation move 
realizer. 

4.1. IBL Strategy Manager 

To illustrate the instance-based strategy manager, we start with 
the instance representation. 

4.1.1. Instance Repository 

Each instance in the instance repository has a left hand side and a 
right hand side. The left hand side (the predicting part) is an 
abstraction of the characteristics of the current conversation 
context. It is represented as a vector of features. The right hand 
side (the predicted part) is a conversation plan, represented as a 
sequence of conversation moves. Both the predicting variables 
and the predicted conversation plans in an instance are 
application independent. 
 
Currently, for each predicting vector, we extract 33 features from 
the context. The majority are extracted from the conversation 
history, such as the status and the intention of the last 
conversation segment, the previous conversation segment  (follow  

 
a temporal link), and the parent conversation segment (follow a 
structural link). Similarly, we extract the status and intention 
from various system and user acts.  In addition to features from 
the conversation history, we also extract other contextual features 
that are useful for conversation decisions. For example, features 
from the user preference model include a user’s experience 
(whether he is a new or repeated user) and his knowledge about 
the application domain (whether he is familiar with the area). 
These user preference features can help the system decide 
whether a profile needs to be created (for a new user), or whether 
additional information needs to be presented (if the user does not 
have certain knowledge). Features from the data model include 
data volume (how many data entities have been retrieved) and 
data complexity (the width and depth of each retrieved entity). 
Both data volume and data complexity are used to determine 
appropriate presentation forms. For example, if a large amount of 
data is retrieved; the system may decide to use summarize instead 
of direct describe; or in stead of presenting information, it may 
decide to take the initiative and prompt the user for a specific 
piece of information. Features from the presentation manager 
include the system’s presentation capability and graphical 
summarization capability. For example, the system may choose to 
summarize only if either the graphics or the language generator is 
capable of creating a summary for a data set. The conversation 
manager also keeps track of a set of conversation parameters such 
as who has the initiative. One important criterion for selecting 
predicting variables is that they should be application 
independent. For example, instead of using domain attributes 
directly in the predicting vector, we extract domain independent 
meta information such as data volume and data complexity, so 
that the instance repository is domain independent. 
 
Typical conversation moves in the right hand side of an instance 
include NewSegment(SegIntention), NewAct(ActIntention) and 
Action(Type, Parameter). Currently, there are 34 segment 
intentions in Real Hunter, including DataAccess_Seek, 
DataManipulation_Sort, ViewManipulation_GoBack, Except-
ionHandling_UnknownInput, DataNavigation_BySpecifiedFea-
ture, and Communication_SocialMsg. There are also 24 act 
intentions in Real Hunter, including Present_Describe, Present-
_Summarize, Request_Inquire, Acknolledge_Appreciation. 
Typical action types include Save, Delete, Create, and Change-
Initiative. Even though the segment and act intentions described 
above are mainly designed for Real Hunter, all of them are 
applicable to general information seeking applications. In the 
following, we describe how instances in the instance repository 
are used in IBL-based strategy manager. 

4.1.2. Instance-based Learning 

Each time the conversation manager needs to make a decision, it 
first extracts the predicting variables from the current 
conversation context. To decide the best act/response strategy, the 
conversation manager searches through all the instances in the 
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instance repository. The one most similar to the current context is 
selected. To find the most similar instance in the instance 
repository, the conversation manager dynamically computes the 
distance between the current context vector and the instances in 
the instance repository. The final distance is a weighted 
combination of the distance of each predicting variable. The 
weight currently is assigned heuristically. For example, since the 
influence of discourse context decays overtime, the system gives 
more weight to the features from the current user act, system act, 
and conversation segment than those from the past history. We 
also assign higher weight to the segment intention than the act 
intention. This is because the current segment intention definition 
is more refined and more informative than that of act intention.  
 
Because we adopt a weighted measure for instance matching, no 
exact match is required, which decreases the demand for the 
number of distinct instances in the instance repository. The output 
of the strategy manager is a sequence of conversation moves. In 
the following, we describe how conversation moves are realized 
in Real Hunter. 

4.2. Modularized Realization of Conversation Moves 

IBL Strategy Manager selects a conversation plan that contains a 
sequence of conversation moves. A conversation move, however, 
is only an abstraction of what needs to be done. The details for 
executing each move are left for the move realizer to decide. For 
example, if a user does not know what to do, the strategy manager 
may decide to take the initiative and execute the following 
actions: “Action(ChangeInitiative, system) NewSegment(Na-
vigateBySpecifiedFeature) and NewAct(Request_Inquire)”. Upon 
receiving these decisions, the move realizer will decide among all 
the possible features, which feature is the best for navigation. We 
use a criterion similar to [10] in which conversation efficiency is 
the main concern.     To help a user reach his target the quickest, 
we select a navigation feature which maximizes the expected 
search space reduction. The expected search space reduction for a 
categorical variable is defined as: 

)1()(Pr).(Pr1 ∑ =−=
x if xfobxobR

i

 

where Prob(x) is the likelihood a user selects x when the system 
prompts for the value of feature fi  and Prob(fi=x) is the 
probability distribution of fi=x in the current search space. 
Because, Prob(fi =x) is a measure of the size of the resulting 
search space,   Rfi is the average size reduction if fi is prompted 
next. Similarly, the expected search space reduction for a 
continuous variable fi is:  
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where Prob(x) is the probability a user selects value x when the 
system prompts for the upper and lower end of a range, and 
Prob(fi <x), Prob(fi >x) is the probability that (fi <x) or (fi >x) in 
the current search space. Since the expected search space 
reduction is only related to the data distribution and a user’s 
preferences (represented as Prob(x) in formula (1) (2) and (3)), it 
is application and task independent.   
 
Once a navigation feature is selected, the system formulates a new 
conversation segment and act. The corresponding conversation 
history segment is shown in Figure 3 (in this figure, the navigation 
feature selected is AskingPrice).  The constraint markup in the act 
attention indicates that the constraint is  formulated by  the system  

 
(instead of the user). It is used for navigation (not for evaluation).  
Upon receiving this instruction, the presentation manager asks the 
language or graphics generator to request the value of the selected 
feature indicated in the entity name field in the constraint. 
 
In the above example, in order to formulate a new attention, the 
NewAct module employs an efficiency-based criterion to 
systematically select a navigation feature. In general, different 
criteria may be used to select the navigation feature. This 
modularized design limits the impact of switching to a different 
navigation approach to a single function module.   

4.3. An Example 

Figure 4 shows a segment of the conversation history 
corresponding to “User: show me ranches. System: Here are all 
the ranches”.  In this simple example, after the user submits the 
query “show me ranches”, the interpreter formulates a new 
conversation segment with a segment intention 
“DataAccess_Seek”. It also creates a new user unit. Inside the 
user unit, it adds one user act with an act intention 
“request_inquire”. The attentional space associated with the act 
is a simple attention. It represents a simple user query for a list of 
“SingleResidenceUnits with their styles equal to ranch”. The 
retrieved houses are stored in the result field.  Given this request, 
the strategy manager first extracts the predicting feature vector 
with the current conversation segment intention equals to 
“DataAccess_Seek” and user act intention equals to 
“Request_Inqure”. In addition, it also derives the segment, user 
act and system act intention and status from the past conversation 
history, data volume and complexity from the data server, user 
experience and user preferences from the user model, 
presentation capability from the presentation manager and 
conversation status from the conversation manager itself. This 
predicting feature vector is then used to match against the left 
hand side of all the instances in the instance repository. The one 
that is most similar to the current vector is selected and the 
conversation plan in the right hand side of the selected instance is 
used as the current response strategy. The conversation plan in 
the selected instance indicates that a system act 
NewAct(Present_Describe) should be formulated. Given this 
move, one function module, the NewAct module, is called to 
update the conversation history. It first decides how to formulate 
a system act attention.   In this case, the system act attention is a 
copy of the user act attention because the focus space has not 
changed.  Then   the    NewAct     module     decides    where      to  

Conversation Segment: 
   Status: active 
    Intention 
        Type:Navigation_By_Specified_Feature 
     System Unit: Role: ICP 
         Sysem Act 
           Act Intention: 
              Satus:Open Type: Request_Inquiry 
              Simple Attention 
    Onto:Concept 
                      MetaType:Constraint 
                      Constraint: 
                           EntityName: AskingPrice 
                           ConstraintMarkup 
                                   source: Formulated   
                                   role: To_Navigate  
                                   evaluate: False 
 
Figure 3: Conversation History for Navigation 
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add this system act in the conversation history. Since it is a direct 
response to the request in the last user unit, the new system act is 
inserted under the same conversation segment as the last user 
unit.  After receiving the updated conversation history, the 
presentation manager will decide how to formulate a multimedia 
presentation to describe the set of ranches in the result field in the 
system act attention. It will ask the language generator to 
formulate a sentence “Here are all the ranches”. It will also ask 
the graphics generator to show all the retrieved ranches on a 
map.  

5. System Implementation and Results 

The proposed approach has been implemented for Real Hunter. To 
test the usability and robustness of the system, we conducted a 
user study in which two pilots and six subjects were asked to use 
the system to complete two information seeking tasks previously 
tested in our Wizard-of-Oz study. Since the system does not have 
constraints on how a user should formulate a data query, the 
resulting conversations demonstrate diverse queries and 
navigation patterns. In the end, all the participants completed the 
tasks with an average of five turns. Based on their feedbacks, the 
users like the system’s flexibility in information access. For 
example, during the user study, the conversation manager can 
handle complicated user queries such as “show me houses with at 
least 2 acres of land in a school district with at least 95% high 
school seniors attending college last year”. In addition, the system 
is also capable of handling various exceptions such as unknown 
input, and incomplete input, conducting system initiated 
intelligent data navigation such as query refinement and query 
relaxation, and generating appropriate social messages such as 
solute, appreciation, commendation and disapproval. 

6. Related Work 

The instance-based strategy manager shares some properties with 
the conversational case-based reasoning (CCBR) framework. 
CCBR however, was proposed for problem solving tasks [11,12]. 
Unlike cases in CCBR systems which encode solutions to a task, 
such as equipment maintenance, instances in our system encode 
general conversation plans that are task-independent. As a result, 
our system can support sophisticated conversation behaviors 
which may apply to different information seeking applications. 
Various multi-layer conversation management architectures were 
proposed. [13,14,15]. However, their definitions for layers are 
quite different from ours. For example, [13] adopted a 2-layer 
conversation manager. At the bottom layer are conversation 
games, which typically encode adjacent pairs (such as request, 
reply). At the top layer, it employs planning to generate a plan 

with instantiated conversation games as its primitive steps. 
Unlike [13], we do not explicitly use planning. Instead, we 
employed IBL as the main decision making mechanism, which is 
more efficient than AI planning. Moreover, our conversation 
moves in a conversation plan are task independent, which are 
different from the instantiated conversation games in [13].     

7. Conclusions 

In this paper we propose a new conversation management 
approach which uses IBL to determine general conversation plans 
while employs modularized realization of conversation moves. 
Since it is mainly based on a general conversation model, it is 
more flexible than the FSM and form-based approaches. Since it 
relies on IBL to determine conversation plans, new conversation 
behaviours are easy to incorporate. It is also more efficient than 
the plan-based approaches. Both the IBL strategy manager and 
the modularized move realizer are domain and application 
independent. We have demonstrated the feasibility and flexibility 
of this approach using a real estate application. 
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