
RC23197 (W0404-162) April 28, 2004
Computer Science

IBM Research Report

A Multi-Layer Conversation Management Approach for
Information Seeking Applications

Shimei Pan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Multi-Layer Conversation Management Approach for
Information Seeking Applications

Shimei Pan

IBM T.J. Watson Research Center
19 Skyline Drive

Hawthorne, NY. USA 10532
Shimei@us.ibm.com

Abstract

The paper describes a new conversation management approach
which may apply to a class of mixed initiative information
seeking applications. It employs an application-independent
conversation model inspired by the conversation theory of Grosz
and Sidner [1]. Based on the model, we design a multi-layer
conversation manager which employs instance-based learning
(IBL) to determine conversation plans, while performs
modularized realization of each conversation move in a
conversation plan. Because we adopt IBL to determine
conversation plans, new conversation behaviors are easy to
incorporate. Our realization of conversation moves is also
application-independent. We illustrate this method with a real
estate application.

1. Introduction

In an information seeking application, a conversation manager
needs to perform many tasks such as assisting data retrieval and
data presentation, assisting data exploration and navigation and
handling exceptions. To accomplish these tasks, some
conversation systems adopt finite-state machine (FSM)-based
approaches [2] in which control decisions are encoded in the
FSM itself. Since these approaches have exponential complexity,
it’s hard for them to handle complex information seeking tasks. A
similar but more flexible approach makes conversation decisions
based on form filing [3]. The slots in a form specify information
to be obtained to complete a task such as data query. Since
dialogue complexity is limited by form design, sophisticated
control strategies are hard to accommodate. Unlike the FSM and
Form-based approaches, a plan-based conversation manager
treats conversations as collaborative planning processes [4,5,6].
Because plan-based approaches are founded on a model of
planning and fulfilling communicative goals, they are more
flexible than the FSM and form-based approaches. However,
because it employs expensive AI planning and plan recognition
techniques, the computation is combinatorially intractable
[7,8,9].

In this paper, we propose a flexible and yet efficient conversation
management approach that employs instance-based learning
(IBL) to decide conversation plans while performs modularized
realization of conversation moves. It employs a representation of
conversation history, which records all the past and present
conversation moves by all the participants. Since other than the
conversation history, there is no task representation in the
conversation manager, this approach is flexible and domain-
independent. Unlike the plan-based approaches which employ
computationally expensive AI planning techniques, we do not
explicitly use planning. Instead, we use IBL as the main decision
making mechanism. Since IBL is a pattern based machine

learning method that makes current decisions based on previous
experience, it is more efficient than the plan-based approaches.
We also separate high-level decisions on deliberating
conversation plans from detailed decisions on modelling
conversation moves. This multi-layer design makes it easier to
incorporate new conversation plans. Moreover, we model each
conversation move in a separate function module. Because new
function modules can be plugged in easily, this modularized
design improves a system’s flexibility and extensibility.

In the rest of the paper, we first introduce a testbed system called
Real Hunter. Then, in section 3, we focus on the representation of
the conversation history because it is the main information carrier
for reasoning and passing conversation decisions. In section 4, we
illustrate a multi-layer conversation manager. Finally, we discuss
results and draw conclusions.

2. The Application

Our approach is embodied in a testbed system called Real Hunter,
which helps users search residential real estate information
through multimodal conversations. Figure 1 shows Real Hunter’s
main components. A user can interact with Real Hunter using
multiple input channels, such as speech and gesture. Then, the
multimodal interpreter exploits various contexts to produce an
interpretation that captures the meanings of user inputs. Based on
the interpretation, the conversation manager decides how the
system should act/react by generating a set of conversation
moves. At the same time, it also updates the conversation history
so that decisions can be passed to the next component. Upon
receiving the conversation history, the presentation manager
sketches a presentation draft that expresses the outline of a
multimedia presentation. Based on this draft, the language and the
graphics generator work together to author a multimedia blueprint
which is then sent to a media producer to be realized. To support
all the components described above, the information server
supplies various contextual information, including domain data, a
conversation history, a user model, and a presentation
environment model. In the following, we focus on the

� � � � � ��� � 	 � �

 � � � � �

Multimodal
Interpreter

Presentation
Manager/

Coordinator

Graphics
Generator

Language
Generator

Speech
Recognizer

Gesture
Recognizer

Conversation
Manager

Media
Producer

request/
response speech

gesture

conversation
acts

 � �
 � � � � � 	 � �
� � � � �

graphics
speech
video
�

presentation
blueprint

Figure 1: RealHunter System Architecture

1

conversation manager. We start with the representation of
conversation history.

3. Conversation History

Our conversation history representation is inspired by the theory
of [1]. There are three types of node in the conversation history:
conversation segment, conversation unit and conversation act.
The conversation segment aggregates system and user turns into a
hierarchical structure. Each segment has a segment purpose
called segment intention. Each segment may have embedded sub-
segments. Each sub-segment has its own segment intention. In
addition, each segment has one user unit and one system unit,
corresponding to a user or system turn. Each user/ system unit has
one or more user/system acts. Each user/system act has its own
purpose called act intention. Each act also has an attention
indicating participants’ current focus space. Attentions can be
either a simple attention or a complex attention. A simple
attention describes simple data items while a complex attention
describes a set, list, relation, predicate, action, etc. In addition to
conversation nodes, the conversation history also includes a
presentation draft and a presentation blueprint. Both of them
provide essential information for discourse interpretation,
especially, reference resolution.

4. Multi-layer Conversation Management

The multi-layer conversation manager has two components: an
IBL-based conversation strategy manager and a conversation
move realizer (shown in Figure 2). The IBL strategy manager
deliberates a conversation plan that contains a sequence of
conversation moves. Each conversation move later will be
realized by the conversation move realizer as either a
conversation segment or act to be added to the conversation
history or as an action to be performed by a transaction manager
to update application data. Most conversation context information
used for IBL learning and conversation move realization is from
the conversation history. Other contextual information, including
characteristics of the retrieved data (domain data), knowledge on
the operation and presentation environment (presentation
preferences), knowledge about the current user (user
preferences), as well as parameters maintained inside the
conversation manager (conversation status), play important roles
in supporting decision making. In the following, we present the
details of the IBL strategy manager and the conversation move
realizer.

4.1. IBL Strategy Manager

To illustrate the instance-based strategy manager, we start with
the instance representation.

4.1.1. Instance Repository

Each instance in the instance repository has a left hand side and a
right hand side. The left hand side (the predicting part) is an
abstraction of the characteristics of the current conversation
context. It is represented as a vector of features. The right hand
side (the predicted part) is a conversation plan, represented as a
sequence of conversation moves. Both the predicting variables
and the predicted conversation plans in an instance are
application independent.

Currently, for each predicting vector, we extract 33 features from
the context. The majority are extracted from the conversation
history, such as the status and the intention of the last
conversation segment, the previous conversation segment (follow

a temporal link), and the parent conversation segment (follow a
structural link). Similarly, we extract the status and intention
from various system and user acts. In addition to features from
the conversation history, we also extract other contextual features
that are useful for conversation decisions. For example, features
from the user preference model include a user’s experience
(whether he is a new or repeated user) and his knowledge about
the application domain (whether he is familiar with the area).
These user preference features can help the system decide
whether a profile needs to be created (for a new user), or whether
additional information needs to be presented (if the user does not
have certain knowledge). Features from the data model include
data volume (how many data entities have been retrieved) and
data complexity (the width and depth of each retrieved entity).
Both data volume and data complexity are used to determine
appropriate presentation forms. For example, if a large amount of
data is retrieved; the system may decide to use summarize instead
of direct describe; or in stead of presenting information, it may
decide to take the initiative and prompt the user for a specific
piece of information. Features from the presentation manager
include the system’s presentation capability and graphical
summarization capability. For example, the system may choose to
summarize only if either the graphics or the language generator is
capable of creating a summary for a data set. The conversation
manager also keeps track of a set of conversation parameters such
as who has the initiative. One important criterion for selecting
predicting variables is that they should be application
independent. For example, instead of using domain attributes
directly in the predicting vector, we extract domain independent
meta information such as data volume and data complexity, so
that the instance repository is domain independent.

Typical conversation moves in the right hand side of an instance
include NewSegment(SegIntention), NewAct(ActIntention) and
Action(Type, Parameter). Currently, there are 34 segment
intentions in Real Hunter, including DataAccess_Seek,
DataManipulation_Sort, ViewManipulation_GoBack, Except-
ionHandling_UnknownInput, DataNavigation_BySpecifiedFea-
ture, and Communication_SocialMsg. There are also 24 act
intentions in Real Hunter, including Present_Describe, Present-
_Summarize, Request_Inquire, Acknolledge_Appreciation.
Typical action types include Save, Delete, Create, and Change-
Initiative. Even though the segment and act intentions described
above are mainly designed for Real Hunter, all of them are
applicable to general information seeking applications. In the
following, we describe how instances in the instance repository
are used in IBL-based strategy manager.

4.1.2. Instance-based Learning

Each time the conversation manager needs to make a decision, it
first extracts the predicting variables from the current
conversation context. To decide the best act/response strategy, the
conversation manager searches through all the instances in the

Presentation
Preference

Domain
Data

User
Preference

Conversation Plan

Move
1

Move
2

Move
N

….

Conversation Plan

Move
1

Move
2

Move
N

….

Conversation
Status

Conversation
Strategy Manager

Conversation
Move Realizer

Conversation Manager

Conversation History

…
Conversation Segment

System Act1 System Act N

Conversation History

…
Conversation Segment

System Act1 System Act N

Figure 2: A Multi-Layer Architecture

Transaction Manager

update

update

2

instance repository. The one most similar to the current context is
selected. To find the most similar instance in the instance
repository, the conversation manager dynamically computes the
distance between the current context vector and the instances in
the instance repository. The final distance is a weighted
combination of the distance of each predicting variable. The
weight currently is assigned heuristically. For example, since the
influence of discourse context decays overtime, the system gives
more weight to the features from the current user act, system act,
and conversation segment than those from the past history. We
also assign higher weight to the segment intention than the act
intention. This is because the current segment intention definition
is more refined and more informative than that of act intention.

Because we adopt a weighted measure for instance matching, no
exact match is required, which decreases the demand for the
number of distinct instances in the instance repository. The output
of the strategy manager is a sequence of conversation moves. In
the following, we describe how conversation moves are realized
in Real Hunter.

4.2. Modularized Realization of Conversation Moves

IBL Strategy Manager selects a conversation plan that contains a
sequence of conversation moves. A conversation move, however,
is only an abstraction of what needs to be done. The details for
executing each move are left for the move realizer to decide. For
example, if a user does not know what to do, the strategy manager
may decide to take the initiative and execute the following
actions: “Action(ChangeInitiative, system) NewSegment(Na-
vigateBySpecifiedFeature) and NewAct(Request_Inquire)”. Upon
receiving these decisions, the move realizer will decide among all
the possible features, which feature is the best for navigation. We
use a criterion similar to [10] in which conversation efficiency is
the main concern. To help a user reach his target the quickest,
we select a navigation feature which maximizes the expected
search space reduction. The expected search space reduction for a
categorical variable is defined as:

)1()(Pr).(Pr1 ∑ =−=
x if xfobxobR

i

where Prob(x) is the likelihood a user selects x when the system
prompts for the value of feature fi and Prob(fi=x) is the
probability distribution of fi=x in the current search space.
Because, Prob(fi =x) is a measure of the size of the resulting
search space, Rfi is the average size reduction if fi is prompted
next. Similarly, the expected search space reduction for a
continuous variable fi is:

)2()(Pr).(Pr1max ∫
+∞

∞−
− <−= xfobxobR ifi

)3()(Pr).(Pr1min ∫
+∞

∞−
− >−= xfobxobR ifi

where Prob(x) is the probability a user selects value x when the
system prompts for the upper and lower end of a range, and
Prob(fi <x), Prob(fi >x) is the probability that (fi <x) or (fi >x) in
the current search space. Since the expected search space
reduction is only related to the data distribution and a user’s
preferences (represented as Prob(x) in formula (1) (2) and (3)), it
is application and task independent.

Once a navigation feature is selected, the system formulates a new
conversation segment and act. The corresponding conversation
history segment is shown in Figure 3 (in this figure, the navigation
feature selected is AskingPrice). The constraint markup in the act
attention indicates that the constraint is formulated by the system

(instead of the user). It is used for navigation (not for evaluation).
Upon receiving this instruction, the presentation manager asks the
language or graphics generator to request the value of the selected
feature indicated in the entity name field in the constraint.

In the above example, in order to formulate a new attention, the
NewAct module employs an efficiency-based criterion to
systematically select a navigation feature. In general, different
criteria may be used to select the navigation feature. This
modularized design limits the impact of switching to a different
navigation approach to a single function module.

4.3. An Example

Figure 4 shows a segment of the conversation history
corresponding to “User: show me ranches. System: Here are all
the ranches”. In this simple example, after the user submits the
query “show me ranches”, the interpreter formulates a new
conversation segment with a segment intention
“DataAccess_Seek”. It also creates a new user unit. Inside the
user unit, it adds one user act with an act intention
“request_inquire”. The attentional space associated with the act
is a simple attention. It represents a simple user query for a list of
“SingleResidenceUnits with their styles equal to ranch”. The
retrieved houses are stored in the result field. Given this request,
the strategy manager first extracts the predicting feature vector
with the current conversation segment intention equals to
“DataAccess_Seek” and user act intention equals to
“Request_Inqure”. In addition, it also derives the segment, user
act and system act intention and status from the past conversation
history, data volume and complexity from the data server, user
experience and user preferences from the user model,
presentation capability from the presentation manager and
conversation status from the conversation manager itself. This
predicting feature vector is then used to match against the left
hand side of all the instances in the instance repository. The one
that is most similar to the current vector is selected and the
conversation plan in the right hand side of the selected instance is
used as the current response strategy. The conversation plan in
the selected instance indicates that a system act
NewAct(Present_Describe) should be formulated. Given this
move, one function module, the NewAct module, is called to
update the conversation history. It first decides how to formulate
a system act attention. In this case, the system act attention is a
copy of the user act attention because the focus space has not
changed. Then the NewAct module decides where to

Conversation Segment:
 Status: active
 Intention
 Type:Navigation_By_Specified_Feature
 System Unit: Role: ICP
 Sysem Act
 Act Intention:
 Satus:Open Type: Request_Inquiry
 Simple Attention
 Onto:Concept
 MetaType:Constraint
 Constraint:
 EntityName: AskingPrice
 ConstraintMarkup
 source: Formulated
 role: To_Navigate
 evaluate: False

Figure 3: Conversation History for Navigation

3

add this system act in the conversation history. Since it is a direct
response to the request in the last user unit, the new system act is
inserted under the same conversation segment as the last user
unit. After receiving the updated conversation history, the
presentation manager will decide how to formulate a multimedia
presentation to describe the set of ranches in the result field in the
system act attention. It will ask the language generator to
formulate a sentence “Here are all the ranches”. It will also ask
the graphics generator to show all the retrieved ranches on a
map.

5. System Implementation and Results

The proposed approach has been implemented for Real Hunter. To
test the usability and robustness of the system, we conducted a
user study in which two pilots and six subjects were asked to use
the system to complete two information seeking tasks previously
tested in our Wizard-of-Oz study. Since the system does not have
constraints on how a user should formulate a data query, the
resulting conversations demonstrate diverse queries and
navigation patterns. In the end, all the participants completed the
tasks with an average of five turns. Based on their feedbacks, the
users like the system’s flexibility in information access. For
example, during the user study, the conversation manager can
handle complicated user queries such as “show me houses with at
least 2 acres of land in a school district with at least 95% high
school seniors attending college last year”. In addition, the system
is also capable of handling various exceptions such as unknown
input, and incomplete input, conducting system initiated
intelligent data navigation such as query refinement and query
relaxation, and generating appropriate social messages such as
solute, appreciation, commendation and disapproval.

6. Related Work

The instance-based strategy manager shares some properties with
the conversational case-based reasoning (CCBR) framework.
CCBR however, was proposed for problem solving tasks [11,12].
Unlike cases in CCBR systems which encode solutions to a task,
such as equipment maintenance, instances in our system encode
general conversation plans that are task-independent. As a result,
our system can support sophisticated conversation behaviors
which may apply to different information seeking applications.
Various multi-layer conversation management architectures were
proposed. [13,14,15]. However, their definitions for layers are
quite different from ours. For example, [13] adopted a 2-layer
conversation manager. At the bottom layer are conversation
games, which typically encode adjacent pairs (such as request,
reply). At the top layer, it employs planning to generate a plan

with instantiated conversation games as its primitive steps.
Unlike [13], we do not explicitly use planning. Instead, we
employed IBL as the main decision making mechanism, which is
more efficient than AI planning. Moreover, our conversation
moves in a conversation plan are task independent, which are
different from the instantiated conversation games in [13].

7. Conclusions

In this paper we propose a new conversation management
approach which uses IBL to determine general conversation plans
while employs modularized realization of conversation moves.
Since it is mainly based on a general conversation model, it is
more flexible than the FSM and form-based approaches. Since it
relies on IBL to determine conversation plans, new conversation
behaviours are easy to incorporate. It is also more efficient than
the plan-based approaches. Both the IBL strategy manager and
the modularized move realizer are domain and application
independent. We have demonstrated the feasibility and flexibility
of this approach using a real estate application.

8. References

[1] Barbara J. Grosz, Candace L. Sidner (1986): “Attention,

intentions, and the structure of discourse”. Computational
Linguistics 12(3): 175-204.

[2] Michael F. McTear (1998) “Modeling spoken dialogues with
state transition diagrams: experiences with the CSLU toolkit”.
ICSLP

[3] David Goddeau, Helen Meng, Joe Polifroni, Stephanie Seneff,
and Senis Busayapongchai (1996) “A form-based dialogue
manager for spoken language applications”, pp 701-704, ICSLP.

[4] Barbara Grosz and Sarit Kraus (1996) "Collaborative plans for
complex group action." In Artificial Intelligence. 86(2), pp. 269-
357.

[5] Jennifer Chu-Carroll, Sandra Carberry (2000): “Conflict
resolution in collaborative planning dialogs”. Int. J. Hum.-
Comput. Stud. 53(6): 969-1015.

[6] Karen E. Lochbaum (1998): “A Collaborative Planning Model
of Intentional Structure”. Computational Linguistics, Volume
24, Issue 4.

[7] Tom Bylander (1991). “Complexity results for planning”. In
IJCAI, pages 274-279.

[8] D. Chapman (1987). “Planning for conjunctive goals”. Artificial
Intelligence, 32(3):333—377.

[9] Henry Kautz (1990). “A circumscriptive theory of plan
recognition”. In Cohen et al. Intentions in Communication. MIT
Press, Cambridge, Massachusetts

[10] Alicia Abella, Allen L. Gorin (1999): “Construct algebra:
analytical dialog management.” ACL.

[11] Aha, David W., Breslow, Len A., & Muñoz-Avila, Héctor.
(2000). “Conversational case-based reasoning”. Applied
Intelligence, 14, 9-32.

[12] Kalyan Moy Gupta (2001), “Taxonomic conversational case-
based reasoning”, Proc. of Int. Conf. on Case-Based Reasoning:
Case-Based Reasoning Research and Development, p.219-233.

[13] Ian Lewin (1998), Autoroute dialogue demonstrator. Technical
Report CRC-073, SRI Cambridge.

[14] Claus Zinn, Johanna D. Moore, and Mark G. Core (2002), “A 3-
tier planning architecture for managing tutorial dialogue”, Proc.
of ITS.

[15] David Traum (2002) “Ideas on multi-layer dialogue management
for multi-party, multi-conversation, multi-modal
Communication (Extended Abstract of Invited Talk)”, in
Computational Linguistics in the Netherlands 2001: Selected
Papers from the Twelth CLIN Meeting.

Segment:
Motivator:DataAccess_Seek

Initiator:User
Status:Completed

User Unit:
Role:ICP

System Unit
Role:OCP

User Act:
Intention:
Type:Request_Inquiry, Status:Open
Simple Attention:
Type:list, Onto: instance
Base:SingleResidenceUnit
Constraints:

EntityName:style, Relation:Has-Attribute
Rel-op: Eq, ValueItem: ranch …

Aspect:null
Result: …

InterpretationStatus: UnknownInput:No …
PresentNum: -1 StartIndex:1

System Act:
Intention:
Type:Present_Describe Status:Close
Simple Attention:
Type:list, Onto: instance
Base:SingleResidenceUnit
Constraints:

EntityName:style, Relation:Has-Attribute
Rel-op: Eq, ValueItem: ranch …

Aspect:null
Result: …

InterpretationStatus: UnknownInput:No …
PresentNum: -1 StartIndex:1

Modality Decomposition
Speech: “Show me ranches”
Gesture: none

Presentation Draft

Presentation BluePrint

Segment:
Motivator:DataAccess_Seek

Initiator:User
Status:Completed

User Unit:
Role:ICP
User Unit:
Role:ICP

System Unit
Role:OCP

System Unit
Role:OCP

User Act:
Intention:
Type:Request_Inquiry, Status:Open
Simple Attention:
Type:list, Onto: instance
Base:SingleResidenceUnit
Constraints:

EntityName:style, Relation:Has-Attribute
Rel-op: Eq, ValueItem: ranch …

Aspect:null
Result: …

InterpretationStatus: UnknownInput:No …
PresentNum: -1 StartIndex:1

System Act:
Intention:
Type:Present_Describe Status:Close
Simple Attention:
Type:list, Onto: instance
Base:SingleResidenceUnit
Constraints:

EntityName:style, Relation:Has-Attribute
Rel-op: Eq, ValueItem: ranch …

Aspect:null
Result: …

InterpretationStatus: UnknownInput:No …
PresentNum: -1 StartIndex:1

Modality Decomposition
Speech: “Show me ranches”
Gesture: none

Presentation Draft

Presentation BluePrint

Figure 4: A Segment of Conversation History

4

