
RC23199 (W0405-001) May 3, 2004
Computer Science

IBM Research Report

An Active Adapter with Edge Cache Approach for Order
Status Information Integration

Jih-Shyr Yih, Shiwa S. Fu, Shyh-Kwei Chen, Sebastien Houillot
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Active Adapter With Edge Cache Approach For
Order Status Information Integration

Jih-Shyr Yih, Shiwa S. Fu, Shyh-Kwei Chen, and Sebastien Houillot

IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, N.Y. 10532, U.S.A.

{jyih, shiwa, skchen, sebastien}@us.ibm.com

Abstract

Sharing information among multiple business
operations and distributed locations in an integrated
manner has always been one of the central issues in
business activity and process management. The
effectiveness of the entire commerce value chain for an
enterprise is largely dependent on the satisfaction of the
information requesters. Improving upon the typical data
federation approach, we propose to add data caches in
the adapters that connect directly to the information
requesters for fast data retrieval. To demonstrate the
proposed approach, we have implemented the new active
features for the IBM Websphere Business Integration
middleware. Experimental results show that the active
adapter approach significantly reduces the average data
access time under a real order status tracking system.

Keywords: Data Federation, Collaboration, Broker,
Adapter, Edge Cache, Electronic Commerce.

1. Introduction

In an enterprise IT operating environment, it is
common to have multiple business operations and large
number of data sources located at distributed locations.
Sharing information among these operations and
locations in an integrated manner has always been one of
the central issues in business activity [1] and process
management [2, 3]. After recent years of dot.com hot
pursuit of unsustainable revenue growth, businesses have
returned with ever more focus on cost cutting by
streamlining the IT value chain operations. In addition to
cost cutting as a business competitive advantage, it is also
recognized that backend data mess can cause front-end
revenue lost. The satisfaction of the information
requesters largely determines the effectiveness of the
entire commerce value chain for an enterprise.

I s o l a t i o n S e r v i c e L a y e r

O p e r a t i o n a l L a y e r

D is t r i b u t io n

M f g

S i t e
M f g

S i t e
M f g

S i t e
M f g

S i t e
M f g

S i t e
M a n u f a c t u r in g

S i t e

P i p e

P i p eF u l f i l lm e n t
P ip e

I n f o r m a t i o n a l L a y e r

D is t r ib u t io n

M a n u f a c t u r e

O r d e rP r o d u c t

C u s t o m e r

C o n t r a c t

I n v e n t o r y

S e r v i c e R e q u e s t e r s

B 2 BW e b

S t o r e s

P a r t n e r s

A c c e s s
P r o x ie s

P r o d u c t io n

D B

 S t a g in g

S e r v ic e

Figure 1: Order Status Data Consolidation.

1

mailto:}@us.ibm.com

The information integration problem can typically be
addressed by the following approaches:

1. Data Replication [4, 5, 6, 7], which usually prepares a

consolidated copy via data propagations from various
data sources, and directs data retrieval to a production
copy of the consolidated copy. Figure 1 shows an
example of the architecture for order status, where
data is first propagated to a staging database, and then
replicated to a production database. However, in this
approach, the overhead to replicate constantly can be
prohibitive due to data size as well as the various
propagation times. Moreover, the data requesters are
usually not getting fresh data, subjected to by the
frequencies for batch data propagations, say, hourly or
daily overnight.

2. Data Federation [8, 9, 10], which builds virtual links
without replicating data. Figure 2 shows a
corresponding architecture for the order status
information integration. In this case adapters are used
to connect to application data sources. A collaboration
broker then works with these adapters to service
dynamic access and transformation. One major issue
is that data retrieval can be time consuming, beyond
an acceptable threshold.

This study reports experience gained from a business
transformation solution with respect to commerce value
chain development. In this case, customers need to check
on all aspects of a master order, such as manufacturing,
fulfillment and distribution events status before receiving
the actual items. Customers may also review contract
terms and conditions and check order history.

A new information integration mechanism is thus
constructed, which improves upon the data federation
approach by materializing data into small caches for
shorter access times. The new insight in this approach is,
rather than adding a data cache in the central broker, we
propose to add data caches in the adapters that connect to
the information requesters. We also observe that multiple
requesters work with different parts of data from multiple
data sources, so that adapters only need to subscribe to
the relevant information. The multiple data caches also
allow the accessing load to be naturally distributed
amongst the adapters and be handled locally. By the
pattern that customers rarely check individual detailed
order status some time after receiving the shipment, we
demonstrate how the adapter cache can interpret into the
cached order data for cache management policies.

I s o l a t io n S e r v i c e L a y e r

O p e r a t i o n a l L a y e r

D is t r ib u t io n

M f g

S i t e
M f g

S i t e
M f g

S i t e
M f g

S i t e
M f g

S i t e
M a n u f a c t u r in g

S i t e

P i p e

P ip eF u l f i l lm e n t
P ip e

I n f o r m a t i o n a l L a y e r

D is t r ib u t io n

M a n u f a c t u r e

O r d e rP r o d u c t

C u s t o m e r

C o n t r a c t

I n v e n t o r y

S e r v i c e R e q u e s t e r s

B 2 BW e b

S t o r e s

P a r t n e r s

C o l la b o r a t io n B r o k e r

S e r v ic e

A d a p t e r A d a p t e r A d a p t e r A d a p t e r

A d a p t e r

A d a p t e r

A d a p t e r

A d a p t e r

A d a p t e r

A d a p t e r

A d a p t e r

Figure 2: Order Status Data Federation.

The paper is organized as follows. Section 2 uses the

IBM Websphere Business Integration (WBI) as a
platform example to describe traditional application
adapters. Section 3 discusses our proposed active
adapter with edge cache and its architectural details. An
application of active adapter to a real case order status
tracking solution is described in Section 4, with

performance results in Section 5. Finally, Section 6
summarizes the paper.
2. Websphere Business Integration
Middleware

The IBM Websphere Business Integration (WBI) is a
middleware that provides dynamic business process
infrastructure for message delivery, document

2

transformation, and application-to-application
connectivity [11]. WBI includes graphical user interface
tools that facilitate designing business collaborations (or
business process logic), business object templates, object
mappings, content relationships, and application adapters
for external business applications.

WBI uses a common object model to facilitate
business object exchange among all components and
collaborations. WBI employs a hub-and-spoke
architecture with a central broker called InterChange
Server (ICS), and many application adapters. Each
application adapter includes two components: controller
and agent [11]. The adapter controller resides within ICS,
and interacts directly with collaborations, and may
translate business objects using maps. On the opposite
end, the adapter agent resides in and interacts with the
application, and may translate business data between
external flat formats and internal pre-defined business
object formats using data handlers. A controller and an
agent may communicate using a messaging mechanism or
the Internet Inter-ORB Protocol (IIOP), hence effectively
connecting the ICS broker and the corresponding
application. Dedicated application adapters such as for
SAP R/3, PeopleSoft, SOAP, IBM MQ Series, relational
databases through JDBC, are just some examples [12].
These application adapters can be easily modified and
configured to fit new application requirements. For
example, a JDBC adapter is basically configured to poll
an event table for monitoring database updates and
initiating new business processes based on the event
trigger.

In solution build-time, WBI uses meta-data driven
approach to increase the flexibility for designing and
configuring adapter agents. Object Discovery Agents
(ODAs) for several applications are included, which can
generate Business Object definitions (BODs)
automatically based on the application meta-data. The
BODs normally include application specific information
that can instruct the adapter agents about the methods to
interact with individual applications. WBI also provides
design tools for authoring and customizing collaborations,
BODs, maps, data handlers, and custom adapters.

Figure 3 shows a typical way of initiating a business
collaboration (or process). Initially at Step 1, application
X updates its data source, which triggers an event caught
by Adapter X. The Adapter X agent translates the event
from application X flat file format into Application
Specific Business Object (ASBO) format through data
handlers (Step 2). The ASBO X is then transmitted to
Adapter X controller through IIOP (Step 3). WBI
maintains a common set of generic business object
formats or BODs. Adapter X controller then translates
through a map (Step 4) the incoming ASBO X into
Generic BO, which is passed to the WBI broker for
handling (Step 5). The WBI broker executes the business

logic (or collaboration), which may involve
communicating or accessing other applications through
specific adapters. As shown in the figure, the data flow
(Steps 6-10) is reversed to reach the destination
application Y. Note that the data flow can be bi-
directional, and there can be more than one source or
destination application.

WBI Broker

App
X

Adapter X
Agent

Adapter X
ControllerAppX

ASBO

1

3

5

Adapter Y
Controller

Adapter Y
Agent

Map
Map Y

6

7

8

10

Data
Handler X

2

AppY
ASBO

Generic
BO

Flat
Flat

Adapter X Adapter Y

Map
Map X

Generic
BO4

MapData
Handler Y

9

Collaboration
App
Y

Figure 3: WBI Broker and Adapters Architecture and
Process Flow.

3. The Active Adapter Approach

WBI employs a hub-and-spoke architecture, where
every business process event needs to go through the
central WBI broker for processing. To reduce the data
access path for repetitive inquiries of specific data, we
introduce a new feature that utilizes an edge cache for
storing the most recently updated and viewed data. The
new active adapter features allow a customer to
frequently check the status of a purchase order that was
recently placed.

Object &
Process

Repository

Application

Broker

Access
Agent

Collaboration
Process
Instance

Adapter
Controller

Database

MessagesMessages

API
Data, Status &
Relationship

Joiner

Shared BO
Edge Cache

Data Flow

Active
Edge
Adapter

Figure 4: Proposed Active Adapter Architecture.

The approach also includes a Data, Status, and

Relationship joiner component, where Data is for
accessing the cache, Status is for summary, and
Relationship is for mapping between event messages with

3

the cache schema. Collectively, the component can
decompose (or transform) a business object into sharable
pieces and store them to the edge cache. Besides data
transformation to/from the edge cache, the active adapter
can maintain data persistency, aggregate and summarize
data history (from edge cache), perform data filtering,
handle cache management, and accept user subscription
over specific business objects and viewing options.
Figure 4 outlines the runtime architecture of the active
adapter.

WBI Broker
Subscription List (DB)

Update

EC1

Update

Publication

Filtering attributes
Determine subscribers

EC2

Broadcast

BE1 BE2 BE3

Avtive Adapter Avtive Adapter

 Figure 5: An Example of Data Propagation Flow from
Data Sources to Active Adapters.

The active adapter approach includes two business

processes: data publication and data access. The data
publication business process is about actively publishing
any data changes from the backend data sources to the
edge caches. In addition to the current publish-subscribe
capability, the WBI broker maintains a new subscription
list for matching the data updates with the appropriate
edge caches. For example, as are shown in Figure 5,
updates at Backend Application 1 (BE1) result in the
updates being propagated to both Edge Caches 1 and 2
(EC1 and EC2); while updates to Backend Application 3
(BE3) are routed to EC2 only. The targeted edge caches
are based on the subscription list maintained by the WBI
broker. The data publication business process is
implemented by a new collaboration running in the WBI
broker and initiated by an event trigger (due to update) at
the Backend Applications.

The data access business process allows customers to
inquire data. When an event is received, the active
adapter firsts check its own edge cache to obtain the data.
If there is a hit, the active adapter composes the result
data in a format specified by the customers. If the data is
not in the cache, then a regular data access business
process follows. The process may involve aggregating the
accessed data from multiple backend applications. The
resulting data is also propagated to the edge cache as the
most recently viewed copy. For example, Figure 6 shows
two separate data inquiries from two customers, where

one inquiry receives data result from the edge cache EC1,
and the cache miss inquiry receives the data result that is
aggregated and transformed by the WBI broker from
three backend applications BE1, BE2, and BE3 as
described in the following. The inquiry from the customer
(Step 1) is checked by the edge cache to determine if the
requested data is in the local cache (Step 2). For a cache
miss, a request is sent to the WBI broker (Step 3). Based
upon the list of sources, the broker might retrieve the
requested data from many separated data sources (Step 4).
The retrieved data is aggregated and transformed (Step 5)
to the desired format. The resulting data is propagated to
the edge cache (Step 6). Finally, the edge cache
incorporates the results into local copy (Step 7.a) and
presents them to the customer (Step 7.b). A simple and
effective LRU (Least Recently Used) cache replacement
policy is enforced for data replacement.

WBI Broker
Subscription List (DB)

BE1

Order Status Inquiry

Hit Miss
1

2

3

4.a

6
7.a

BE2 BE3

4.b 4.c

7.b

5

Figure 6: Examples of Cache-hit Local Edge Data
Access and Cache-miss Remote Access Flows.

In solution build-time, our active adapter approach

uses utility tools for cache schema generation,
relationship discovery, transformation annotation, end-to-
end debugging, and finer BOD attributes subscription
capability. These tools are implemented as standalone
applications or plug-ins using the Eclipse development
platform, while the schemas are modeled based on the
Eclipse Modeling Framework (EMF), a Java-based
facility.

The proposed active adapter approach suits well for
data retrieval, since frequently accessed data and most
recently updated data are conveniently located at the edge
cache. Cache management policy may also take into
consideration the user access patterns and behaviors. For
example, order status inquiries often occur after the order
entry time and before receiving of the order shipment.
Customer behaviors like repetitive inquiries can be
satisfied, since the frequently requested data is likely
already in the cache, which is updated only when there is
a change in order status. Moreover, there is a pattern that
customers rarely check individual detailed order status

4

some time after receiving the shipment. Therefore, it is
beneficial and practical to interpret into the order data for
better cache management policy.

4. Case Study

Enabling purchasing orders is one of the most
important business activities in electronic commerce. The
process from placing an order until receiving the goods
constitutes many commerce value chain activities. To
keep track of the fulfillment progress for orders, the seller
usually provides convenient order tracking services
through a central server where buyers can check the
individual order status. However, a buyer or a group of
buyers in the same organization might be interested only
in their own order status. It is therefore desirable to feed
only the relevant information to the desired buyers. In
this section, we describe a case study of a real order status
tracking service. The performance of applying the
proposed active adapter to the order status tracking is
provided in the next section.

4.1. Business Scenario

A purchase order (to buy a batch of different
workstations, for example) may contain many items
(hardware components and software packages) that may
be fulfilled by different fulfillment locations
independently. As a result, a large enterprise usually has
an order routing center. The center splits order
transactions originating from the front-end order
placement systems and routes them to the appropriate
back-end fulfillment systems. Order is subject to
cancellation and purchased item modifications requested
by the customer, price change due to contract condition,
and status updates according to the progress of value
chain activities. The value chain activities include
scheduling/releasing order for delivery, back order,
invoice, etc. The processes of handling and tracking all
those activities are referred to as order status tracking. To
better understand the processes, we outline the order
status flow, based on a real order tracking system
implementation, in the next subsection.

4.2. Order Status

In Figure 7, an oval represents a status, and an arrow
connecting two ovals indicating the transition from one
status to another due to a triggering event. Initially, a
new item in an order can be either “Accepted” or
“Rejected”, arisen from incorrect or insufficient
information provided by the end users. An “Accepted”
item becomes “Scheduled” when the item is ready for
delivery or “Back Ordered” if it is not in stock. A “Back

Ordered” item becomes “Scheduled” once it can be
fulfilled. Items that are in “Scheduled” status will then be
“Released” to manufacturing for delivery. Once the
product is delivered, its status becomes “Shipped”.
Finally, the status becomes “Billed” if the back-end
fulfillment system is ready to invoice the buyer; at this
point, the order status cycle is considered completed.
Note that an item cannot be cancelled once it is ‘released’
to manufacturing for delivery. The flow of item return is
not in the scope of this paper.

To determine the overall order status, we need to sort
out the priority among individual item status. The most
advanced status for individual item in Figure 7 is
“Billed”, followed by “Shipped”, “Released”,
“Scheduled”, “Back Ordered”, and “Accepted”. Both
“Cancelled” and “Rejected” are in the same priority as
“Billed".

A purchase order containing multiple items can either
be fulfilled at different fulfillment locations
independently or be partially fulfilled at the same
fulfillment locations. Each individual item thus could
carry a different status. By taking into account
unsynchronized status among individual items, overall
order status is determined according to the highest
priority of individual item status as depicted in Figure 7,
where four more statuses are created: “Partially Billed”,
“Partially Shipped”, “Partially Released”, and “Partially
Scheduled”. As an example, an order containing one
“Released” item and one “Shipped” item is considered
“Partially Shipped” according to the priority rule
mentioned in the previous paragraph.

Back
Ordered

Rejected
reject

not in stock New
Order

cancel
supply is
available Cancelled accept supply is

partially
available

cancel cancel Accepted
some available

for delivery all available
for delivery all Partially

all available
for delivery ilScheduled Scheduled

all release to
manufacture

Some release to
manufacture invoice

all items Some release
to manufacture

Shipped
Billed deliver

all items Released

deliver some
items deliver all

items

invoice some
items invoice

all items all release to
manufacture invoice

some
items

Partially
deliver some

items
Partially Partially Released
Billed Shipped

5

The data size for each purchase order in Figure 8 is
shown in Table 1. It is 72.2 Kbytes for the order with 10
purchase items and almost 1.4 Mbytes for the order
containing 202 items.

The data size for each purchase order in Figure 8 is
shown in Table 1. It is 72.2 Kbytes for the order with 10
purchase items and almost 1.4 Mbytes for the order
containing 202 items.

Figure 7: Order Status State Transition Diagram.
5. Performance Evaluation

5.1. Experiment Configuration

To measure the performance of edge cache data access
ag

5.2. Performance Results

he results illustrated in Figure 8 are average values
ov

Number of Items in An

Order
Number of Items in An

Order
Data Size (Kbytes) Data Size (Kbytes)

3 25.4
10 72.2
28 192.6
52 353.6
78 527.8
202 1358.5

ainst remote access, we collect samples from a real
internal fulfillment center’s data log. The fulfillment
center receives order status updates from many SAP
fulfillment systems in different geographic zones,
distribution systems, and manufacture sites. We selected
six samples with a wide range of data sizes, from three to
202 purchase items. The performance measure of interest
is access time, which is defined as the average time from
requesting the order status until receiving the response.
All details (such as individual line items, invoice, and
shipping) tied to the requested order are retrieved.

Table 1: Data Size of Studied Samples.

The remote access time shown in Figure 8 can be

further broken down into three components: broker
overhead time refers to Steps 3 and 6 in Figure 6,
database access time to retrieve the requested order (Step
4), and data transformation time (Step 5). The broker
overhead includes communication time, adapter
processing time, and collaboration thread setup time,
whereas the data transformation, done by collaboration,
includes data aggregation, data filtering, and data
mapping. It is observed from Figure 9 that broker
overhead time dominates most part of remote access time,
followed by database access time. The data
transformation time is relatively small.

T
er runs. The measured access time for the remote data

access is due to edge cache miss, whereas edge cache data
access occurs when there is a data hit in the cache. It can
be seen from Figure 8 that the remote data access time
grows quickly as the number of items increases. It
inflates almost 137% and 647%, when the number of
items increases from 10 to 52 and from 10 to 202,
respectively. The overhead of remote access is due to
broker overhead, database access, and data
transformation. In comparison, the edge cache access
time increases only slightly when the number of items
reaches 202, indicating fast data access once the required
data is in the edge cache. This is especially important for
the end users conducting repetitive inquiry such as order
status checking.

137% and 647%, when the number of
items increases from 10 to 52 and from 10 to 202,
respectively. The overhead of remote access is due to
broker overhead, database access, and data
transformation. In comparison, the edge cache access
time increases only slightly when the number of items
reaches 202, indicating fast data access once the required
data is in the edge cache. This is especially important for
the end users conducting repetitive inquiry such as order
status checking.

Latency (Seconds)

Figure 8: Performance Comparison of Remote and Edge

Figure 8: Performance Comparison of Remote and Edge

3 10 28 52 78 202
umbe Purc Item r Or

Access Time (Seconds)

Edge Cache AccessRemote Access

Cache Data Access. Cache Data Access.

Figure 9: Breakdown Remote Access Time.

To better understand the cache miss behavior, we

illustrate the latency of cache miss detection, remote
access, and edge cache update. Cache miss detection time
(referred to Step 2 in Figure 6) is the time to determine if
the requested order is in the edge cache. Edge cache
update time (Step 7a) arises from updating the edge cache
with the retrieved order. As can be seen from Figure 10,
the cache miss detection time is fixed and negligible small
for all cases. On the other hand, edge cache update time

0
2
4
6
8

10
12
14

Data Transformation
Database Access
Broker Overhead

14
12 28 52 3 10 78 202
10 Number of Purchase Items Per Order
8
6
4
2
0

N r of hase s Pe der

6

grows significantly along with remote access time when
the number of items increases.

Figure 10: Latency Due to Cache Miss.

6. Conclusions

The information integration problem can typically be
addressed by two approaches: data replication and data
federation. The major concern associated with data
replication is how to reduce the overhead of constant and
frequent batch data propagations without sacrificing the
information freshness, whereas the main issue lingers
with data federation is the long data retrieval time that
could go beyond an acceptable threshold.

In this paper, we demonstrated a new information
integration solution add-on mechanism for the IBM
Websphere Business Integration suite. The proposed
active adapter improves upon the data federation
approach by materializing data into small caches for
shorter retrieval times. Instead of using a data cache in the
central broker, the proposed approach adds data caches in
the active adapters that connect to the information
requesters. The proposed concept is further enhanced by
the observations that multiple requesters usually work
with different parts of data from multiple data sources,
and adapters only need to subscribe to the relevant
information. The multiple data caches allow the access
load to be naturally distributed amongst the adapters and
be handled locally, thus shortening data retrieval times.
This paradigm is applicable for many other commerce
applications beyond order status tracking system.
Experimental results indicate that the data cache in the
proposed approach significantly reduces data access time
under a real order status tracking system.
proposed approach significantly reduces data access time
under a real order status tracking system.

Acknowledgments Acknowledgments

The authors gratefully acknowledge the assistance

from Margo Mao, Revlino Pascual, Charles C. Sung,

Referen

The authors gratefully acknowledge the assistance
from Margo Mao, Revlino Pascual, Charles C. Sung,

Referen

Chandrasekara Narapireddy, Doru Ambrus, and Jerry F.
Otruba.

ces

H. Chang, and J.-Y. Chung, “A Policy
Framework for Business Activity Management,”

[2]
rvices in B2B e-

[3]
erce

[4]

[5]
rithm,” ACM Transactions on

[6]
raker, and A. Yu, “Data Replication In

[7]
”,

Chandrasekara Narapireddy, Doru Ambrus, and Jerry F.
Otruba.

ces

H. Chang, and J.-Y. Chung, “A Policy
Framework for Business Activity Management,”

[2]
rvices in B2B e-

[3]
erce

[4]

[5]
rithm,” ACM Transactions on

[6]
raker, and A. Yu, “Data Replication In

[7]
”,

[1] J.-J. Jeng, [1] J.-J. Jeng, Latency (Seconds)

2003 IEEE International Conference on Electronic
Commerce 2003, pp. 238-245.

C. McGregor and S. Kumaran, “Business Process
Monitoring Using Web Se

2003 IEEE International Conference on Electronic
Commerce 2003, pp. 238-245.

C. McGregor and S. Kumaran, “Business Process
Monitoring Using Web Se
Commerce,” 16th International Parallel and
Distributed Processing Symposium, April 2002.

S. S. Fu, S.-K Chen, J.-S. Yih, F. Pinel, and T. C.
Chieu, "Web-based Sell-side Comm

Commerce,” 16th International Parallel and
Distributed Processing Symposium, April 2002.

S. S. Fu, S.-K Chen, J.-S. Yih, F. Pinel, and T. C.
Chieu, "Web-based Sell-side Comm
Aggregation," International Conference on Internet
Computing 2002 (IC'2002), pp. 303-310, June 2002.

R. Alonso, D. Barbara, and H. Garcia-Molina, “Data
Caching Issues In An Information Retrieval System,”

Aggregation," International Conference on Internet
Computing 2002 (IC'2002), pp. 303-310, June 2002.

R. Alonso, D. Barbara, and H. Garcia-Molina, “Data
Caching Issues In An Information Retrieval System,”
ACM Transactions Database Systems, Vol.
15(3):359-384, 1990.

O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive
Data Replication Algo

ACM Transactions Database Systems, Vol.
15(3):359-384, 1990.

O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive
Data Replication Algo
Database Systems (TODS), Vol. 22(4): 255-314, June
1997.

J. Sidell, P.M. Aoki, A. Sah, C. Staelin, M.
Stoneb

Database Systems (TODS), Vol. 22(4): 255-314, June
1997.

J. Sidell, P.M. Aoki, A. Sah, C. Staelin, M.
Stoneb
Mariposa,” International Conference on Data
Engineering (ICDE), pp. 485-495, February 1996.

Barry Devlin, “Information Integration Distributed
Access and Data Consolidation

Mariposa,” International Conference on Data
Engineering (ICDE), pp. 485-495, February 1996.

Barry Devlin, “Information Integration Distributed
Access and Data Consolidation
ftp://ftp.software.ibm.com/software/data/pubs/papers/ftp://ftp.software.ibm.com/software/data/pubs/papers/
etl.pdf, March 2003.

[8]
a Models And Languages,”

[9]
 An Information Integration System,“ pp.

[10]
Data Sources With Disco,”

[11]
http://www-

H. Garcia-Molina et al., “The TSIMMIS Approach
To Mediation: Dat
Journal of Intelligent Information Systems, 8(2): 117-
132, 1997.

M. Genesereth, A. Keller, and O. Duschka,
“Infomaster:
539-542, SIGMOD 1997.

 A. Tomasic, L. Raschid, and P. Valduriez, “Scaling
Access To Heterogeneous
IEEE Trans. On Knowledge and Data Engineering,
10(5):808-823, Sep/Oct. 1998.

 “Technical Introduction to IBM WebSphere
InterChange Server,”
306.ibm.com/software/integration/wicserver/library/d
oc/wics420/welcome.html.

[12]
e Application Integration

 S. S. Fu, S.-K. Chen, Y.-H. Liu, and J.-S. Yih, "SAP
Integration Using Enterpris

0
2
4
6
8

10
12
14
16
18

Cache Miss Detection
Edge Cache Update
Remote Access

3 10 28 52 78 202
Number of Purchase Items Per Order

7

ftp://ftp.software.ibm.com/software/data/pubs/papers/etl.pdf
ftp://ftp.software.ibm.com/software/data/pubs/papers/etl.pdf
http://www-306.ibm.com/software/integration/wicserver/library/doc/wics420/welcome.html
http://www-306.ibm.com/software/integration/wicserver/library/doc/wics420/welcome.html

Software," International Conference on Internet
Computing 2003 (IC'2003), pp. 547-550, June 2003.

8

