
RC23201 (W0405-025) May 5, 2004
Computer Science

IBM Research Report

An Information Integration Framework for Product Life Cycle
Management of Diverse Data

Huong Morris, Simon Lee, Eric Shan, Sai Zeng
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Information Integration Framework
for Product Life Cycle Management of Diverse Data

Huong Morris (IBM Research, thm@us.ibm.com), Simon Lee (IBM Data Management),

Eric Shan, Sai Zeng (IBM Extreme Blue Interns)
IBM Almaden Research Center

650 Harry Rd
San Jose CA 95120

ABSTRACT
Automobile, aerospace and other industrial manufacturers have long depended on single vendor solutions
to support their enterprise-wide engineering activities. Increased product complexity, distributed authoring
environments and the needs for tighter team integration with partners and suppliers have created challenges
and new opportunities for IT vendors to be able to integrate systems from multiple ISVs to work together
as a coherent Enterprise PDM. Both design and manufacturing processes in Automobile, aerospace and
manufacturing industries have evolved over the years to include a multitude of CAD/PDM systems for
supporting their enterprise-wide engineering processes.

The efficient management of distributed information has become increasingly important as data is digitized
and placed online. But this data comes in many forms and is under the management of diverse middleware
components and applications. Users need integrated and on demand access to information, but the data
itself is a moving target. Siloed systems are evolving independently and there are usually no budgets
available for the integration task. With many companies operating with a focus on cost-cutting, the ability
of an enterprise to align processes and information that support the efficient development, delivery, and
management of a product over its useful life will determine who has the winning edge. Therefore, a variety
of integration methodologies has emerged, and those methodologies must be carefully and selectively
applied in order to achieve integration without unaffordable "tear up" of the systems.

This paper will describe in detail a case study and solution of an IBM Research project called Hedwig.
Hedwig provides robust solutions in the space of Product Life Cycle Management (PLM). We focus on the
several research issues including information federation, data mapping, synchronization and web services
connections. We describe a working system that allows access to heterogeneous Product Data
Management (PDM) systems that are used in the automotive and aerospace industries.

1. INTRODUCTION

Accessing heterogeneous data sources is increasingly necessary and difficult and there
have been a number of studies on integration techniques [1-3]. The pressures of
increasing competition have been forcing major corporations to reengineer their
business organizations to achieve greater synergy and efficiency: this demands data
integration. In the past, the strategic goal of these efforts was to develop enterprise-wide
solutions that tied together information systems across business units within the
organization. Still not wholly realized today, this goal of efficient management of
distributed information has become progressively more difficult for several reasons: 1)
the data volume is increasing due to increased digitization of sources, 2) it is coming
from even more sources where it is under management of diverse middleware, and 3)
virtual marketplaces and global partnerships are requiring integration efforts which
stretch across the boundaries of previously siloed systems within individual corporations.
According to the Aberdeen Group report in August 2003, many companies have adopted
product life cycle (PLM) as a key strategy for driving competitive differentiation,
performance, and profit optimization in the market. PLM is a business strategy intended
to link all information, people, and processes associated with a product from initial

1

concept through end-of-life disposal. In the past, PLM began with design and ended
with manufacturing. These days PLM must start with market analysis and doesn’t end
even after sale: product warranty claims can be crucial in a time of small margin; product
liability can destroy a company and post-sales service can be the business that really
matters [4].

Information integration and management products, especially those that allow product
lifecycle management for industries such as the automotive industry, have seen large
growth in revenue for vendors in the past several years [5]. Interoperability barriers due
to proprietary solutions, particularly in CAD, CAE, and PDM applications, and further
exacerbated by each company’s own set of requirements and lack of enforced
standards have led to several endeavors in information integration. In this paper, we will
identify four key areas concerning information integration as it applies to the automotive
industry (and to the aerospace and electronics industries in similar ways).

In our project, Hedwig, a real-world IT solution was developed as a proof-of-concept for
IBM Product Lifecycle Management customers chosen from the Automobile and
Aerospace industries. Hedwig originated as an IBM Extreme Blue project
http://www.ibm.com/extremeblue where top students from different universities come to
IBM to work with professional researchers and developers to rapidly develop a case
study and build a system solution based on real customer needs. Hedwig’s goal was to
study integration requirements and develop a prototype information integration system
that leverages current IBM data management technologies combined with commercially
available PDM systems. Specifically, it uses IBM’s DB2 Content Manager (CM) to
provide storage, management, and distribution of all types of text, digital and multimedia
content across different applications. In addition, the project uses DB2 Information
Integrator (DB2 II) and IBM Websphere Web Sevices products to federate and provide
intelligent access to heterogeneous “third party” PDMs.

Hedwig was successful in demonstrating progress towards two central goals. The first
was to obtain efficient access to third party PDMs without excessive query processing
load. We return results while maintaining the inherent relationships within the data. For
instance, a query on a specific car model will send requests to diverse PDM data stores,
because a whole vehicle often relies on subsystems from different partners that use
diverse PDM systems. Data is returned from multiple sources, but the parent-child
relationship of those parts needs to be retained where they exist. An overall hierarchy is
maintained, while the sub-hierarchies maintain their native structure. Maintaining as
much structure as possible in the top-level data model (CM) is of course desirable, as
opposed to a flat structure, which might have for example, nuts and bolts next to the
frame drawings and the final car design. The second goal is to standardize the
connection framework so that unforeseen processes and services can be incorporated in
the future: this also enhances global scalability and portability. This is enabled through
use of web services.

We will approach this paper by describing (through an informal case study) our research
and development to build a simple but highly illustrative federation infrastructure. We will
highlight some of the approaches we took in each of these areas as well as future
approaches and modifications needed to enable a scalable and efficient federation
infrastructure. We will describe our experience with the rapid integration of several
databases and their applications and recommend a framework for future information

2

http://www.ibm.com/extremeblue

integration. We will also address the several accompanying research issues and discuss
their projected impact on the overall architecture.

2. DESIGN APPROACH AND CONSIDERATIONS

2.1. Overall federation infrastructure

Large automobile and aerospace enterprises especially incur high costs from
maintaining and using disparate CAD and PDM systems, long delays due to the transfer
of information and manual reentry into destination systems, and quality problems caused
by the movement of data across media boundaries [6]. We aimed to design and build a
federation infrastructure that would alleviate many of these problems in the industry by
allowing and managing the bi-directional flow of data through distributed heterogeneous
systems and environments in an automatic way.

This federated infrastructure allowed those backend sources to be accessed as if they
were from a single source with a common data model. Users would make XML Path
Language (XPath http://www.w3.org/TR/2003/WD-xpath20-20031112) requests through
a browser to the integration platform, where the queries are automatically rewritten
based on the contents of the central data management system (discussed in the next
section) and the query manager and then converted to backend-specific semantics and
sent through the connectors (discussed in Section 2.3). Results from the backend
sources would be appropriately transformed, mapped, and reassembled through the
connectors and central management system and returned to the user in a consistent and
unified format. Indeed, this infrastructure focused on providing end users data visibility to
the distributed data sources, with interoperability between heterogeneous environments
occurring only on a small scale. To this end, the single-access-point query and
navigation features served well.

The major roadblock in this infrastructure is that the involved data sources are rarely all
immediate sources. Though the above federation platform allows even systems outside
the enterprise to be directly connected, many trading partners/suppliers (and even
different divisions within a corporation) wish to maintain strict control and data integrity
over their data sources and applications. Interoperability and automated data transfer
become the keys to success in the automotive industry. Each OEM, especially big
automobile companies, would like to maintain its specific PDM systems, such as IBM’s
Enovia and EDS’ Metaphase, while its Tier 1, Tier 2, etc. suppliers manage their own
data management systems and/or applications.

This integration platform can be transformed into an engineering hub, which provides a
portal for data visibility to end users and connection mechanisms to immediate data
sources as before. At a higher level, however, they allow for a whole network of
engineering hubs, one that stretches across all facets of a virtual enterprise and
connects business partners together across logical divisions within a company, company
intranets, and geophysical barriers, as shown in Figure 1. These hubs must support
decentralized, message-oriented communication between one another using
standardized, XML-wrapped data units. The integration hubs and engines must therefore
serve human as well as application requests distributed across multiple hubs, requiring
query managers to query across the network to determine an appropriate horizon in
which results are returned and assembled.

3

http://www.w3.org/TR/2003/WD-xpath20-20031112

S
ch

em
a

an
d

O
bj

ec
t M

an
ag

er

Q
ue

ry
 M

an
ag

er

O
pe

ra
tio

n
Fl

ow
M

an
ag

er

Information/Content
Management System

Browser

JSP/Servlet
Java Beans Container

Distributed
Transaction
Manager

PDM PDM PDM

Connector Framework

OEM

Tier 1

Tier 2

EH

EH

S
ch

em
a

an
d

O
bj

ec
t M

an
ag

er

Q
ue

ry
 M

an
ag

er

O
pe

ra
tio

n
Fl

ow
M

an
ag

er

Information/Content
Management System

Browser

JSP/Servlet
Java Beans Container

Distributed
Transaction
Manager

PDM PDM PDM

Connector Framework

S
ch

em
a

an
d

O
bj

ec
t M

an
ag

er

Q
ue

ry
 M

an
ag

er

O
pe

ra
tio

n
Fl

ow
M

an
ag

er

Information/Content
Management System

Browser

JSP/Servlet
Java Beans Container

Distributed
Transaction
Manager

PDM PDM PDM

Connector Framework

OEM

Tier 1

Tier 2

EH

EH

OEM

Tier 1

Tier 2

EH

EH

Figure 1: Federation Infrastructure (left) and Global network of ‘engineering hub’

(right)

2.2. Intermediate data management

The data path from the backend data sources to the end user generally involves up to
two major intermediate levels of data management. Most traditionally, developers have
used only a single intermediate level, employing the approach of data consolidation, or
placement, where data is physically consolidated into a single, local repository in
advance of using the data to service user queries [7]. This consolidation typically takes
place in an information warehouse, which provides periodic data extracting services [8].
Recent endeavors, however, have leaned towards a second approach of data
federation, where the data is dynamically and directly retrieved on every request.
Several complex hybrids of the two approaches involving data marts and warehouses
alongside federation have also been introduced [9].

The approach we took was to use a mature content management system such as the
IBM DB2 Content Manager product, as an intermediate step in the federation operation.
Therefore, each query request by the user would pass through the management system
before reaching the backend sources, and each set of results received from the backend
sources would be stored and assembled in the intermediate system before being
returned to the user. By putting an advanced data management system at such a high
level in the data path (near the integration engine), we realized several benefits. This
management system partly acted as a data warehouse in consolidating the data locally
within the context of a single, unified schema. On the other hand, it served more as a
cache than a warehouse in functionality by storing the binary data and metadata
associated with recently requests locally. Furthermore, it provided advanced
management of metadata, including storage of backend information (i.e. where the data
originated) on a per result basis.

4

These benefits together enable huge gains in performance; large binary data sets, which
put immense strain on the network when transported, are moved to this local “cache”
only once or when the data has both been updated and requested by the user instead of
over periodic intervals (user may retrieve outdated data) or blindly fetched on each
request as would occur in a purely federation-based infrastructure. Similarly, backend
information allows queries on certain result sets to be sent directly to the involved
backend sources. These all help to reduce per query latency (which is of greater
importance than overall throughput). The underlying principle of this is that the central
cache or warehouse should involve a highly evolved and intelligent content management
system to handle caching, performance, business analysis and other functionality.
Placing this system so near the integration engine also substantially aids it in distributed
query planning, data source registering and mapping, and synchronization protocols.

2.3. Connector Implementation

Information management systems require a combination of middleware to support
integration of diverse software systems [10]. These middleware technologies implement
connectors, which are used to provide data transport and possibly data mapping and
transformation between the backend data sources and the core integration platform.
Database Oriented Middleware, which facilitates communication with databases through
means such as ODBC/JDBC calls; Message Oriented Middleware, which uses queuing
software to move information point to point; and Message Broker Middleware, which
offers advanced routing and mapping mechanisms in message brokering between
several different applications, are a few of the types of middleware used as the
underlying technology for data transport through connectors.

We used Database Oriented Middleware (JDBC API) and a subset of the backend
interface API to build two connectors to two separate PDM systems. Since the
automotive industry’s needs involved a rapid integration of several disparate systems,
we focused on achieving:

• Extensibility – We desired that additional connectors be simple and
straightforward to implement. This required that every connector class have
access to a standardized set of backend-specific user and privileges information,
including PDM schema, location, and server name.

• Maintainability – While we wired the semantics mapping into the connectors
themselves, we cleanly separated out the smallest subset of backend-specific
code to allow for clearly meaningful function “templates” to implement and
occasionally update. Furthermore, this solution can be easily integrated into IBM
DB2 Information Integrator, which enables flexible changes and updates to the
semantics mapping to support organizationally structured data retrievals.

Thus our attention turned more towards the framework model in which to implement the
connector code on the integration platform side instead of the underlying transport
mechanisms leading to the backend side. In our framework, we designed a set of
generic PDMDatastore classes that served as the foundation (and entry point to all the
system/engine logic) for all connector implementation. This provided utility access
functions to the central content management system as well as common data retrieval
methods (involving JDBC requests) to the backend sources. By providing this set of

5

functions, it became significantly easier to implement the backend-specific connectors
without concern about inconsistencies with other components in the system. Each
backend-specific connector extended the parent PDMDatastore classes.

Thus to construct a connector to Enovia VPM, developers would only need to implement
two main functions in PDMDatastoreVPM. The ‘searchFederation()’ function supported
open XPath queries from the user to retrieve part information from the backend, and
therefore would require developers to 1) convert a query string parameter to backend
queries/API calls and 2) query and reconstruct the results from the backend into a
system result set object. The ‘navigateAssembly()’ function supports user navigation
through entire assembly structures by following parent-child pointers, and would
consequently require developers to 1) query for children parts using a parent part’s
unique part number (where a child is one level down from a parent in the assembly
hierarchy), 2) acquire the attributes from each child to pass on using a system data
object, and 3) passing the object on to perform the linking logic. This connection
framework worked exceedingly well as the second connector took only a few days to
add to the integration platform.

Indeed, we intend to extend this connector framework across other types of middleware.
As discussed earlier, however, the other side of integration in the automotive industry
demands greater extents of interoperability. The tight coupling between our integration
platform and backend sources played a dominant role in terms of interoperability in even
a simplistic connection effort. The backend application environment required us to
downgrade our own database applications when the project began. There was a
constant threat of backend engineers rebuilding their database tables or upgrading their
systems and possibly their interfaces. And while the data modeling process is always a
tremendous effort in any integration endeavor, our reliance on the backend models often
hampered forward progress on the platform side. To resolve these problems we have
already begun to support connector transport using Web Services Middleware. This
loosely-coupled technology will promote interoperability; this allows service provides and
requesters to operate on different environments using any language by using platform-
independent and standard network protocols with TCP/IP, transport protocols with
HTTP, message format with SOAP, and description mechanisms with WSDL. This will
also significantly increase productivity as it is relatively easy to generate SOAP wrappers
and generate WSDL documents to cast applications as web services for connecting
legacy applications. Furthermore, the flexibility of XML Schema and XSLT templates
allow for dynamic interpretation of semantics and some freedom in message and data
mapping and transformation.

2.4. Relationship Management

In most cases, users desiring integration of their data stores do not simply want to
retrieve independent fragments of data, but to navigate through and visualize entire
structures of data based on relationships. One enormous barrier for the automotive
industry is retrieving the entire bill of materials (BOM) of certain products. For instance,
an airplane can be broken down into several subcomponents, such as the engines,
wings, fuselage, and cockpit. Each of these can be subdivided into several
subcomponents. The entire assembly of a plane can reach thousands of levels of
subassemblies consisting of millions of parts. To enable BOM retrieval, developers
would typically hard-wire this functionality into integration platforms in an ad-hoc fashion.

6

Changes to the backend data stores or additions of heterogeneous data sources would
require a huge revamping process.

Our prototype used the central content management system to rebuild the inherent
backend relationships for navigation and display by the front end user. The concept of
folders and links were supported by the management system, where items (that had a
folder component) could contain other items through links. Thus for an automobile, any
part’s subassembly of parts was linked to it by placing the appropriate subassembly
parts in the correct folders (parent parts). At every step in a user’s navigation through an
assembly structure, the request (such as for an engine’s subparts) is handled by the
‘navigateAssembly()’ function from above. Thus, the subparts are fetched through some
means of computation, such as a SQL statement or sequence of API calls, linked to the
parent part, and displayed to the user in a hierarchical format. While this hierarchical
folder structure is conducive to storing most any type of relationship, we hope to extend
this further by relying on new components to handle relationship management.

The main component is the Relationship Definition & Computation Templates (RDCT)
database, which allows for the definition of relationships that the system can support.
There are several types of complex relationships that a user can define. Modeling
languages, such as the Unified Modeling Language (UML), formally specify many such
relationship classes, such as association, aggregation, and composition. We decided,
however, to shield the user from these abstractions of relationships and provide them
with the flexibility of defining any sort of relationship in a conceptually intuitive and
visually explicit manner using XML scripts. For example, the subassembly relation of an
automobile could simply be defined as a ‘subassembly’ relationship. Similarly, an
executive who is navigating a certain project’s responsibility and management chains
could have those associations represented as ‘coordinator’ and ‘manager’ relationships.

The relationship definition script also includes the list of backend data sources that
support this relationship as well as associated mechanisms for computing the
relationship. For instance, these computation scripts could include anything from simple
SQL statements to the calling sequence and input/output parameters of web services
invocations through compiled proxy code or proprietary API invocations, all of which can
be automatically interpreted by an XML engine to allow for dynamic computation at
every step of navigation across all predefined relationships. (As an example, while
navigating through a car’s subassembly, we may be interested in navigating the
responsibility chain of the managers overseeing a certain subassembly’s design.) Thus,
each new relationship is contained within its own definition script that can be easily
extensible to any number of connected backend systems. In this way, the system has
the flexibility to allow for adding, removing, or modifying relationships versus having to
dig into the guts of the integration platform. These relationship assembly structures are
managed within session beans that can be persisted or transported in XML format,
allowing further flexibility in data exchange, this time based on dynamic user
specifications and data navigation.

3. ARCHITECTURE

Figure 2 shows the overall Hedwig architecture.

7

Enovia
V4 LCA

Enovia
V5 VPM

Metaphase

IBM DB2
Information Integrator for
Content v8.2

Hedwig Custom
PDM Connector

TCP/IPWeb
Browser

IBM WebSphere
Application Server

DB2 Information Integrator for
Content eClient Server

IBM DB2
Content
Manager

LCA Client
Application

Dassault Systems PDM products

VPM Client
Application

IBM HTTP
Server

* Not in current project scope

Enovia
V4 LCA

Enovia
V5 VPM

Metaphase

IBM DB2
Information Integrator for
Content v8.2

Hedwig Custom
PDM Connector

TCP/IPTCP/IPWeb
Browser

IBM WebSphere
Application Server

DB2 Information Integrator for
Content eClient Server

IBM DB2
Content
Manager

LCA Client
Application

Dassault Systems PDM products

VPM Client
Application

IBM HTTP
Server

* Not in current project scope

Figure 2: Overall Hedwig Architecture

It works as follows:

1. The user logs in using the IBM DB2 Content Manager (CM) browser, called eClient.

[13].
2. The user queries for a part or assembly. Hedwig transforms the query to Xpath

http://www.w3.org/TR/2003/WD-xpath20-20031112 and then passes it to IBM DB2
Information Integrator’s (DB2 II) federation layer engine.

3. The federation layer then uses the custom connectors and logic to each of the PDM
systems to process the query. The connectors thus reach out to the disparate data
sources and combine and store this information into CM for building complex
relationships and assembly structures. The federated data model is detailed in the
next Section 4 while the connector design and implementation is discussed in
Section 5.

4. FEDERATED DATA MODEL

The federation layer operates on a single canonical data model in CM. In the long run
we will build an enhanced generic model that may include some features of backend-
specific data models. Even at this stage, CM provides clear value add because of the
richness of its data model, its ability to cache a whole design or sub-design while being
worked on, and the ability to warehouse snapshots of various designs for versioning and

8

http://www.w3.org/TR/2003/WD-xpath20-20031112

archival purposes. Limitations of space in this paper allow only a brief description of the
canonical data model.

Typical final products in these industries, such as passenger cars or commercial
airplanes, are composed of hundreds of thousands or significantly more parts that are
assembled into a hierarchical structure, sometimes with hundreds of levels. We need to
maintain, evolve and version this hierarchy throughout a product’s lifecycle and inherit
any hierarchical structure where possible from the third party PDMs.

4.1. CM Data Modeling

The required CM data modeling is accomplished in three major steps. In the first step –
data identification – the full set of data is gathered, analyzed and represented. We have
two exemplary but very different PDM data sources to study – the first one is VPM
(Virtual Prototype Management) and the second one is LCA (Lifecycle Application) [14].
The next step – data categorization and hierarchical relationship construction – helps to
develop the structure of our data model. We use UML to represent the data model at this
stage. In the last step – part structure CM data modeling – we ‘convert’ the data we
gathered, and diagrammed previously, into a CM data model [11].

In CM, an item type is a template for defining and later locating like items. An item type
consists of both system- and user-defined attributes. An attribute stores data or values
that describe a characteristic or property of an item. An item is an instance of any item
type. During data modeling, an item type can be further classified as an item, resource
item, document, and document part. Items are those things that can be described
completely by a set of attributes. Items are similar to a row in a database. Documents
provide the template to model multi-part documents with related contents. This template
saves the effort to create similar data models from scratch.

When creating an item, the item’s behavior can be identified by a descriptive attribute
called a semantic type. This semantic type helps to distinguish the usage and the
purpose of different items, which belong to the same document item type. Forming
relationship between items can be done by links. A link is a directional relationship
between the source item and the target item. CM offers more building blocks than those
described above however this is simple and usable set..

A part instance contains zero or more part instances. In CM, a document item with
semantic type as folder allows inclusion of a variable number of document items. Based
on this similarity analysis, an item type as document with semantic type as folder is
selected to represent part instance. The meaningful meta-information to describe a part,
such as part number, name, creation date, etc. are defined as a set of attributes in this
selected item type. Each part instance has documents attached to it. In CM, the
document item type provides the template to allow users to define metadata for the
document.

4. CONNECTOR DESIGN

For the Hedwig Project, our team built two custom connectors, one to Enovia LCA and
another to Enovia VPM. As mentioned above in Section2.3, we designed the connector

9

framework in a manner to specifically support two main goals of Extensibility and
Maintainability.

In terms of extensibility, we designed the framework model as shown in Figure 3 below.
Each backend-specific class extends the basic PDMDatastore class, which serves as
the foundation for all connector implementation. This provides utility access functions to
the central repository that maintains the repository’s consistency as well as generic utility
functions for common data retrievals, such as through JDBC calls. By providing this set
of utility functions, it becomes significantly easier to implement the backend-specific
classes without concern about inconsistencies with other components in the system.

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract searchFolderContent()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract searchFederation() abstract navigateAssembly()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract searchFolderContent()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract searchFederation() abstract navigateAssembly()

Figure 2. The PDMDatastore framework and extension classes

Moreover, the PDMDatastore parent class enforces the methods that must be
implemented to provide the appropriate functionality by providing a short list of abstract
methods. The two most critical functions are shown in Figure 3. The ‘search Federation
()’ function supports open XPath queries from the user to retrieve part information from
distributed backend data management systems. The ‘navigateAssembly ()’ function
supports user navigation through entire assembly structures by following parent-child
pointers.

5. CONCLUSION

There remain several research issues that will be further investigated in building a robust
infrastructure for information integration.

• Synchronization: It is important to find efficient, practical, and functional means for

ensuring that CM (the central data repository) is adequately synchronized with each
backend data management systems. As of now, we use an approach of refreshing
the relevant parts of CM’s contents. Presently, users are expected to only perform
‘search’ operations and retrieve documents. In this data-brokering environment, our
solution serves well. Eventually, we can move to a more complete data warehouse
model. There are several ways to achieve more advanced synchronization including
using built-in hooks or triggers at both ends and then propagating these data
connector listeners as supported by IBM’s Websphere Web Services products.

• Standard semantic mapping mechanisms: As the reader will see from the above,

there is still a manual mapping process that is required between the central data

10

model and the backend-specific data models. With the additional functionality of
allowing for navigable assembly structures and BOM representations, further
mapping must be done. These new mappings should not be wired into the connector
code, but specified at the federation layer level using standardized formats, GUI, and
interpreting engines. Schema mapping and integration tools would be a valuable
addition.

• Performance: performance is a very crucial part of the system. As the integration

stretches to a broader role in product lifecycle management (e.g., to include
customer support), we will need to further consider latency as well as throughput.
Our current prototype does considerable data access the first time data is accessed,
but more advanced proactive caching and partial-update schemes can be
developed.

6. REFERENCES

1. “Query Reformulation for Dynamic Information Integration”, Yigal Arens, Craig
A. Knoblock and Wei-Min Shen, J. Intell. Inf. Syst. 6(2/3): 99-130 (1996).
2. “Information integration – Distributed access and data consolidation”, B.
Devlin, IBM White paper, 2003.
3. “Composing Mappings Among Data Sources”, Jayant Madhavan and Alon Y.
Halevy, VLDB 2003: 572-583.
4. “2004: Era of Warranty and Earlier Warning”, Kevin Mixer, AMR Research,
January 2003 report.
5. “The Product Life Cycle Management Applications Report”, 2002-2007, AMR
Research Report.
6. “Product Data Management Interoperability”, AIGA Research Report to NIST,
AIAG-NIST 2003.
7. “Information Integration – Distributed access and data consolidation”, B.
Devlin, IBM White Paper, 2003.
8. “Information Warehouse: An Introduction”, Publication No.GC26-4876, IBM 1992.
9. “Information Integration – Extending the data warehouse”, B. Devlin, IBM White
Paper, 2003.
10. “A New Class of Software”, M. Wagner, Open Systems Today, No. 113, 1992.
11. “Modeling Your Data in Content Manager Version 8”, IBM Content Manager for
Multiplatforms, May 2003.
12. “Data Federation with IBM DB2 Information Integrator V8.1”, Redbook,
SG247052, October 2003
13. IBM DB2 Content Manager V8 Implementation on DB2 Universal Database: A
Primer, by Chen et al, May 2003
14. Enovia LCA Documentation, Version 5, Release 11, Dassault Systemes, 2003.

11

