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ABSTRACT 
Automobile, aerospace and other industrial manufacturers have long depended on single vendor solutions 
to support their enterprise-wide engineering activities.  Increased product complexity, distributed authoring 
environments and the needs for tighter team integration with partners and suppliers have created challenges 
and new opportunities for IT vendors to be able to integrate systems from multiple ISVs to work together 
as a coherent Enterprise PDM.  Both design and manufacturing processes in Automobile, aerospace and 
manufacturing industries have evolved over the years to include a multitude of CAD/PDM systems for 
supporting their enterprise-wide engineering processes.  
 
The efficient management of distributed information has become increasingly important as data is digitized 
and placed online. But this data comes in many forms and is under the management of diverse middleware 
components and applications. Users need integrated and on demand access to information, but the data 
itself is a moving target. Siloed systems are evolving independently and there are usually no budgets 
available for the integration task. With many companies operating with a focus on cost-cutting, the ability 
of an enterprise to align processes and information that support the efficient development, delivery, and 
management of a product over its useful life will determine who has the winning edge. Therefore, a variety 
of integration methodologies has emerged, and those methodologies must be carefully and selectively 
applied in order to achieve integration without unaffordable "tear up" of the systems. 
 
This paper will describe in detail a case study and solution of an IBM Research project called Hedwig.  
Hedwig provides robust solutions in the space of Product Life Cycle Management (PLM). We focus on the 
several research issues including information federation, data mapping, synchronization and web services 
connections.  We describe a working system that allows access to heterogeneous Product Data 
Management (PDM) systems that are used in the automotive and aerospace industries. 
 
1. INTRODUCTION 
 
Accessing heterogeneous data sources is increasingly necessary and difficult and there 
have been a number of studies on integration techniques [1-3]. The pressures of 
increasing competition have been forcing major corporations to reengineer their 
business organizations to achieve greater synergy and efficiency:  this demands data 
integration. In the past, the strategic goal of these efforts was to develop enterprise-wide 
solutions that tied together information systems across business units within the 
organization. Still not wholly realized today, this goal of efficient management of 
distributed information has become progressively more difficult for several reasons: 1) 
the data volume is increasing due to increased digitization of sources, 2) it is coming 
from even more sources where it is under management of diverse middleware, and 3) 
virtual marketplaces and global partnerships are requiring integration efforts which 
stretch across the boundaries of previously siloed systems within individual corporations.  
According to the Aberdeen Group report in August 2003, many companies have adopted 
product life cycle (PLM) as a key strategy for driving competitive differentiation, 
performance, and profit optimization in the market.  PLM is a business strategy intended 
to link all information, people, and processes associated with a product from initial 
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concept through end-of-life disposal.  In the past, PLM began with design and ended 
with manufacturing.  These days PLM must start with market analysis and doesn’t end 
even after sale: product warranty claims can be crucial in a time of small margin; product 
liability can destroy a company and post-sales service can be the business that really 
matters [4].   
 
Information integration and management products, especially those that allow product 
lifecycle management for industries such as the automotive industry, have seen large 
growth in revenue for vendors in the past several years [5]. Interoperability barriers due 
to proprietary solutions, particularly in CAD, CAE, and PDM applications, and further 
exacerbated  by each company’s own set of requirements and lack of enforced 
standards have led to several endeavors in information integration. In this paper, we will 
identify four key areas concerning information integration as it applies to the automotive 
industry (and to the aerospace and electronics industries in similar ways).  
 
In our project, Hedwig, a real-world IT solution was developed as a proof-of-concept for 
IBM Product Lifecycle Management customers chosen from the Automobile and 
Aerospace industries.  Hedwig originated as an IBM Extreme Blue project 
http://www.ibm.com/extremeblue where top students from different universities come to 
IBM to work with professional researchers and developers to rapidly develop a case 
study and build a system solution based on real customer needs. Hedwig’s goal was to 
study integration requirements and develop a prototype information integration system 
that leverages current IBM data management technologies combined with commercially 
available PDM systems.  Specifically, it uses IBM’s DB2 Content Manager (CM) to 
provide storage, management, and distribution of all types of text, digital and multimedia 
content across different applications. In addition, the project uses DB2 Information 
Integrator (DB2 II) and IBM Websphere Web Sevices products to federate and provide 
intelligent access to heterogeneous “third party” PDMs. 
 
Hedwig was successful in demonstrating progress towards two central goals. The first 
was to obtain efficient access to third party PDMs without excessive query processing 
load. We return results while maintaining the inherent relationships within the data.  For 
instance, a query on a specific car model will send requests to diverse PDM data stores, 
because a whole vehicle often relies on subsystems from different partners that use 
diverse PDM systems. Data is returned from multiple sources, but the parent-child 
relationship of those parts needs to be retained where they exist. An overall hierarchy is 
maintained, while the sub-hierarchies maintain their native structure.  Maintaining as 
much structure as possible in the top-level data model (CM) is of course desirable, as 
opposed to a flat structure, which might have for example, nuts and bolts next to the 
frame drawings and the final car design. The second goal is to standardize the 
connection framework so that unforeseen processes and services can be incorporated in 
the future:  this also enhances global scalability and portability. This is enabled through 
use of web services. 
 
We will approach this paper by describing (through an informal case study) our research 
and development to build a simple but highly illustrative federation infrastructure. We will 
highlight some of the approaches we took in each of these areas as well as future 
approaches and modifications needed to enable a scalable and efficient federation 
infrastructure.  We will describe our experience with the rapid integration of several 
databases and their applications and recommend a framework for future information 
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integration. We will also address the several accompanying research issues and discuss 
their projected impact on the overall architecture.   
 
2.  DESIGN APPROACH AND CONSIDERATIONS 
 
2.1. Overall federation infrastructure  
 
Large automobile and aerospace enterprises especially incur high costs from 
maintaining and using disparate CAD and PDM systems, long delays due to the transfer 
of information and manual reentry into destination systems, and quality problems caused 
by the movement of data across media boundaries [6]. We aimed to design and build a 
federation infrastructure that would alleviate many of these problems in the industry by 
allowing and managing the bi-directional flow of data through distributed heterogeneous 
systems and environments in an automatic way.  
 
This federated infrastructure allowed those backend sources to be accessed as if they 
were from a single source with a common data model. Users would make XML Path 
Language (XPath http://www.w3.org/TR/2003/WD-xpath20-20031112) requests through 
a browser to the integration platform, where the queries are automatically rewritten 
based on the contents of the central data management system (discussed in the next 
section) and the query manager and then converted to backend-specific semantics and 
sent through the connectors (discussed in Section 2.3). Results from the backend 
sources would be appropriately transformed, mapped, and reassembled through the 
connectors and central management system and returned to the user in a consistent and 
unified format. Indeed, this infrastructure focused on providing end users data visibility to 
the distributed data sources, with interoperability between heterogeneous environments 
occurring only on a small scale. To this end, the single-access-point query and 
navigation features served well. 
 
The major roadblock in this infrastructure is that the involved data sources are rarely all 
immediate sources. Though the above federation platform allows even systems outside 
the enterprise to be directly connected, many trading partners/suppliers (and even 
different divisions within a corporation) wish to maintain strict control and data integrity 
over their data sources and applications. Interoperability and automated data transfer 
become the keys to success in the automotive industry.   Each OEM, especially big 
automobile companies, would like to maintain its specific PDM systems, such as IBM’s 
Enovia and EDS’ Metaphase, while its Tier 1, Tier 2, etc. suppliers manage their own 
data management systems and/or applications.  
 
This integration platform can be transformed into an engineering hub, which provides a 
portal for data visibility to end users and connection mechanisms to immediate data 
sources as before. At a higher level, however, they allow for a whole network of 
engineering hubs, one that stretches across all facets of a virtual enterprise and 
connects business partners together across logical divisions within a company, company 
intranets, and geophysical barriers, as shown in Figure 1. These hubs must support 
decentralized, message-oriented communication between one another using 
standardized, XML-wrapped data units. The integration hubs and engines must therefore 
serve human as well as application requests distributed across multiple hubs, requiring 
query managers to query across the network to determine an appropriate horizon in 
which results are returned and assembled.    
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Figure 1:  Federation Infrastructure (left) and Global network of ‘engineering hub’ 

(right)  
 
2.2. Intermediate data management 
 
The data path from the backend data sources to the end user generally involves up to 
two major intermediate levels of data management. Most traditionally, developers have 
used only a single intermediate level, employing the approach of data consolidation, or 
placement, where data is physically consolidated into a single, local repository in 
advance of using the data to service user queries [7]. This consolidation typically takes 
place in an information warehouse, which provides periodic data extracting services [8]. 
Recent endeavors, however, have leaned towards a second approach of data 
federation, where the data is dynamically and directly retrieved on every request. 
Several complex hybrids of the two approaches involving data marts and warehouses 
alongside federation have also been introduced [9].     
 
The approach we took was to use a mature content management system such as the 
IBM DB2 Content Manager product, as an intermediate step in the federation operation. 
Therefore, each query request by the user would pass through the management system 
before reaching the backend sources, and each set of results received from the backend 
sources would be stored and assembled in the intermediate system before being 
returned to the user. By putting an advanced data management system at such a high 
level in the data path (near the integration engine), we realized several benefits. This 
management system partly acted as a data warehouse in consolidating the data locally 
within the context of a single, unified schema. On the other hand, it served more as a 
cache than a warehouse in functionality by storing the binary data and metadata 
associated with recently requests locally. Furthermore, it provided advanced 
management of metadata, including storage of backend information (i.e. where the data 
originated) on a per result basis.  
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These benefits together enable huge gains in performance; large binary data sets, which 
put immense strain on the network when transported, are moved to this local “cache” 
only once or when the data has both been updated and requested by the user instead of 
over periodic intervals (user may retrieve outdated data) or blindly fetched on each 
request as would occur in a purely federation-based infrastructure. Similarly, backend 
information allows queries on certain result sets to be sent directly to the involved 
backend sources. These all help to reduce per query latency (which is of greater 
importance than overall throughput). The underlying principle of this is that the central 
cache or warehouse should involve a highly evolved and intelligent content management 
system to handle caching, performance, business analysis and other functionality. 
Placing this system so near the integration engine also substantially aids it in distributed 
query planning, data source registering and mapping, and synchronization protocols.   
 
2.3. Connector Implementation 
 
Information management systems require a combination of middleware to support 
integration of diverse software systems [10]. These middleware technologies implement 
connectors, which are used to provide data transport and possibly data mapping and 
transformation between the backend data sources and the core integration platform. 
Database Oriented Middleware, which facilitates communication with databases through 
means such as ODBC/JDBC calls; Message Oriented Middleware, which uses queuing 
software to move information point to point; and Message Broker Middleware, which 
offers advanced routing and mapping mechanisms in message brokering between 
several different applications, are a few of the types of middleware used as the 
underlying technology for data transport through connectors.     
 
We used Database Oriented Middleware (JDBC API) and a subset of the backend 
interface API to build two connectors to two separate PDM systems. Since the 
automotive industry’s needs involved a rapid integration of several disparate systems, 
we focused on achieving: 
 

• Extensibility – We desired that additional connectors be simple and 
straightforward to implement. This required that every connector class have 
access to a standardized set of backend-specific user and privileges information, 
including PDM schema, location, and server name.  

• Maintainability – While we wired the semantics mapping into the connectors 
themselves, we cleanly separated out the smallest subset of backend-specific 
code to allow for clearly meaningful function “templates” to implement and 
occasionally update. Furthermore, this solution can be easily integrated into IBM 
DB2 Information Integrator, which enables flexible changes and updates to the 
semantics mapping to support organizationally structured data retrievals.    

 
 
Thus our attention turned more towards the framework model in which to implement the 
connector code on the integration platform side instead of the underlying transport 
mechanisms leading to the backend side. In our framework, we designed a set of 
generic PDMDatastore classes that served as the foundation (and entry point to all the 
system/engine logic) for all connector implementation. This provided utility access 
functions to the central content management system as well as common data retrieval 
methods (involving JDBC requests) to the backend sources. By providing this set of 
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functions, it became significantly easier to implement the backend-specific connectors 
without concern about inconsistencies with other components in the system. Each 
backend-specific connector extended the parent PDMDatastore classes.  
 
Thus to construct a connector to Enovia VPM, developers would only need to implement 
two main functions in PDMDatastoreVPM. The ‘searchFederation()’ function supported 
open XPath queries from the user to retrieve part information from the backend, and 
therefore would require developers to 1) convert a query string parameter to backend 
queries/API calls and 2) query and reconstruct the results from the backend into a 
system result set object. The ‘navigateAssembly()’ function supports user navigation 
through entire assembly structures by following parent-child pointers, and would 
consequently require developers to 1) query for children parts using a parent part’s 
unique part number (where a child is one level down from a parent in the assembly 
hierarchy), 2) acquire the attributes from each child to pass on using a system data 
object, and 3) passing the object on to perform the linking logic. This connection 
framework worked exceedingly well as the second connector took only a few days to 
add to the integration platform.  
 
Indeed, we intend to extend this connector framework across other types of middleware. 
As discussed earlier, however, the other side of integration in the automotive industry 
demands greater extents of interoperability. The tight coupling between our integration 
platform and backend sources played a dominant role in terms of interoperability in even 
a simplistic connection effort. The backend application environment required us to 
downgrade our own database applications when the project began. There was a 
constant threat of backend engineers rebuilding their database tables or upgrading their 
systems and possibly their interfaces. And while the data modeling process is always a 
tremendous effort in any integration endeavor, our reliance on the backend models often 
hampered forward progress on the platform side. To resolve these problems we have 
already begun to support connector transport using Web Services Middleware. This 
loosely-coupled technology will promote interoperability; this allows service provides and 
requesters to operate on different environments using any language by using platform-
independent and standard network protocols with TCP/IP, transport protocols with 
HTTP, message format with SOAP, and description mechanisms with WSDL. This will 
also significantly increase productivity as it is relatively easy to generate SOAP wrappers 
and generate WSDL documents to cast applications as web services for connecting 
legacy applications. Furthermore, the flexibility of XML Schema and XSLT templates 
allow for dynamic interpretation of semantics and some freedom in message and data 
mapping and transformation. 
 
2.4. Relationship Management 
 
In most cases, users desiring integration of their data stores do not simply want to 
retrieve independent fragments of data, but to navigate through and visualize entire 
structures of data based on relationships. One enormous barrier for the automotive 
industry is retrieving the entire bill of materials (BOM) of certain products. For instance, 
an airplane can be broken down into several subcomponents, such as the engines, 
wings, fuselage, and cockpit. Each of these can be subdivided into several 
subcomponents. The entire assembly of a plane can reach thousands of levels of 
subassemblies consisting of millions of parts. To enable BOM retrieval, developers 
would typically hard-wire this functionality into integration platforms in an ad-hoc fashion. 
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Changes to the backend data stores or additions of heterogeneous data sources would 
require a huge revamping process.    
 
Our prototype used the central content management system to rebuild the inherent 
backend relationships for navigation and display by the front end user. The concept of 
folders and links were supported by the management system, where items (that had a 
folder component) could contain other items through links. Thus for an automobile, any 
part’s subassembly of parts was linked to it by placing the appropriate subassembly 
parts in the correct folders (parent parts). At every step in a user’s navigation through an 
assembly structure, the request (such as for an engine’s subparts) is handled by the 
‘navigateAssembly()’ function from above. Thus, the subparts are fetched through some 
means of computation, such as a SQL statement or sequence of API calls, linked to the 
parent part, and displayed to the user in a hierarchical format. While this hierarchical 
folder structure is conducive to storing most any type of relationship, we hope to extend 
this further by relying on new components to handle relationship management. 
 
The main component is the Relationship Definition & Computation Templates (RDCT) 
database, which allows for the definition of relationships that the system can support. 
There are several types of complex relationships that a user can define. Modeling 
languages, such as the Unified Modeling Language (UML), formally specify many such 
relationship classes, such as association, aggregation, and composition. We decided, 
however, to shield the user from these abstractions of relationships and provide them 
with the flexibility of defining any sort of relationship in a conceptually intuitive and 
visually explicit manner using XML scripts. For example, the subassembly relation of an 
automobile could simply be defined as a ‘subassembly’ relationship. Similarly, an 
executive who is navigating a certain project’s responsibility and management chains 
could have those associations represented as ‘coordinator’ and ‘manager’ relationships.  
 
The relationship definition script also includes the list of backend data sources that 
support this relationship as well as associated mechanisms for computing the 
relationship. For instance, these computation scripts could include anything from simple 
SQL statements to the calling sequence and input/output parameters of web services 
invocations through compiled proxy code or proprietary API invocations, all of which can 
be automatically interpreted by an XML engine to allow for dynamic computation at 
every step of navigation across all predefined relationships. (As an example, while 
navigating through a car’s subassembly, we may be interested in navigating the 
responsibility chain of the managers overseeing a certain subassembly’s design.) Thus, 
each new relationship is contained within its own definition script that can be easily 
extensible to any number of connected backend systems. In this way, the system has 
the flexibility to allow for adding, removing, or modifying relationships versus having to 
dig into the guts of the integration platform. These relationship assembly structures are 
managed within session beans that can be persisted or transported in XML format, 
allowing further flexibility in data exchange, this time based on dynamic user 
specifications and data navigation.  
 
 
3.  ARCHITECTURE 
 
Figure 2 shows the overall Hedwig architecture. 
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Figure 2:  Overall Hedwig Architecture  
 

It works as follows: 
 
1. The user logs in using the IBM DB2 Content Manager (CM) browser, called eClient. 

[13]. 
2. The user queries for a part or assembly. Hedwig transforms the query to Xpath 

http://www.w3.org/TR/2003/WD-xpath20-20031112 and then passes it to IBM DB2 
Information Integrator’s (DB2 II) federation layer engine.  

3. The federation layer then uses the custom connectors and logic to each of the PDM 
systems to process the query. The connectors thus reach out to the disparate data 
sources and combine and store this information into CM for building complex 
relationships and assembly structures. The federated data model is detailed in the 
next Section 4 while the connector design and implementation is discussed in 
Section 5. 

 
 

4.  FEDERATED DATA MODEL 
 
The federation layer operates on a single canonical data model in CM. In the long run 
we will build an enhanced generic model that may include some features of backend-
specific data models.  Even at this stage, CM provides clear value add because of the 
richness of its data model, its ability to cache a whole design or sub-design while being 
worked on, and the ability to warehouse snapshots of various designs for versioning and 
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archival purposes.  Limitations of space in this paper allow only a brief description of the 
canonical data model. 
 
Typical final products in these industries, such as passenger cars or commercial 
airplanes, are composed of hundreds of thousands or significantly more parts that are 
assembled into a hierarchical structure, sometimes with hundreds of levels. We need to 
maintain, evolve and version this hierarchy throughout a product’s lifecycle and inherit 
any hierarchical structure where possible from the third party PDMs. 

 
 
4.1. CM Data Modeling 
 
The required CM data modeling is accomplished in three major steps. In the first step – 
data identification – the full set of data is gathered, analyzed and represented.  We have 
two exemplary but very different PDM data sources to study – the first one is VPM 
(Virtual Prototype Management) and the second one is LCA (Lifecycle Application) [14].  
The next step – data categorization and hierarchical relationship construction – helps to 
develop the structure of our data model. We use UML to represent the data model at this 
stage. In the last step – part structure CM data modeling – we ‘convert’ the data we 
gathered, and diagrammed previously, into a CM data model [11]. 
 
In CM, an item type is a template for defining and later locating like items. An item type 
consists of both system- and user-defined attributes. An attribute stores data or values 
that describe a characteristic or property of an item. An item is an instance of any item 
type.  During data modeling, an item type can be further classified as an item, resource 
item, document, and document part. Items are those things that can be described 
completely by a set of attributes.  Items are similar to a row in a database. Documents 
provide the template to model multi-part documents with related contents. This template 
saves the effort to create similar data models from scratch. 
 
When creating an item, the item’s behavior can be identified by a descriptive attribute 
called a semantic type. This semantic type helps to distinguish the usage and the 
purpose of different items, which belong to the same document item type. Forming 
relationship between items can be done by links. A link is a directional relationship 
between the source item and the target item. CM offers more building blocks than those 
described above however this is simple and usable set..  
 
A part instance contains zero or more part instances. In CM, a document item with 
semantic type as folder allows inclusion of a variable number of document items. Based 
on this similarity analysis, an item type as document with semantic type as folder is 
selected to represent part instance. The meaningful meta-information to describe a part, 
such as part number, name, creation date, etc. are defined as a set of attributes in this 
selected item type. Each part instance has documents attached to it. In CM, the 
document item type provides the template to allow users to define metadata for the 
document. 

 
4. CONNECTOR DESIGN 
 
For the Hedwig Project, our team built two custom connectors, one to Enovia LCA and 
another to Enovia VPM. As mentioned above in Section2.3, we designed the connector 
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framework in a manner to specifically support two main goals of Extensibility and 
Maintainability. 
 
In terms of extensibility, we designed the framework model as shown in Figure 3 below. 
Each backend-specific class extends the basic PDMDatastore class, which serves as 
the foundation for all connector implementation. This provides utility access functions to 
the central repository that maintains the repository’s consistency as well as generic utility 
functions for common data retrievals, such as through JDBC calls. By providing this set 
of utility functions, it becomes significantly easier to implement the backend-specific 
classes without concern about inconsistencies with other components in the system.  
  
 

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract searchFolderContent()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract searchFederation() abstract navigateAssembly()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract searchFolderContent()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract doFederationSearch() abstract doFederationClick()

PDMDatastore

PDMDatastoreVPM PDMDatastoreLCA PDMDatastoreMetaphase PDMDatastoreXXX PDMDatastoreYYY

abstract searchFederation() abstract navigateAssembly()

 
 
 
 
 
 
 
 
 
 
 

Figure 2. The PDMDatastore framework and extension classes 
 
Moreover, the PDMDatastore parent class enforces the methods that must be 
implemented to provide the appropriate functionality by providing a short list of abstract 
methods. The two most critical functions are shown in Figure 3. The ‘search Federation 
()’ function supports open XPath queries from the user to retrieve part information from 
distributed backend data management systems. The ‘navigateAssembly ()’ function 
supports user navigation through entire assembly structures by following parent-child 
pointers.  
 
5.  CONCLUSION  
 
There remain several research issues that will be further investigated in building a robust 
infrastructure for information integration. 
 
• Synchronization:  It is important to find efficient, practical, and functional means for 

ensuring that CM (the central data repository) is adequately synchronized with each 
backend data management systems. As of now, we use an approach of refreshing 
the relevant parts of CM’s contents. Presently, users are expected to only perform 
‘search’ operations and retrieve documents. In this data-brokering environment, our 
solution serves well. Eventually, we can move to a more complete data warehouse 
model.  There are several ways to achieve more advanced synchronization including 
using built-in hooks or triggers at both ends and then propagating these data 
connector listeners as supported by IBM’s Websphere Web Services products.   

     
• Standard semantic mapping mechanisms:  As the reader will see from the above, 

there is still a manual mapping process that is required between the central data 
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model and the backend-specific data models. With the additional functionality of 
allowing for navigable assembly structures and BOM representations, further 
mapping must be done. These new mappings should not be wired into the connector 
code, but specified at the federation layer level using standardized formats, GUI, and 
interpreting engines.  Schema mapping and integration tools would be a valuable 
addition. 

 
• Performance: performance is a very crucial part of the system. As the integration 

stretches to a broader role in product lifecycle management (e.g., to include 
customer support), we will need to further consider latency as well as throughput. 
Our current prototype does considerable data access the first time data is accessed, 
but more advanced proactive caching and partial-update schemes can be 
developed. 
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