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Abstract 
 
      This paper presents a System-on-a-Chip design 
methodology that uses a microprocessor subsystem as a 
building block for the development of chips for 
networking applications. The microprocessor subsystem 
is a self-contained macro that functions as an accelerator 
for computation-intensive pieces of the application code, 
and complements the standard components of the SoC. It 
consists of processor cores, memory banks, and well-
defined interfaces that are interconnected via a high-
performance switch. The number of processors and 
memory banks are parameters that can vary depending on 
the application to be implemented on the chip. 
Applications such as protocol conversion, TCP/IP off-
load engine, or firewalls can be implemented with 
processor counts ranging from 8 to 128. 
 

1. Introduction 
 
  The market shift toward storage area networks (SAN) 
and network attached storage (NAS) systems, as well as 
the massive expansion of the Internet, have placed new 
demands on server and storage designs. General purpose 
CPUs either cannot meet the computational requirements 
of the network protocols, or are too expensive in terms of 
unit cost, space and power. This has led to the offloading 
of many of the networking and protocol processing 
functions from host processors into host-bus-adapters 
(HDAs) or network interface controllers (NICs). Initially, 
most HDAs and NICs were implemented in ASICs using 
hardwired logic. But as the need to implement complex 
network protocols arose, such as TCP/IP or iSCSI, 
programmable solutions have become attractive because 
of a number of advantages they offer: they can 
accommodate different and evolving protocols; they are 
easily upgradeable via program changes; they offer a 
faster time to market. An example of such a 

programmable solution that is implemented in the form of 
a scalable, multiprocessor architecture can be found in 
[1].  
    Another trend that has emerged in the design of high-
speed networking is the system-on-chip (SoC) approach 
[2]. SoC designs have provided integrated solutions for 
communication, multimedia, and consumer electronics 
applications. To meet performance and functionality 
requirements, current SoC designs typically include a 
general-purpose processor, one or more DSPs (Digital 
Signal Processors), multiple fixed function silicon (FFS) 
accelerators, and embedded memory. For example, a 
CDMA cell phone might have 800,000 to 3 million gates 
dedicated to FFS accelerators, and up to four DSPs 
performing the remainder of the processing. 
  The building of current state-of-the-art SoCs typically 
requires the designer to assemble a complex system from 
basic components, e.g., processors, memory arrays and 
controllers, and to interconnect them reliably under 
usually strong time-to-market pressure. More specifically, 
the SoC designer must:  a) select the basic system 
components; b) model bus-contention between the 
different devices and select appropriate bus structures; c) 
integrate all hardware components; and d) finally, 
integrate all system components using custom software to 
provide the required services, such as Fiber Channel, 
Ethernet, TCP/IP, iSCSI, or other standardized protocols.  
     However, there are inherent problems with current 
SoC design methodology:  it is labor-intensive and error-
prone; it requires highly-skilled designers familiar with a 
particular application domain; and it demands high cost 
for bus modeling and/or contention on a common system 
bus. Other approaches to SoC design where multiple sub-
systems are integrated on a card or board exhibit 
drawbacks due to component count that drives system 
cost, increased failure susceptibility, and the cost of high-
interconnect multi-layer boards.            
   These limitations of current SoC methodology have 
led us to pursue a more flexible and efficient approach. 
The approach utilizes a multi-processor system 
comprising memory and local interconnect, which is 
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embedded as a macro attached to a common bus (e.g., 
CoreConnect PLB [3]). The macro is customized for a 
specific functionality by including application software 
running on it. The SoC designer, then, needs to determine 
performance parameters required for the specific 
application to be implemented (e.g., number of 
multiprocessor processor cores, amount of memory, line 
speed), and possibly add some application-specific 
hardware interface macros. The basic SoC structure and 
modeling will already be in place, thus significantly 
simplifying the SoC development process. 
     Some possible applications that can be implemented 
using this approach are IPSec VPN tunneling engine, 
TCP/IP Offload Engine, network processing for iSCSI, or 
encryption engine (i.e., for compression/decompression). 
     The paper is organized as follows: In section 2, we 
describe the overall SoC architecture as well as the 
architecture of the multiprocessor macro. In section 3, we 
present a case study on the performance analysis of a 
TCP/IP off-load engine, and in section 4, we show the 
results of the case study. 
 

2. System-on-a-Chip Architecture 
   
  A typical System-on-Chip design is illustrated in 
Figure 1. It comprises a processing element, a local 
processor bus (PLB), on-chip peripheral bus (OPB), and a 
number of components, such as SRAM, DDR controller, 
PCI-X bridge, DMA controller, OPB bridge, etc. This 
particular implementation uses the IBM embedded 
PowerPC1 440  processor core [4] and the CoreConnect 

                                                  
1 IBM and PowerPC are registered trademarks of International Business 
Machines Corporation 

local bus [3], but similar configurations can be found that 
use other embedded processor cores, such as ARM [5], 
MIPS [6], etc.  
     The approach based on a single embedded processor 
can provide a cost-effective, integrated solution to some 
applications but may lack the computational power 
required by more demanding applications. The 
computational capabilities of the SoC were enhanced, in a 
number of networking applications, through the addition 
of special-purpose processor cores attached to the 
common bus, as shown in Figure 2, operating in parallel 
with the processor core (i.e., PowerPC 440). These 
additional special-purpose processor cores are usually 
small in silicon area, as many of the features found in 
typical general-purpose processors (e.g., memory 
management unit to support virtual addressing, etc.) were 
excluded. Examples of this approach are the IBM 
PowerNP [7], and the NEC TCP/IP offload engine [8]. 
Although these systems are programmable and, 
consequently, more flexible compared to hardwired 
accelerators, they suffer from several drawbacks: a) they 
induce additional traffic on the SoC bus, as the bus must 
now support both instruction and data streams to the 
processor accelerators possibly causing bandwidth 
contention and limiting system performance; b) the SoC 
bus is often not optimized for multiprocessor performance 
but for compatibility with standardized components and 
connection protocols in a SoC system; c) the processor 
accelerators often implement only a very limited 
instruction set and use assembler language, thus making 
the development and maintenance of applications running 
on the processor accelerators very difficult and costly. 
 

 
Figure 2:  SoC employing multiple processor 

accelerators 

 
 
 

O
n-chip Peripheral B

us (O
PB

)

UART (2)

I2C (2)

GPIO

Arb

Processor Local Bus (PLB)

Timers

Interrupt
Controller

RAM/ROM/
Peripheral 
controller

Ext Bus 
Master

GPIO

GPT

OPB
Bridge

PCI-X
Bridge

Processor Local Bus (PLB)

10/100/1G
Ethernet 

MAC

440  
PowerPC

DMA
DDR  

SDRAM 
controller

DMA
Controller

SRAM

Special
processor
accelerators

Figure 1: Single processor-based SOC 
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2.1 Architecture description  
 
          The above limitations of current architectures led 
us to the development of a programmable scalable macro 
that is easily reconfigurable in terms of processing power 
and memory capacity. In our methodology, we have 
replaced the collection of special processors shown in 
Figure 2 with a single macro comprising a self-contained 
processor-based subsystem (as illustrated in Figure 3).  
This subsystem is integrated as a component in the SoC 
and is connected to the main processor bus via a bridge. 
The processor based subsystem comprises one or multiple 
processor clusters, one or more local memory banks for 
storing data and/or instructions, and a local interconnect 
means implemented via a crossbar switch.  The self-
contained processor-based subsystem macro is illustrated 
in Figure 4. 

Our subsystem comprises many simple processor 
cores with a reduced general purpose instruction set 
derived from the PowerPC architecture. The processor 
cores have a single-issue architecture with a four-stage 
deep pipeline. Each core has its own register file, ALU, 
and instruction sequencer [1].  Four cores share a 16KB 
local SRAM, while a cluster of eight cores share a 32 KB 
instruction cache.  The I-cache bandwidth is sufficient to 
prevent instruction starvation, as one cache line (16 
instructions) can be delivered to the processors every 
cycle. The size of the instruction cache is sufficient for 
network applications, as most processor working sets fit 
in the I-cache, as shown in [9]. Our implementation of the 
Fibre Channel protocol shows that less than 4 Kbytes of I-
cache per processor are sufficient to get instruction hit 
rates of more than 98%, because of the small footprint of 
the code [1]. Additional banks of globally accessible 
SRAM can be provided accessed via the crossbar switch. 

The exact number of processor clusters in the 
subsystem needed to support sufficient computation 
power, e.g. one, two, or even 16 processor clusters 
(comprising 128 cores), depends on the application 
requirements, as it will be shown in Section 4. For 
example, implementing endpoint functionality for Fibre 
Channel network protocol requires less computational 
power than the more complex TCP/IP termination. 

Another feature of our processor-based subsystem is 
the use of embedded memory for storing the application 
program, current control information, and data used by 
the application. Sufficient amounts of memory to provide 
smooth operation under normal operating conditions can 
be placed in the subsystem without excessively increasing 
its size. A further advantage of embedded memory, as 
compared to conventional off-chip memory, is that it 
offers short and predictable access times, which can be 
accurately accounted for in the time budget estimates for 
the processing of packets. 

All elements in the subsystem are interconnected via 
a switch that is, in turn, connected to the SoC processor 

 
Figure 3:  SoC employing self-contained 

multiprocessor macro 

 

 
 
 

Figure 4: Multiprocessor subsystem macro 
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! The only traffic between the subsystem and the SoC 
system is the data flow traffic (data receive and 
send), thus minimizing bandwidth contention 

! The subsystem interconnect fabric (i.e., switch) can 
be designed to provide an optimized high-
performance solution to the multiprocessor, without 
the need to accommodate the standard component 
interfaces and connection protocols of the overall 
SoC   

 
 
2.2 Boot-up and initial program load 
 

The multiprocessor subsystem can be viewed as an 
accelerator to the SoC processor (e.g., a PowerPC 440) 
that is used for offloading computation-intensive tasks. 
The initial program load into the multiprocessor 
subsystem is done by the SoC processor. The 
multiprocessor subsystem has only volatile storage and 
thus it contains no boot-up code. After power on, and 
after the SoC processor is booted-up, the SoC processor 
initializes the loading of a small bootloader into the 
SRAM memory of the multiprocessor subsystem. Upon 
its completion, a processor core in the multiprocessor 
subsystem begins loading the particular application into 
the subsystem, and assigning system tasks to each 
processor. 

In our implementation, we use a pipelined approach 
for multiprocessor packet processing, where the packet 
processing operations are partitioned into stages that are 
assigned to separate processors. We chose this approach 
because of better utilization of the hardware resources, 
such as, for example, I-caches. Examples of network 
operations that can be assigned to separate pipeline stages 
are header handling, packet validation, generation of an 
acknowledgment response, packet reordering and 
message assembly, and end-to-end control. 

The scheduling of protocol tasks to processors is 
done statically during initialization, i.e., each processor 
executes the same set of operations on various packets. 
Likewise, to avoid overhead associated with dynamic 
memory management, such as garbage collection, static 
memory management is used. All memory structures used 
are initialized during system bring-up. These include 
memory areas for storing data packets, control and status 
information of existing network connections, program 
code, and work queues. Further details on scheduling 
tasks and on the various memory structures used in our 
architecture can be found in [1]. 
 
 
2.3 Operation 
 

As an illustration of the data flow in the 
multiprocessor subsystem, we describe a possible 

implementation of TCP/IP off-load engine in which a 
TCP/IP segment is transmitted over the Ethernet link. 
This involves the following steps: 
• The SoC processor sets a request for data processing 

and sends the request and the pointer to the data in 
the external DDR memory to the multiprocessor 
subsystem via the bridge. In our implementation, an 
interrupt signal rises, but this can be implemented by 
writing data to some dedicated register or pre-
specified memory location instead 

• The multiprocessor subsystem recognizes the request 
and activates the DMA engine to transfer data from 
the external memory to its local memory 

• Data are transferred to the memory in the processor-
based subsystem, and end of data is signaled 

• The multiprocessor subsystem implements the 
specific protocol tasks required, such as partitioning 
of the data into a series of IP packets, generation of 
IP packet headers, generation of Ethernet packets, 
etc., and moves the packets to the Ethernet MAC 
macro. If there is a need to retransmit packets, as 
defined by the protocol, this takes place without 
interference from the SoC processor 

• When all data are transmitted, the SoC processor is 
notified about the task completion. This can be 
implemented by sending an interrupt to the 
PowerPC440, or writing to some predefined location 
which is regularly polled by the PowerPC440 

 
2.4 Area estimates 
 

The architecture of our multi-processor subsystem is 
cellular allowing the design to be custom scaled. In our 
design, the number of processor cores and embedded 
memory blocks can be easily adapted to the application 
requirements without making significant design changes.  
We have found that in the following networking 
applications, the required computational capacity of the 
multiprocessor subsystem operating at line speeds of 10 
Gb/s can vary as follows: 
• Protocol conversion: 14 processors [1] (i.e., two 8-

core processor clusters). A chip that includes 64 
Kbytes of I-cache, 64 Kbytes of data SRAM, a 
PowerPC440 and the other macros shown in Figure 
3, would require approximately 35 mm2 in 0.13µm 
ASIC technology. 

• TCP/IP offload engine: 32 processors, i.e., four 
processor clusters (see Section 4). Assuming 128 
Kbytes of I-cache and 128 Kbytes of SRAM, this 
would occupy 50 mm2 in the technology above. 

• Integrated firewall:  128 processors (estimate), i.e., 
16 processor core clusters. Assuming 512 Kbytes of 
I-cache and 512 Kbytes of SRAM, the resulting chip 
would be about 150 mm2. 
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3. Case study 
 

To prove our methodology, we evaluated a SoC 
design using our multiprocessor subsystem in an HBA 
(Host-bus adapter) application, as shown in Figure 5. The 
HBA functions as an interface between a host computer 
and a storage network which communicate with each 
other using the iSCSI protocol [10]. The host applications 
and the storage devices are presented with a traditional 
SCSI (ANSI standard X3.131-1986) interface, while the 
TCP/IP protocol is used for the actual communication 
between the two end-points.  

The HBA performs the protocol handling operations 
and is used to transfer data in the form of TCP/IP packets 
from the Ethernet to the host (receive) and from the host 
to devices on the network (transmit). The main 
components of the system involved in the receive and 
transmit operations are shown in Figure 5. 

As previously discussed, the multiprocessor sub-
system consists of several simple cores (which are packed 
into clusters of eight cores) and an internal memory that 
are connected via a crossbar switch.  The module also 
includes a bus interface and an interface to an Ethernet 
media access controller (EMAC). Both these interfaces 
contain buffers and implement DMA controllers for data 
coming into and going out of the multiprocessor 
subsystem. In the system shown in Figure 5, a PCI bridge 

provides an interface between the host’s PCI bus and the 
SoC bus. Note that we show single processor cores rather 
than processor core clusters in the Figure 5, and does not 
specify the size of the memory.  This is because our 
analysis will determine the number of processor cores and 
size of the memory needed for particular network speed 
and packet size. 
      Increased system throughput is achieved through 
coarse-grained parallelism, where a dispatch process 
running on a computing element in the multiprocessor 
subsystem allocates the processing of a single incoming 
packet as a single task to another available computing 
element. 

In the receive mode, TCP/IP packets that arrive over 
the Ethernet are received via the SoC’s Ethernet port. The 
packets are then moved (via DMA) from the EMAC’s 
internal FIFO into the multiprocessor subsystem’s internal 
memory over the crossbar switch. After the packets have 
been processed at the subsystem, they are transferred via 
the SoC bus and the PCI-Bus bridge to the host that is 
connected to the PCI bus. The basic flow associated with 
the reception of a single packet is shown in Figure 5. The 
solid connector lines show the basic packet movement in 
the system, while the broken connector lines depict the 
packet header being read in and written out by the 
processing elements. In the transmit case, packets stored 
on the PCI device are read into the system, processed by 
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the microprocessor macro and then transmitted over the 
Ethernet link. 
       The actual protocol conversion code is performed on 
the processing elements contained in the microprocessor 
macro. The macro has several processes P0, P1 … Pn 
running in parallel - one set for each direction (i.e., 
receive and transmit).  Each of these processes is mapped 

to one of the macro’s processing elements. Three different 
kinds of processes run on the macro’s processors: 

1. Dispatch: a process that allocates tasks to 
processors 

2. Protocol processing: protocol-processing tasks 
3. Collect: sets the DMA controller to transfer the 

packet out of the core’s internal memory as well 
as to perform some memory management 
functions, after the packet has been transferred. 

     Communication between these processes is 
accomplished via work queues which are basically 
dedicated areas in memory. An idle process determines 
whether it has any pending work by periodically polling 
its work queue. 
 

4. Results 
  
      The amount of actual computation that is required of 
the microprocessor macro depends on the number of 

packets that are flowing through the system. This, in turn, 
is determined by the workload, i.e., the Ethernet data rate, 
as well as the size of the packets that are being processed.  
      We decided to adopt a simulation-based approach that 
we assumed would help us correctly understand and 
analyze the behavior of the system while processing a 
workload. We captured the behavior of all system blocks 

shown in Figure 5 in an abstract model that was written in 
SystemC 2.0 [11]. SystemC is a C++ class library that is 
emerging as a standard for modeling hardware and 
software systems. It provides the necessary constructs for 
modeling system behavior in terms of timing, 
concurrency and reactivity. In building our system model, 
we abstracted out the functionality of the cores and 
considered their performance impact alone.  

In our analysis, we used an estimate for the 
processing demands that would be made by the 
application software running on the processors. This 
estimate in terms of processor cycles needed, etc., was 
made by analyzing profiling data from sample application 
runs. For our experiments, we assumed that the TCP/IP 
connection setup and teardown functions are being 
performed on the host processor. 

We conducted a set of experiments to determine the 
number of processors that would be needed to process a 
workload consisting of a continuous stream of equal-sized 
packets being received from the Ethernet with data rates 
being varied from 1 Gb/s to 10 Gb/s. 
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Figure 6 shows the results obtained. The checksum 
computation is performed by the microprocessor 
subsystem’s EMAC interface during data transfer. Thus, 
the amount of time spent by the processors on packet 
header processing is basically independent of packet size. 
A workload consisting of higher data rates and shorter 
packets will result in higher packet frequencies, thereby 
requiring a greater number of processors to handle the 
increased processing demands. Our system was unable to 
process Ethernet data rates of 10 Gb/s not because of any 
limitations in the microprocessor subsystem, but because 
the PCI-X bus became the system bottleneck. 

As shown in Figure 6, the number of processors 
needed to handle traffic on a single high speed network 
decreases with an increasing packet size, as the per packet 
computation is the same (in our design, the CRC 
calculation and data copying are supported by hardware). 
Thus, to handle a continuous stream of 512-byte packets 
with the minimal inter-frame gap –which is a worst case 
scenario, not a typical mode of operation- the 
multiprocessor subsystem has to instantiate anywhere 
from 3 processor cores, for 1 Gb/s network, to 23 
processor cores, for 8 Gb/s network. But even at this high 
speed, only three processor cores were sufficient to 
handle jumbo Ethernet packets (i.e., 9,000 bytes). 

 
 

Speed Proc. Clusters Min.Buff SRAM 
1Gb/s 3 1 3KB 32KB 
2 Gb/s 6 1 6KB 32KB 
3 Gb/s 9 2 9KB 64KB 
4Gb/s 12 2 12KB 64KB 
5Gb/s 15 2 15KB 64KB 
6Gb/s 17 3 18KB 96KB 
7Gb/s 20 3 21KB 96KB 
8Gb/s 23 3 24KB 96KB 

Table 1: System requirements as function of network 
speed 

 
Further details on memory requirements for various 

network speeds are given in Table I. The minimal number 
of processor cores needed to handle packets increases as 
the network speed increases. But since processor cores are 
organized in clusters, increases are made in terms of the 
number of clusters.  This can result in the underutilization 
of some processor cores in a cluster, but it is more than 
justified by the high cost to redesign and re-verify a 
cluster of variable size.  

We also list minimal memory requirements to 
provide buffering of packets during the processing of a 
single packet on both the receiving and transmitting sides, 
and the SRAM size typically associated with a cluster. 
The memory is sized to provide smooth operation during 
packet reception and transmission.  More memory can be 

added to provide higher level of buffering, e.g., for 
handling congestion for a specific network interface or for 
buffer reordering. Note that we do not have to keep the 
entire routing table in the subsystem memory but only the 
active open connections, which are usually of fairly small 
size. 

Because of the simplicity of the processor cores, area 
requirements for the microprocessor subsystem are 
minimal. For example, to incorporate a module into the 
SoC design capable of handling 2 Gb/s network speeds, 
we need an 8-processor core cluster with 32 Kbytes of 
memory. This is sufficient to handle the worst case 
workload and provides enough buffering for smooth 
operation under normal conditions. An 8-processor cluster 
with its associated 32Kbytes of I-cache and 32 Kbytes of 
local SRAM occupies approximately 8 mm2 in 0.13 µm 
process ASIC technology. 

 

5. Summary and Conclusions 
 
     In this paper we have shown a methodology for 
designing SoCs for networking applications. The 
methodology is based on the notion that computation 
intensive parts of the application code can be off-loaded 
to a multiprocessor accelerator on the chip. The 
multiprocessor subsystem is a self-contained macro 
whose computational power (i.e., number of processors 
and memory banks) are treated as a parameter at the time 
of the SoC specification, depending on the type of 
application that needs to run on the SoC. We have shown 
through simulations how the parameters can be chosen for 
a TCP/IP offload engine application, based on line-speed 
performance. 
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