
RC23204 (W0405-040) May 7, 2004
Other

IBM Research Report

A Multiprocessor System-on-a-Chip Design Methodology
for Networking Applications

Valentina Salapura, Christos J. Georgiou, Indira Nair
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

A Multiprocessor System-on-a-Chip Design Methodology for Networking
Applications

Valentina Salapura, Christos J. Georgiou, Indira Nair
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10583

{salapura, georgiou, indira}@us.ibm.com

Abstract

 This paper presents a System-on-a-Chip design
methodology that uses a microprocessor subsystem as a
building block for the development of chips for
networking applications. The microprocessor subsystem
is a self-contained macro that functions as an accelerator
for computation-intensive pieces of the application code,
and complements the standard components of the SoC. It
consists of processor cores, memory banks, and well-
defined interfaces that are interconnected via a high-
performance switch. The number of processors and
memory banks are parameters that can vary depending on
the application to be implemented on the chip.
Applications such as protocol conversion, TCP/IP off-
load engine, or firewalls can be implemented with
processor counts ranging from 8 to 128.

1. Introduction

 The market shift toward storage area networks (SAN)
and network attached storage (NAS) systems, as well as
the massive expansion of the Internet, have placed new
demands on server and storage designs. General purpose
CPUs either cannot meet the computational requirements
of the network protocols, or are too expensive in terms of
unit cost, space and power. This has led to the offloading
of many of the networking and protocol processing
functions from host processors into host-bus-adapters
(HDAs) or network interface controllers (NICs). Initially,
most HDAs and NICs were implemented in ASICs using
hardwired logic. But as the need to implement complex
network protocols arose, such as TCP/IP or iSCSI,
programmable solutions have become attractive because
of a number of advantages they offer: they can
accommodate different and evolving protocols; they are
easily upgradeable via program changes; they offer a
faster time to market. An example of such a

programmable solution that is implemented in the form of
a scalable, multiprocessor architecture can be found in
[1].
 Another trend that has emerged in the design of high-
speed networking is the system-on-chip (SoC) approach
[2]. SoC designs have provided integrated solutions for
communication, multimedia, and consumer electronics
applications. To meet performance and functionality
requirements, current SoC designs typically include a
general-purpose processor, one or more DSPs (Digital
Signal Processors), multiple fixed function silicon (FFS)
accelerators, and embedded memory. For example, a
CDMA cell phone might have 800,000 to 3 million gates
dedicated to FFS accelerators, and up to four DSPs
performing the remainder of the processing.
 The building of current state-of-the-art SoCs typically
requires the designer to assemble a complex system from
basic components, e.g., processors, memory arrays and
controllers, and to interconnect them reliably under
usually strong time-to-market pressure. More specifically,
the SoC designer must: a) select the basic system
components; b) model bus-contention between the
different devices and select appropriate bus structures; c)
integrate all hardware components; and d) finally,
integrate all system components using custom software to
provide the required services, such as Fiber Channel,
Ethernet, TCP/IP, iSCSI, or other standardized protocols.
 However, there are inherent problems with current
SoC design methodology: it is labor-intensive and error-
prone; it requires highly-skilled designers familiar with a
particular application domain; and it demands high cost
for bus modeling and/or contention on a common system
bus. Other approaches to SoC design where multiple sub-
systems are integrated on a card or board exhibit
drawbacks due to component count that drives system
cost, increased failure susceptibility, and the cost of high-
interconnect multi-layer boards.
 These limitations of current SoC methodology have
led us to pursue a more flexible and efficient approach.
The approach utilizes a multi-processor system
comprising memory and local interconnect, which is

 2

embedded as a macro attached to a common bus (e.g.,
CoreConnect PLB [3]). The macro is customized for a
specific functionality by including application software
running on it. The SoC designer, then, needs to determine
performance parameters required for the specific
application to be implemented (e.g., number of
multiprocessor processor cores, amount of memory, line
speed), and possibly add some application-specific
hardware interface macros. The basic SoC structure and
modeling will already be in place, thus significantly
simplifying the SoC development process.
 Some possible applications that can be implemented
using this approach are IPSec VPN tunneling engine,
TCP/IP Offload Engine, network processing for iSCSI, or
encryption engine (i.e., for compression/decompression).
 The paper is organized as follows: In section 2, we
describe the overall SoC architecture as well as the
architecture of the multiprocessor macro. In section 3, we
present a case study on the performance analysis of a
TCP/IP off-load engine, and in section 4, we show the
results of the case study.

2. System-on-a-Chip Architecture

 A typical System-on-Chip design is illustrated in
Figure 1. It comprises a processing element, a local
processor bus (PLB), on-chip peripheral bus (OPB), and a
number of components, such as SRAM, DDR controller,
PCI-X bridge, DMA controller, OPB bridge, etc. This
particular implementation uses the IBM embedded
PowerPC1 440 processor core [4] and the CoreConnect

1 IBM and PowerPC are registered trademarks of International Business
Machines Corporation

local bus [3], but similar configurations can be found that
use other embedded processor cores, such as ARM [5],
MIPS [6], etc.
 The approach based on a single embedded processor
can provide a cost-effective, integrated solution to some
applications but may lack the computational power
required by more demanding applications. The
computational capabilities of the SoC were enhanced, in a
number of networking applications, through the addition
of special-purpose processor cores attached to the
common bus, as shown in Figure 2, operating in parallel
with the processor core (i.e., PowerPC 440). These
additional special-purpose processor cores are usually
small in silicon area, as many of the features found in
typical general-purpose processors (e.g., memory
management unit to support virtual addressing, etc.) were
excluded. Examples of this approach are the IBM
PowerNP [7], and the NEC TCP/IP offload engine [8].
Although these systems are programmable and,
consequently, more flexible compared to hardwired
accelerators, they suffer from several drawbacks: a) they
induce additional traffic on the SoC bus, as the bus must
now support both instruction and data streams to the
processor accelerators possibly causing bandwidth
contention and limiting system performance; b) the SoC
bus is often not optimized for multiprocessor performance
but for compatibility with standardized components and
connection protocols in a SoC system; c) the processor
accelerators often implement only a very limited
instruction set and use assembler language, thus making
the development and maintenance of applications running
on the processor accelerators very difficult and costly.

Figure 2: SoC employing multiple processor

accelerators

O
n-chip Peripheral B

us (O
PB

)

UART (2)

I2C (2)

GPIO

Arb

Processor Local Bus (PLB)

Timers

Interrupt
Controller

RAM/ROM/
Peripheral
controller

Ext Bus
Master

GPIO

GPT

OPB
Bridge

PCI-X
Bridge

Processor Local Bus (PLB)

10/100/1G
Ethernet

MAC

440
PowerPC

DMA
DDR

SDRAM
controller

DMA
Controller

SRAM

Special
processor
accelerators

Figure 1: Single processor-based SOC

O
n-chip Peripheral B

us (O
PB)

UART (2)

I2C (2)

GPIO

Arb

Processor Local Bus (PLB)

Timers

Interrupt
Controller

RAM/ROM/
Peripheral
controller

Ext Bus
Master

GPT

OPB
Bridge

PCI-X
Bridge

Processor Local Bus (PLB)

10/100/1G
Ethernet

MAC

440
PowerPC

DMA
DDR

SDRAM
controller

DMA
Controller

SRAM

 3

2.1 Architecture description

 The above limitations of current architectures led
us to the development of a programmable scalable macro
that is easily reconfigurable in terms of processing power
and memory capacity. In our methodology, we have
replaced the collection of special processors shown in
Figure 2 with a single macro comprising a self-contained
processor-based subsystem (as illustrated in Figure 3).
This subsystem is integrated as a component in the SoC
and is connected to the main processor bus via a bridge.
The processor based subsystem comprises one or multiple
processor clusters, one or more local memory banks for
storing data and/or instructions, and a local interconnect
means implemented via a crossbar switch. The self-
contained processor-based subsystem macro is illustrated
in Figure 4.

Our subsystem comprises many simple processor
cores with a reduced general purpose instruction set
derived from the PowerPC architecture. The processor
cores have a single-issue architecture with a four-stage
deep pipeline. Each core has its own register file, ALU,
and instruction sequencer [1]. Four cores share a 16KB
local SRAM, while a cluster of eight cores share a 32 KB
instruction cache. The I-cache bandwidth is sufficient to
prevent instruction starvation, as one cache line (16
instructions) can be delivered to the processors every
cycle. The size of the instruction cache is sufficient for
network applications, as most processor working sets fit
in the I-cache, as shown in [9]. Our implementation of the
Fibre Channel protocol shows that less than 4 Kbytes of I-
cache per processor are sufficient to get instruction hit
rates of more than 98%, because of the small footprint of
the code [1]. Additional banks of globally accessible
SRAM can be provided accessed via the crossbar switch.

The exact number of processor clusters in the
subsystem needed to support sufficient computation
power, e.g. one, two, or even 16 processor clusters
(comprising 128 cores), depends on the application
requirements, as it will be shown in Section 4. For
example, implementing endpoint functionality for Fibre
Channel network protocol requires less computational
power than the more complex TCP/IP termination.

Another feature of our processor-based subsystem is
the use of embedded memory for storing the application
program, current control information, and data used by
the application. Sufficient amounts of memory to provide
smooth operation under normal operating conditions can
be placed in the subsystem without excessively increasing
its size. A further advantage of embedded memory, as
compared to conventional off-chip memory, is that it
offers short and predictable access times, which can be
accurately accounted for in the time budget estimates for
the processing of packets.

All elements in the subsystem are interconnected via
a switch that is, in turn, connected to the SoC processor

Figure 3: SoC employing self-contained

multiprocessor macro

Figure 4: Multiprocessor subsystem macro

bus by means of a bridge macro. The bridge can be
adapted to accommodate different speeds, bus widths,
signals, and signaling protocols. The implementation of a
standard interface between the subsystem macro and the
embedded processor local bus (i.e., PLB) offers the
advantage of allowing the integration of the subsystem
macro into the SoC component library. Additional
advantages resulting from the separation of the subsystem
and the processor buses are as following:

local S RAM

crossbar sw itch

M em ory
Bank 0

DR A M
B ank
15

. . . M em ory
Bank n

P LB
bridge

Proc. core
clu ster 0

G b Ethernet
Hard w are

assist

P LB bus
10/100 /1G

EM AC

Pro c. core
c luster m

G b Ethernet
Hardw are

ass ist

10/100/1G
EM AC

. . .

I-cache

processor cores

ALU

......R eg

I-S
EQ

A LU

R eg

I-S
EQ

ALU

......R eg

I-S
EQ

ALU

R eg

I-S
EQ

ALU

local SRAM

O
n-chip Peripheral B

us (O
PB

)

UART (2)

I2C (2)

GPIO

Arb

Processor Local Bus (PLB)

Timers

Interrupt
Controller

RAM/ROM/
Peripheral
controller

Ext Bus
Master

GPIO

GPT

OPB
Bridge

PCI-X
Bridge

Processor Local Bus (PLB)

10/100/1G
Ethernet

MAC

440
PowerPC

DMA
DDR

SDRAM
controller

DMA
Controller

SRAM

Multiprocessor
macro

Fibre
Channel

Acc.

P0

x

...

Mem

P1 PN

 4

! The only traffic between the subsystem and the SoC
system is the data flow traffic (data receive and
send), thus minimizing bandwidth contention

! The subsystem interconnect fabric (i.e., switch) can
be designed to provide an optimized high-
performance solution to the multiprocessor, without
the need to accommodate the standard component
interfaces and connection protocols of the overall
SoC

2.2 Boot-up and initial program load

The multiprocessor subsystem can be viewed as an
accelerator to the SoC processor (e.g., a PowerPC 440)
that is used for offloading computation-intensive tasks.
The initial program load into the multiprocessor
subsystem is done by the SoC processor. The
multiprocessor subsystem has only volatile storage and
thus it contains no boot-up code. After power on, and
after the SoC processor is booted-up, the SoC processor
initializes the loading of a small bootloader into the
SRAM memory of the multiprocessor subsystem. Upon
its completion, a processor core in the multiprocessor
subsystem begins loading the particular application into
the subsystem, and assigning system tasks to each
processor.

In our implementation, we use a pipelined approach
for multiprocessor packet processing, where the packet
processing operations are partitioned into stages that are
assigned to separate processors. We chose this approach
because of better utilization of the hardware resources,
such as, for example, I-caches. Examples of network
operations that can be assigned to separate pipeline stages
are header handling, packet validation, generation of an
acknowledgment response, packet reordering and
message assembly, and end-to-end control.

The scheduling of protocol tasks to processors is
done statically during initialization, i.e., each processor
executes the same set of operations on various packets.
Likewise, to avoid overhead associated with dynamic
memory management, such as garbage collection, static
memory management is used. All memory structures used
are initialized during system bring-up. These include
memory areas for storing data packets, control and status
information of existing network connections, program
code, and work queues. Further details on scheduling
tasks and on the various memory structures used in our
architecture can be found in [1].

2.3 Operation

As an illustration of the data flow in the
multiprocessor subsystem, we describe a possible

implementation of TCP/IP off-load engine in which a
TCP/IP segment is transmitted over the Ethernet link.
This involves the following steps:
• The SoC processor sets a request for data processing

and sends the request and the pointer to the data in
the external DDR memory to the multiprocessor
subsystem via the bridge. In our implementation, an
interrupt signal rises, but this can be implemented by
writing data to some dedicated register or pre-
specified memory location instead

• The multiprocessor subsystem recognizes the request
and activates the DMA engine to transfer data from
the external memory to its local memory

• Data are transferred to the memory in the processor-
based subsystem, and end of data is signaled

• The multiprocessor subsystem implements the
specific protocol tasks required, such as partitioning
of the data into a series of IP packets, generation of
IP packet headers, generation of Ethernet packets,
etc., and moves the packets to the Ethernet MAC
macro. If there is a need to retransmit packets, as
defined by the protocol, this takes place without
interference from the SoC processor

• When all data are transmitted, the SoC processor is
notified about the task completion. This can be
implemented by sending an interrupt to the
PowerPC440, or writing to some predefined location
which is regularly polled by the PowerPC440

2.4 Area estimates

The architecture of our multi-processor subsystem is
cellular allowing the design to be custom scaled. In our
design, the number of processor cores and embedded
memory blocks can be easily adapted to the application
requirements without making significant design changes.
We have found that in the following networking
applications, the required computational capacity of the
multiprocessor subsystem operating at line speeds of 10
Gb/s can vary as follows:
• Protocol conversion: 14 processors [1] (i.e., two 8-

core processor clusters). A chip that includes 64
Kbytes of I-cache, 64 Kbytes of data SRAM, a
PowerPC440 and the other macros shown in Figure
3, would require approximately 35 mm2 in 0.13µm
ASIC technology.

• TCP/IP offload engine: 32 processors, i.e., four
processor clusters (see Section 4). Assuming 128
Kbytes of I-cache and 128 Kbytes of SRAM, this
would occupy 50 mm2 in the technology above.

• Integrated firewall: 128 processors (estimate), i.e.,
16 processor core clusters. Assuming 512 Kbytes of
I-cache and 512 Kbytes of SRAM, the resulting chip
would be about 150 mm2.

 5

3. Case study

To prove our methodology, we evaluated a SoC
design using our multiprocessor subsystem in an HBA
(Host-bus adapter) application, as shown in Figure 5. The
HBA functions as an interface between a host computer
and a storage network which communicate with each
other using the iSCSI protocol [10]. The host applications
and the storage devices are presented with a traditional
SCSI (ANSI standard X3.131-1986) interface, while the
TCP/IP protocol is used for the actual communication
between the two end-points.

The HBA performs the protocol handling operations
and is used to transfer data in the form of TCP/IP packets
from the Ethernet to the host (receive) and from the host
to devices on the network (transmit). The main
components of the system involved in the receive and
transmit operations are shown in Figure 5.

As previously discussed, the multiprocessor sub-
system consists of several simple cores (which are packed
into clusters of eight cores) and an internal memory that
are connected via a crossbar switch. The module also
includes a bus interface and an interface to an Ethernet
media access controller (EMAC). Both these interfaces
contain buffers and implement DMA controllers for data
coming into and going out of the multiprocessor
subsystem. In the system shown in Figure 5, a PCI bridge

provides an interface between the host’s PCI bus and the
SoC bus. Note that we show single processor cores rather
than processor core clusters in the Figure 5, and does not
specify the size of the memory. This is because our
analysis will determine the number of processor cores and
size of the memory needed for particular network speed
and packet size.
 Increased system throughput is achieved through
coarse-grained parallelism, where a dispatch process
running on a computing element in the multiprocessor
subsystem allocates the processing of a single incoming
packet as a single task to another available computing
element.

In the receive mode, TCP/IP packets that arrive over
the Ethernet are received via the SoC’s Ethernet port. The
packets are then moved (via DMA) from the EMAC’s
internal FIFO into the multiprocessor subsystem’s internal
memory over the crossbar switch. After the packets have
been processed at the subsystem, they are transferred via
the SoC bus and the PCI-Bus bridge to the host that is
connected to the PCI bus. The basic flow associated with
the reception of a single packet is shown in Figure 5. The
solid connector lines show the basic packet movement in
the system, while the broken connector lines depict the
packet header being read in and written out by the
processing elements. In the transmit case, packets stored
on the PCI device are read into the system, processed by

Processor Local Bus (PLB)

PCI-X
Bridge

Processor Local Bus 128bit 133MHz

10/100/1G
EMAC

 Bus
bridge

Memory

Proc. 0

Crossbar switch 64 bit 500MHz

Proc. nProc. 1

EMAC
interface

multiprocessor
subsystem

high speed
network

SoC

Host
processor

PCI-X 64bit 133MHz

Host
memory

...

Figure 5: Multiprocessor macro used for host-bus adapter application

 6

the microprocessor macro and then transmitted over the
Ethernet link.
 The actual protocol conversion code is performed on
the processing elements contained in the microprocessor
macro. The macro has several processes P0, P1 … Pn
running in parallel - one set for each direction (i.e.,
receive and transmit). Each of these processes is mapped

to one of the macro’s processing elements. Three different
kinds of processes run on the macro’s processors:

1. Dispatch: a process that allocates tasks to
processors

2. Protocol processing: protocol-processing tasks
3. Collect: sets the DMA controller to transfer the

packet out of the core’s internal memory as well
as to perform some memory management
functions, after the packet has been transferred.

 Communication between these processes is
accomplished via work queues which are basically
dedicated areas in memory. An idle process determines
whether it has any pending work by periodically polling
its work queue.

4. Results

 The amount of actual computation that is required of
the microprocessor macro depends on the number of

packets that are flowing through the system. This, in turn,
is determined by the workload, i.e., the Ethernet data rate,
as well as the size of the packets that are being processed.
 We decided to adopt a simulation-based approach that
we assumed would help us correctly understand and
analyze the behavior of the system while processing a
workload. We captured the behavior of all system blocks

shown in Figure 5 in an abstract model that was written in
SystemC 2.0 [11]. SystemC is a C++ class library that is
emerging as a standard for modeling hardware and
software systems. It provides the necessary constructs for
modeling system behavior in terms of timing,
concurrency and reactivity. In building our system model,
we abstracted out the functionality of the cores and
considered their performance impact alone.

In our analysis, we used an estimate for the
processing demands that would be made by the
application software running on the processors. This
estimate in terms of processor cycles needed, etc., was
made by analyzing profiling data from sample application
runs. For our experiments, we assumed that the TCP/IP
connection setup and teardown functions are being
performed on the host processor.

We conducted a set of experiments to determine the
number of processors that would be needed to process a
workload consisting of a continuous stream of equal-sized
packets being received from the Ethernet with data rates
being varied from 1 Gb/s to 10 Gb/s.

0

5

10

15

20

25

0.5K 1K 2K 4K 8K

packet size in bytes

nu
m

be
r o

f p
ro

ce
ss

or
s

1Gb/s
2Gb/s
3Gb/s
4Gb/s
5Gb/s
6Gb/s
7Gb/s
8Gb/s

Figure 6: System requirements as a function of packet size

 7

Figure 6 shows the results obtained. The checksum
computation is performed by the microprocessor
subsystem’s EMAC interface during data transfer. Thus,
the amount of time spent by the processors on packet
header processing is basically independent of packet size.
A workload consisting of higher data rates and shorter
packets will result in higher packet frequencies, thereby
requiring a greater number of processors to handle the
increased processing demands. Our system was unable to
process Ethernet data rates of 10 Gb/s not because of any
limitations in the microprocessor subsystem, but because
the PCI-X bus became the system bottleneck.

As shown in Figure 6, the number of processors
needed to handle traffic on a single high speed network
decreases with an increasing packet size, as the per packet
computation is the same (in our design, the CRC
calculation and data copying are supported by hardware).
Thus, to handle a continuous stream of 512-byte packets
with the minimal inter-frame gap –which is a worst case
scenario, not a typical mode of operation- the
multiprocessor subsystem has to instantiate anywhere
from 3 processor cores, for 1 Gb/s network, to 23
processor cores, for 8 Gb/s network. But even at this high
speed, only three processor cores were sufficient to
handle jumbo Ethernet packets (i.e., 9,000 bytes).

Speed Proc. Clusters Min.Buff SRAM
1Gb/s 3 1 3KB 32KB
2 Gb/s 6 1 6KB 32KB
3 Gb/s 9 2 9KB 64KB
4Gb/s 12 2 12KB 64KB
5Gb/s 15 2 15KB 64KB
6Gb/s 17 3 18KB 96KB
7Gb/s 20 3 21KB 96KB
8Gb/s 23 3 24KB 96KB

Table 1: System requirements as function of network
speed

Further details on memory requirements for various

network speeds are given in Table I. The minimal number
of processor cores needed to handle packets increases as
the network speed increases. But since processor cores are
organized in clusters, increases are made in terms of the
number of clusters. This can result in the underutilization
of some processor cores in a cluster, but it is more than
justified by the high cost to redesign and re-verify a
cluster of variable size.

We also list minimal memory requirements to
provide buffering of packets during the processing of a
single packet on both the receiving and transmitting sides,
and the SRAM size typically associated with a cluster.
The memory is sized to provide smooth operation during
packet reception and transmission. More memory can be

added to provide higher level of buffering, e.g., for
handling congestion for a specific network interface or for
buffer reordering. Note that we do not have to keep the
entire routing table in the subsystem memory but only the
active open connections, which are usually of fairly small
size.

Because of the simplicity of the processor cores, area
requirements for the microprocessor subsystem are
minimal. For example, to incorporate a module into the
SoC design capable of handling 2 Gb/s network speeds,
we need an 8-processor core cluster with 32 Kbytes of
memory. This is sufficient to handle the worst case
workload and provides enough buffering for smooth
operation under normal conditions. An 8-processor cluster
with its associated 32Kbytes of I-cache and 32 Kbytes of
local SRAM occupies approximately 8 mm2 in 0.13 µm
process ASIC technology.

5. Summary and Conclusions

 In this paper we have shown a methodology for
designing SoCs for networking applications. The
methodology is based on the notion that computation
intensive parts of the application code can be off-loaded
to a multiprocessor accelerator on the chip. The
multiprocessor subsystem is a self-contained macro
whose computational power (i.e., number of processors
and memory banks) are treated as a parameter at the time
of the SoC specification, depending on the type of
application that needs to run on the SoC. We have shown
through simulations how the parameters can be chosen for
a TCP/IP offload engine application, based on line-speed
performance.

References

[1] C.J.Georgiou, V. Salapura, and M. Denneau,

“Programmable Scalable Platform for Next
Generation Networking,” Proceedings of 2nd
Network Processor Workshop, NP2, in conjunction
with HPCA-9, Feb. 2003, Anaheim, CA, pp. 1-9.

[2] A. Brinkmann, J.C. Niemann, I. Hehemann, D.
Langen, M. Porrmann, and U. Ruckert, “On-Chip
Interconnects for Next Generation System-on-
Chips,” Proceedings of ASIC2003, Sept. 26-27,
2003, Rochester, New York.

[3] IBM Corporation, “CoreConnect bus architecture,”
http://www-3.ibm.com/chips/products coreconnect/

[4] IBM, “IBM introduces PowerPC 440 embedded
processor,” http://www-3.ibm.com/chips/news/
2003/ 0922_440ep.html

 8

[5] ARM, “Processor Cores Overview,” http://
www.arm.com/armtech/cpus?OpenDocument

[6] MIPS, “MIPS32 4KP – Embedded MIPS Processor
Core”, http://www.ce.chalmers.se/~thomasl/inlE/
mips32_4Kp_brief.pdf

[7] M. Heddes, “IBM Power Network processor
architecture,” Proceedings of Hot Chips 12, Palo
Alto, CA, USA, August 2000, IEEE Computer
Society

[8] “NEC’s New TCP/IP Offload Engine Powered by
10 Tensilica Xtensa Processor Cores,” http://
www.tensilica.com/html/pr_2003_05_12.html

[9] T. Wolf and M.A. Franklin, “Design Tradeoffs for
Embedded Network Processors”, in Proceedings of
International Conference on Architecture of
Computing Systems (ARCS) (Lecture Notes in
Computer Science), vol. 2299, pp. 149-164,
Karlsruhe, Germany, April 2002. Springer Verlag

[10] Internet Engineering Task Force, “Small Com-puter
Systems Interface protocol over the Internet (iSCSI)
Requirements and Design Considerations,” Request
for Comments: 3347, ftp://ftp.rfc-editor.org/in-notes/
rfc3347.txt

[11] Functional specification of SystemC 2.0,
http://www.systemc.org/

