RC23205 (W0405-045) May 4, 2004
Computer Science

IBM Research Report

Attestation-based Policy Enforcement for Remote Access

Reiner Sailer, Trent Jaeger, Xiaolan Zhang, Leendert Van Doorn
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Attestation-based Policy Enforcement for Remote Access

Reiner Sailer, Trent Jaeger, Xiaolan Zhang, Leendert van Doorn
IBM T.J. Watson Research Center
Hawthorne, New York, 10532

{sailer, jaegert, cxzhang, leendert}@us.ibm.com

Abstract

Intranet access has become an essential function for corporate users. At the same time, corporation’s security ad-
ministrators have little ability to control access to corporate data once it is released to remote clients. At present,
no confidentiality or integrity guarantees about the remote access clients are made, so it is possible that an attacker
may have compromised such a system and is now downloading or modifying corporate data. Even if the remote user
must know a password to establish a remote access tunnel to the corporate Intranet, it is possible that a malicious
process can hijack an existing connection and access corporate services and documents by masquerading the authorized
remote user. Thus, even though we have corporate-wide access control over remote users, the access control approach
is currently insufficient to stop these malicious processes. We have designed and implemented a novel system that
empowers corporations to verify client integrity properties and establish trust upon the client policy enforcement before
allowing clients (remote) access to corporate Intranet services. Client integrity is measured using a Trusted Platform
Module (TPM), a new security technology that is becoming broadly available on client systems, and our system uses
these measurements for access policy decisions enforced upon the client’s processes. We have implemented a Linux 2.6
prototype system that utilizes the TPM measurement and attestation, existing Linux network control (Netfilter), and
existing corporate policy management tools in the Tivoli Access Manager to control remote client access to corporate
data. This prototype illustrates that our solution integrates seamlessly into scalable corporate policy management and
introduces only a minor performance overhead.

1 Introduction

Remote access to corporate Intranets is now an essential aspect of the corporate work environment. Client systems are
often used by employees both inside the corporate Intranet and remotely from home. Since the remote client systems
that access the corporate Intranet are largely administered by their users, this presents corporations with the problem
of controlling access to their information. Such remote client systems can download confidential corporate information,
so leakage of this information is a problem. Further, remote client systems can modify sensitive corporate data, so the
integrity of the modifications are also an issue. In this paper, we present a novel system that enables corporate data
servers to manage confidentiality and integrity requirements on accesses by remote client systems.

Figure la shows the generic systems model: AliceCorp is the corporation that offers remote access to its employees.
Bob is one such employee who accesses the Intranet with his client system. The remote access client program on Bob’s
client enables access to the corporate Intranet.

4 Attacker

Bob / Alli(ieCo:p [ONONO) AliceCorp

/ Intrane! Intranet Bob'sClient | ... ue * > fniranet
Server ~ X b) /S \/\
Remote Transmission , | Policy Enforcer Intranet RA
Access Client I VPN Server) |[€—P| VPN {
() Server Cliert] : e ‘V A
\ Renfote Access __ INTERNET J

Tunnel ™\ — . \ /=
\ —__ Firewall "\

A
a) Remote Access Configuration b) External Threats Based on Client Vulnerabilities

Figure 1: Remote Access System

AliceCorp requires that the corporate data remains protected when offering the remote access service, i.e., that remote
requests originating from the client do not compromise the integrity of the corporate Intranet and that confidential
contents of responses to the client do not leak through Bob’s client. However, a client’s ability to ensure enforcement of
the corporate policy is rudimentary at best today.

Today, most clients are mainly under control of their users and the client configuration and software can differ
considerably from what the corporation would prefer. A client machine that was originally configured by the corporate

1

administrators may no longer meet the original security requirements, such that several security vulnerabilities may
be present. Consequently, clients have been conveniently considered insecure and untrusted because protecting them
was either too expensive or too restrictive. As a result, companies used appearance factors, such as operating system
type and patch level, the version of the anti-virus data base, or active/non-active system passwords to reason about the
client’s trustworthiness.

Specifically, this paper examines two kinds of attacks (illustrated in Figure 1b) that cannot be countered by existing
remote access control mechanisms because of their lack of reliable client security guarantees:

Firewall-Bypassing: External attackers can gain unauthorized access to the corporate Intranet. Most corporations
today, having invested into security for firewall and intrusion detection systems, have raised the bar for external attackers
considerably. Therefore, (Figure 1b, attack 1) attackers find it easier to compromise the weaker client systems to hop
indirectly into the Intranet. By using the external interfaces of Bob’s client, attackers can gain access to Bob’s remote
access tunnel and thus bypass the corporate firewall (see Figure 1b, attack 2). This is a real-time attack that is very
difficult to discover from within the corporation because the attacker’s actions are covered by the user’s actions. With
many operating systems offering remote sessions, it cannot be determined whether a service request originating from a
client is actually initiated by the client’s local user or an external attacker that has gained unauthorized access to the
client remotely or locally through a Trojan Horse.

Information-Leaking: Confidential data can also leak indirectly through the client (Figure 1b, attack 3). When
data is sent to a remote client, control over these data items is transferred to the user’s client and to the user. Users
may allow other users, knowingly or by mistake, to download such data in peer-to-peer sessions or to copy data onto
removable storage devices and distribute them afterwards; manipulated programs (Trojan Horses) on the client can
gather and leak information as well.

Current research addresses some of the problems inherent in preventing these attacks, but significant issues remain.
First, efforts are underway to leverage trusted hardware, such as the TCG trusted platform module (TPM) [1], to
measure system integrity, but determining practical integrity levels and using them to make access control decisions
remain open questions. Second, classical integrity policies, such as Biba and Low Water Mark (LOMAC) [2], exist,
but their application to remote clients may be impractical. For example, some degree of dependence on lower integrity
data may be permissible. Lastly, while the basic notions of reference monitors are well-understood [3] and distributed
policy enforcement systems exist [4], preventing these attacks requires greater dependence on the abilities of the remote
client than usual. For example, control of information leakage requires that the remote client be able to control itself
network interfaces according to a corporate policy. Issues include determining which components can be trusted to
enforce policies, determining the kinds of policies that can be enforced, and identifying practical limitations that can be
made to enable more effective enforcement.

This paper presents an approach that can be used in the construction of VPN connections to control access to
corporate data access and use by remote clients. First, we leverage the TCG/TPM to measure the integrity of remote
client systems. We build this on an existing integrity measurement system that runs on Linux and measures all executable
code, including libraries and kernel modules, that are loaded onto a Linux system [5]. Next, we define an integrity policy
model that associates semantics with the integrity measurements of remote clients and enables expression of policies that
leverage subject identity and integrity in access control decisions. We utilize the Tivoli Access Manager (AM) system [6]
to represent and distribute our integrity policies to remote corporate clients. Lastly, we implement a personal firewall on
remote clients running Linux that enforces confidentiality policies. Because we can measure the integrity of the remote
system reliably using the TPM, the integrity of the remote client can be accurately determined and unauthorized access
via the firewall can be prevented. Further, we can verify the integrity of our enforcement mechanism and manage possible
leakage paths, so enforcement of confidentiality requirements on corporate information is possible. We have implemented
a working prototype on Linux 2.6 and our measurements show that the performance impact of this approach is minor
and accounts to about 4% on TCP traffic.

In Section 2, we detail the individual problems that underlie enforcement of access control on remote clients and
outline the goals of this research. After describing related work in Section 3, we outline the approach that we take
to measure and control remote client’s access to corporate data in Section 4. Section 5 details the implementation.
Section 6 contains the evaluation of the approach and its implementation. We conclude the paper and discuss future
directions in Section 7.

2 Background

We aim to provide a remote access policy enforcement architecture that can protect against hijacking of authorized remote
access sessions by unauthorized parties (Security Goal SG1) and leaking of confidential data from the client through
remote attacks against the client system (SG2). For this purpose, we will not only describe the policy enforcement
architecture, but also the proper policy that achieves these goals.

2.1 Attacker Model

Figure 2 illustrates the attacker model that we consider and motivates our enhancements to the corporate policy necessary
to specify the security requirements for remote access more accurately. It identifies three possible means of attack: (1)
compromising user authentication; (2) compromising transport security; and (3) compromising client system integrity.

A0 (@) authenticity vulnerabilities

(@ communication vulnerabilties

{3 system vulnerabilities

Subject % »
cation

g
‘-
~
g o A
Identity e \
\,\ ~
»
RAC

‘ Client

System
[gl
Keyboard 7

|2
\

UsB Other i
Display ~ Serial Network
Parallel Inteffaces e

Storage

Figure 2: Remote Access Attacker Model

We focus on attack type 3 in this paper. Such attacks involve getting unauthorized code to run at higher levels
of privilege. Such attacks can be implemented in a variety of ways, such as through viruses, Trojan horses, buffer
overflows, or other code injection attacks. Using such techniques, the attacker can inject malicious code onto the client
system after the corporate system administrators have configured the system. Such malicious code may be used to gain
unauthorized access to the Intranet directly by using existing remote access connections, e.g., by remotely accessing the
client system through any of the depicted interfaces (USB, Wireless, Bluetooth, Ethernet, etc.) and through it accessing
the Intranet. Also, attackers can gain access to corporate data used in current remote access session or corporate data
that has been stored on the client system. We are, however, not going to address attackers watching the display passively
from remotely and in this way extracting information from the client (shoulder surfing attacks).

Attack type number 1 refers to the quality of user authentication. Corner and Noble propose a user authentication
systems [7] that protects against such attacks. Attack type number 2 is usually countered by deploying a secure tunnel
between the client and the VPN server [8].

2.2 Measurement

The first problem is to determine whether the remote client is running authorized code when it is connected to the
corporate Intranet. Since any memory of a process can become executable, this is a difficult problem in general.
However, integrity measurement approaches are emerging that can be leveraged to narrow the problem.

Recent advances in hardware enable better integrity measurement on client systems. Many clients are now sold with
TCG Trusted Platform Module (TPM) [1] chips included, and the low cost of such chips indicates that broad application
is possible. The TPM has a set of registers that it protects from the client and it provides two operations on each register
content: extend and quote. The extend operation takes a value as input and computes the SHA-1 hash [9] of the current
register content and that value. This enables the user of the TPM to build a hash chain. The envisioned use of such
a hash chain is to measure a predefined sequence of code loads, such as for authenticated boot of an operating system
from the system’s BIOS and boot-loader. The quote operation results in the TPM generating a signed message, using
a key protected by the TPM, of the target register’s contents. This message can be used to send an authenticated hash
chain to a remote party which in turn may validate the integrity of the code contained in the hash chain that belongs
to the client. The TPM has other functions, such as random number generation and sealed storage, but these are not
relevant to our discussion.

Recent work uses the TPM to measure the integrity of the application level on Linux systems [5]. Building on the
integrity verification of the Linux operating system using the technique described above, Linux has been extended to
use the TPM to measure the code loaded on it, including kernel modules, applications, and their shared libraries. The
TPM stores a value representing a hash chain of loaded code while the extended Linux kernel stores the actual log of
hashes. Remote parties can verify the integrity of a client system by retrieving the Linux hash log and the quoted (i.e.,
signed) hash chain value from the TPM.

With respect to our case, the corporate VPN server can validate the log for a client system before permitting the
connection to be opened or permitting the client to download confidential corporate information. Further, the corporate
VPN server can even use integrity measurement to determine if a client system is capable of enforcing policies that can
control information leakage. The research question is whether such actions can be made practical for a remote access
environment. We discuss the issues of using integrity measurement to estimate system integrity and ensure effective
policy enforcement below.

2.3 Security Policy

Given the integrity measurements of the previous section, we want to be able to determine the likelihood that the
employee, rather than an attacker, is accessing the corporate Intranet. Measurements identify the code that has been
loaded by the client system at the time of measurement. Typically, this is used to identify vulnerable code. Since
vulnerable code can be compromised by an attacker, the likelihood that an attacker will compromise such programs to
masquerade as the employee is high (usually assumed to be 1).

However, the situation is not always so clear-cut, as code may be protected by limiting the interfaces to it and
the inputs it receives. First, some code may have known vulnerabilities that may be leveraged only through network
interfaces. If access to these interfaces is limited to trusted parties (i.e., trusted as much as the corporate Intranet),
then the use of such code may be permissible. Second, some programs, such as Microsoft Word, may execute macros
that can permit a document writer to masquerade as the user. In such cases, the source of the inputs may determine
whether an attacker may be in control of the client’s accesses to the corporate Intranet.

In traditional integrity models, such as Biba [10] and LOMAC [2], integrity of a subject is based on its dependency on
other subjects. For example, a LOMAC policy requires that the integrity level of the subject be equal to the minimum
integrity level of the objects that it has read or executed (where integrity level is inversely proportional to likelihood of
compromise or vulnerability). Unfortunately, integrity measurement does not provide a complete picture of dependency.
We measure the code that is loaded, not the information flows. However, a combination of knowledge about the code
and the possible information flows allowed for this code may provide a sufficient model for reasoning about security
decisions. We discuss the combination of policy enforcement with code measurement in the next section, but briefly
discuss policy modeling below.

In order to reason about the likelihood that the subject making a request is the employee for whom the VPN
connection was made, we must not only estimate this likelihood, but the policy model must also be able to express it.
Most systems either associate policy with a user or a sensitivity level (e.g., for confidentiality or integrity). In this case,
we have a combination of both the employee and an estimate of the integrity level of the client system. A research
question is whether current policy models are capable of expressing such policies and can enforce them effectively.

2.4 Enforcement

Prevention of particular information flows may enable us to use code that has some potential for misuse in a high
integrity manner. The problem is to determine what forms of control are useful and identify the necessary enforcement
mechanisms. For example, we find that it is appropriate to use confidential data in processes that may not write the
data to the client’s file system (i.e., all persistent writes go to the corporate Intranet). The challenge is to identify
such system restrictions that enable useful processing and determine how these can be measured, so that the corporate
servers can verify that their policies can be correctly enforced.

As the example above indicates, we consider enforcement options that are enforced by the client system as well as
those that may be implemented by the corporate server. Leveraging client controls is required to control confidentiality
because once a document is downloaded to a client it is outside of the corporate Intranet controls. It is less obvious that
we also find it useful to use the client controls to enable improvements in integrity. If we can prevent information flows
that may lead to compromise as described above, then we can use software that has some vulnerable configurations for
high integrity operations.

The types of enforcement options that we consider include access to network connections, file systems, and other
objects managed by the operation system. Thus, it is necessary for the client operating system to provide the necessary
controls over these objects. For example, Linux provides the NetFilter interface that enables fine-grained control of
network communication within the operating system. The Linux Security Modules framework can be used to control
access to file systems and other system objects. For example, an instance of a word processor could be started that can
only communicate with the corporate Intranet or a RAM file system.

Measurement is not only the basis for integrity, but also the basis for enforcement. If we load a kernel on the client
system that implements the enforcement properties that we desire, then the corporate server can use the measurement
of this kernel to verify that the expected enforcement will be performed.

2.5 Experiment

The research problem is to find whether an acceptable solution exists for the problems outlined above. To recap, we
envision that secure client access to a corporate Intranet requires that the following problems be solved: (1) determine
the integrity level of the client system based on the code running on the client; (2) determine whether to trust this client
to enforce information flow controls necessary to make such integrity assumptions about client; (3) determine whether
additional security properties, such as confidentiality, need to be enforced by the client and whether the kernel supports
these; (4) integrate the integrity of the client into the remote access control policies governing the client’s access to the

4

corporate servers; (5) enforce this policy on remote access clients and VPN server; and (6) track changes in the remote
client’s security properties (i.e., sense relevant changes in the client’s software stack) and implement resultant policy
changes.

3 Related Work

We examine related work in the areas of integrity measurement, security policies for integrity management, and policy
enforcement on remote clients.

System Integrity Measurement: Verifying the integrity of the software stack of client systems isn’t a new problem;
practical solutions have only appeared recently though. Arbaugh et. al. [11] describe an architecture to securely boot
operating systems in such a way that only a trusted system will be booted in all cases. Outgoing authentication [12]
enables attestation for the software stacks of cryptographic co-processors [13, 14]. Both approaches are too restrictive for
client environments because they require only completely trusted configurations boot in the former case or are ultimately
implemented as single application systems in the latter case.

Some subsequent research focused on using additional hardware to assess the software stack integrity. Independent
auditors are explored by Hollingworth et. al. [15], Dyer et. al. [16] and Molina et. al. [17]. Hollingworth suggests using
the second CPU on a dual-processor board to provide autonomous monitoring and control of the operating system.
Dyer et. al. apply secure co-processors from which the client system and its network access can be both protected and
monitored. Zhang et. al. [18] extended these ideas to monitor the integrity of a client kernel by examining kernel data
structures from a secure co-processor. Molina et. al. explore a co-processor as an independent auditor that supervises
the integrity of the host operating system independently.

More recently, research has focused on measuring the integrity of systems in a secure manner and enabling verification
by remote parties, called authenticated boot. All these architectures envision leveraging the TCG Trusted Platform
Module (TPM) [1] for securely storing measurements. The NGSCB approach [19, 20] also depends on special hardware
to separate a trusted system partition from the standard operating system. Terra [21] is a trusted computing architecture
that is built upon a trusted virtual machine monitor that —among other things— authenticates the software running in a
VM for remote parties. However, the VMM must be trusted and deriving security properties from the footprint of VM
partitions appears difficult. All of these solutions would be quite expensive and at the same time very restrictive if they
were to be applied to remote access client systems.

Integrity Policies: Most access control policies aim to provide system integrity guarantees, although integrity is
typically implicit. Access matrix style policies, such as role-based access control (RBAC) [22, 23], associate policies
with subjects or roles that stand for a set of subjects. The integrity of a individual subject or object is not explicitly
specified, but the permission assignments are intended to control access to provide sufficient integrity. Integrity is also
implicit in secrecy policies, such as Bell-LaPadula [24].

Policies that explicitly reason about integrity include Biba [10], LOMAC [2], and Clark-Wilson [25]. In Biba and
LOMAC, subjects and objects are given integrity levels, and subjects cannot retain their integrity level and depend upon
lower integrity subjects or objects. In Biba, such information flows are prohibited, whereas LOMAC permits such flows
by lowering the integrity of subjects dynamically based on the dependencies they use. For Clark-Wilson, low integrity
dependencies are permitted, but only if the high integrity subject either discards or upgrades the integrity of the data.
Of these, only LOMAC permits accesses to change based on the integrity level of a subject, but high integrity subjects
often read low integrity data, so this model is often too restrictive.

Client Policy Enforcement: Steve Bellovin proposed in 1999 [26] that firewalls should be considered for client systems
as well as their historic place at network boundaries in order to improve filtering effectiveness. Also, Ioannidis et. al. [8]
proposed to distribute IPSEC credentials through trust management to such distributed firewalls. On the one hand,
having the filter as close as possible to the client allows fine-grained access control and ensures that all packets received
by and sent from the client are intercepted by the firewall. On the other hand, moving firewalls onto the client makes
them more difficult to manage and exposes them to client vulnerabilities. None of the existing approaches considers
validated client security properties in the access control policy.

4 Remote Access Security Architecture

We propose a remote client access control enforcement architecture (c.f. Subsection 4.2) that implements access control
using the following steps:

(i) We use non-intrusive software-stack attestation (Integrity Measurement Architecture IMA [5]) and apply it to
client systems to classify the integrity of the client. This measurement approach is described in Section 2.2. The
corporate VPN server receives and verifies a list consisting of measurements of all executable content that has been
loaded for execution (annotated SHA-1 values of files) into the remote client’s run-time since reboot. We use this
information to determine in Subsection 4.1 the integrity level of the client system (i.e., the likelihood that the client is

5

acting properly on behalf of the employee).

(ii) The integrity measurements are also used to determine if the client can enforce desired integrity and confidentiality
goals. In this case, it is the presence of trusted enforcement programs rather than the absence of low integrity programs
that is the issue. We describe this verification in Section 4.2.

(iii) Given the client’s integrity class and the presence of the necessary enforcement software, the VPN server can
delegate enforcement of the access control policy to the client system. The access control policy and decisions are
described in Section 4.3.

In Section 4.4, we demonstrate the architecture’s use.
4.1 Measurement

In this step, the VPN server uses the validated integrity measurements of the client system to classify its integrity and
enforcement abilities. The former determines the identity for client accesses to corporate data and the latter determines
the ability of the client to control data once it is received. That is, the former determines the integrity of the client and
the latter determines its ability to enforce confidentiality requirements.

We describe the approach for classifying client integrity in this section and describe verification of enforcement ability
in Section 4.2. Determining the integrity of the client is the first and most important step because this establishes trust
(default is distrusted) of the VPN server into predictive operation of the client and thus the programs running on the
client. Figure 3 illustrates the process.

First, we use a recently developed method [5] to determine the integrity of the software running on the client,
described in Section 2.2. One measurement represents the hash chain of loads for the BIOS, boot-loader, and operating
system. This should match a known value for this sequence of code loads. The second measurement covers the software
loaded on the operating system, including programs loaded via ezec, kernel modules, and shared libraries. The method
ensures that a remote party can cryptographically verify the source, integrity, and freshness of the measurements.
Further, the properties of the measurements ensure that no measurements may be removed or reorder once made.

Measurement List Client* Image

r SHAl(Bootloader)
F SHAI(Kernel)
SHAl(Modules)
% SHAL(Programs) %
SHAI(Libraries)

SHAI(Configurations)

Client

__ 1
Files

Kernel Space (pretty static)

Boot Static Modules SHAl(Data)
Process Kernel

NS
Signed _TPM _ Aggregate Client*-properties

N i
o
8
B
I
@

Figure 3: Attestation through Measurement Projection

Using this mechanism, the VPN server obtains and validates a list of measurements comprising all executable content
that was loaded into the client’s run-time since reboot. All executables corresponding to a measurement can potentially
have been compromised and thus compromise the client system '. Consequently, compromised software might prevent
the client from correctly measuring events that occur after the compromise. However, an important property of the
measurement architecture is that it measures files and aggregates their measurement into the secure TPM register before
they are loaded, so a compromised or even malicious program cannot remove itself from the measurement list [5].

Thus, we determine the integrity of the client by evaluating each measurement against a known set of measurements.
Each known measurement is associated with its integrity class. These classes partition the set of known software as
follows.

e Malicious: That this program is known to be malicious (e.g., syslogd of the root toolkit, trojan versions of
libraries). The presence of one of these programs in the measurements indicates a compromise.

e Remote Vulnerabilities: Such programs use network connections and have known vulnerabilities to remote
attackers. Web and mail clients are potentially included in this category. Their use is prohibited when connected
to the Internet and may be strictly limited for access to the corporate Intranet. For example, it may not be
possible to read mail and access confidential information at the same time.

e Local Vulnerabilities: Such programs have vulnerabilities, but these vulnerabilities are limited to local data,
such as files with embedded executable content. These programs should only be run using corporate data.

1As we measure software when it is loaded, we would not see if this software becomes compromised after loading. However, we can and
will use the known vulnerabilities of measured software and decide whether we assume this case or not.

6

e Uncontrolled: Certain programs change the kernel state, but do not yet perform integrity measurements, such
as insmod and modprobe. The execution of these programs could result in the load of malicious or vulnerable
code. These programs should not be run at present, but could be modified to work with the system later.

e Acceptable: These programs contain no known vulnerabilities or malicious code and do not enable circumvention
of the measurement system.

The known set includes fingerprints (SHA-1 hashes) of all known executables and other files that are expected to
be found in measurement lists of remote access clients. In our example, it includes SHA-1 hash values of all Redhat
9.0 programs and libraries including updates, the fingerprints of our own extensions for client policy control, acceptable
kernels, and boot configurations.

We use these sets of fingerprints to evaluate a client according to the rules 1- 5 shown in Figure 4.

[Ve € E(client) : (e € Known) A ((e € Malicious) V (e € Uncontrolled))] — (e € Distrusted) (1)

2
3
4
)

[Ve € E(client) : (e € Known)A(e € Internet)A((e € Local)V(e € Remote))] — (e € Distrusted)
[Ve € E(client) : (e € Known) A (e € Intranet) A (e € Remote)] — (e € IntLow)
[Ve € E(client) : (e € Known) A (e € Intranet) A (e € Local)] — (e € IntMedium)

~ o~ o~ o~

)
)
)
)

[Ve € E(client) : (e € Known) A (e € Acceptable)] — client € IntHigh

Figure 4: Rules for Determining the Client Integrity Level.

The above evaluation is valid until the client loads new executables that were not previously measured. To keep
track of the integrity of clients connected to the Intranet, the client must update the VPN server with new integrity
measurements. It is preferable that such updates be done at measurement time and prior to the actual load.

4.2 Policy Enforcement Architecture

This section introduces an access policy enforcement architecture (see Figure 5) that must be verified by the VPN server
before delegating enforcement of corporate policies. First, we describe the architecture, then we describe its verification.

Policy enforcement consists of a personal firewall that intercepts all IP packets the enter or leave the client. It
decides whether or not to pass or drop a packet based on policy obtained from a policyagent residing in user space. We
describe the specific policies enforced and its impact in Section 4.3. The policy is obtained from a remote corporate
policy server based on the information in a configuration file local.conf. The firewall extracts the service type (e.g., SSH,
Telnet, HTTPS, HTTP) and the service direction (incoming or outgoing service; this can be different from the packet
flow direction) from the packet and submits this information to the policy agent. The policy agent uses a local replica
of the corporate access policy, authzn_persfw.db, to retrieve the policy for this object (e.g., outgoing SecureSHell) and
returns it to the firewall, where it is used for authorizing the packet and is stored for future reference in a kernel policy
cache.

Sensing

Security Fropertiey_\

Policy DB Replica (" Policy Agent

Client

(persfw_user) Supervise Client Run-time Integrity

L
Authzn_
persfw.db,

onfiguration
Local.conf

Process Space

VPN
Server

Idevipolicy _ _

Policy Cache

Data
Personal
M—’ Firewall

Kernel Space

l YOUMS HONO

Network

Figure 5: Policy Agent Architecture

Verification of the presence of a sufficient policy enforcement architecture is necessary before releasing confidential
corporate data to the client system. The presence of the files listed above is required for policy enforcement. First, the
measured kernel indicates whether it contains the personal firewall or not. Second, when the policy agent is loaded, it
is measured. Third, the policy agent measures the configuration and policy database files that it actually uses. Lastly,
the kernel must indicate which process it is using as the policy agent.

7

Thus, if the kernel and policy agent are not compromised, then the measurement of their input code and configurations
should be sufficient to identify their integrity and prove to the VPN server that the client system is capable to enforce
corporate policies.

Corporate policy enforcement entails protecting the integrity of corporate data from attackers and preventing the
leakage of confidential corporate data to attackers. Essentially, both requirements involve control of information flows;
integrity may be compromised by the flow of low integrity data into the corporation and secrecy may be compromised
by the flow of corporate data to processes that can access the Internet. However, requiring complete, provable isolation
may be too restrictive or complex. For example, some Internet data may be used to write a corporate document. With
respect to confidentiality, the use of a program with some known vulnerabilities may be necessary to get the confidential
document written. The policy enforcement architecture enables enforcement of such requirements. We describe the
policy language for such requirements in Section 4.3.

In addition to running enforcement code, a kernel capable of enforcement will require other function to implement
the necessary controls. For confidentiality, we may require that no data is saved in persistent storage on the client. Thus,
access controls may prevent file system access or a RAM file system may be used locally. Also, emerging technologies,
such as sealed storage, may be used to protect the confidentiality of data unless the proper code is run on the client.
We do not specifically define these mechanisms, but enable the corporate and client system designers to leverage the
mechanisms available at the time to meet the desired goals.

4.3 Security Policy

Given the client’s integrity and the identity of the corporate employee, the personal firewall determines the access rights
of the client to corporate data. Corporations might not be able to deliver access control decisions and enforcement on
this fine-grained, per-packet-level for thousands of remote clients. However, our experiments with the prototype show
that this architecture is sufficiently scalable if the policy enforcement is done locally on the client and only the general
supervision of the client’s computing integrity is supervised remotely by the VPN server. The actual decision function
implemented by the personal firewall is shown in Figure 6.

Bool AccessDecision(packet(service,direction), cap(userid)) {
[decision,client-constraints,packet-constraints] := azn(cap(userid),service,direction);

return (decision AND hold(client-constraints)) AND (hold(packet-constraints));

Figure 6: Access Control Decision Function.

First, the personal firewall extracts service type and service direction from an access controlled packet. Then,
the policy agent adds the user’s credentials and retrieves the authorization decision from the policy data base. If
the result is ”permission denied”, then this decision is communicated to the firewall, and this packet is discarded. If
the result is ”"granted”, then the policy agent evaluates extended attributes that refer to client constraints. Client
constraints describe the integrity and confidentiality levels required of the client system (e.g., the client has mechanisms
to implement high secrecy control). If they are fulfilled, then it communicates the packet constraints and a preliminary
7granted” permission back to the personal firewall. The packet constraints describe the enforcement required by the
client on the packet (e.g., protect the confidentiality of the data in a "high’ manner). The personal firewall will evaluate
the constraints and determine whether they meet the hold predicate. This predicate implies that the client system’s
integrity and confidentiality enforcement meet or exceed the constraint level.

Note that, like integrity, confidentiality constraints are expressed in terms of high, medium, and low classes. High
confidentiality aims to eliminate all risk of leakage. We describe scenarios that aim to achieve this in Section 4.4. Medium
confidentiality may originate either from a less capable kernel configuration (e.g., lacking control of all information flows)
or the use of some applications that may have local vulnerabilities. Low confidentiality may occur if information flows
to processes with remote vulnerabilities are possible (e.g., through root compromises and storage of corporate data in
persistent files).

4.4 Architecture Example

We demonstrate the principles of the architecture in this section. Figure 7 shows selected measurements that we will
refer to in the course of this section.

First, we validate the policy enforcement functions on the client. The architecture consists of the 4 major components:

8

#000: BC68F266F8B75E658CD27470B70B53200B480FAB (bios and grub stages aggregate)
#001: A8A865C7203F2565DDEB511480B0A2289F7D035B grub.conf (boot configuration)

#002: 1238AD50C652C88D139EA2E99I87DO6A9IA2A22D1 vmlinuz-2.6.5-bk2-1smtcg (kernel image including personal firewall and IMA)

#003: 84ABD2960414CA4A448E0D2C9364B4E1726BDA4F init (first process)
#004: 9ECFO2F90A2EE2080D4946005DE47968C8A1BE3D 1d-2.3.2.s0 (dynamic linker)
#005: 336536BOE22FF762BB539D7FCB7CD283D4622342 1ibc-2.3.2.s0

#439: 2300D59E0ABO1A6BID203CE2A7655177E6247882 persfw_user (client policy agent)

#440: BB18CB801C9D27E255C209CB56A47COEA9CBDD12 libpdauthzn.so (policy client shared libraries)
#441: D12D96BAA8SD148BC3C8DFOF3B75859B425A829EE libpdcore.so
#442: 99406B21398DOE2FD88943725E3CC3F9ECD72C49 libamaudutl.so

#453: DF541AEDFECB35116808306E89C05591E3ABE160 local.conf (policy agent induces measurement of its configuration file)
#454: 6AC585D072ACIF32ACICDF8698CAA004AA6DC781 authzn_persfw.db (policy agent induces measurement of its database replica)

Figure 7: Exemplary set of client measurements E(client).

(i) the personal firewall that is integrated into the Linux kernel (vmlinuz — 2.6.5 — bk2 — lsmitcg, c.f. #002 in Fig 7)
and that controls the network traffic of the client, (ii) the policy agent (persfw_user, c.f. #439 in Fig 7) that retrieves
authorization decisions from the policy database, (iii) the configuration file of the policy agent (local.conf, c.f. #453
in Fig 7), and (iv) the local copy of the policy database (authzn_persfw.db, c.f. #454 in Fig 7) that is replicated with
the corporate master data base when the policy agent starts up on the client. We instrumented the policy agent to
induce measurements on the configuration file local.con f and the policy data base file authzn_persfw.bd before loading
and using them. The measurement architecture offers a simple user-space measurement macro for this. Every slight
variation of these files (program version differences, policy changes in the data base, changes in the configuration file)
will be reflected by differing measurement values. The VPN server compares now measurements #002,349,453,454 to a
set of known and trusted fingerprints on the VPN server these programs.

At this point, we know whether these programs are authentic and configured according to the corporate policy. What
we do not know is whether they are actually running or not (they could have run earlier and exited). However, we know
that the kernel is running and from the kernel measurement, we can conclude whether the personal firewall is actually
installed and thus filters all network traffic. The personal firewall by default (hard-coded) allows only traffic between
the client and the VPN policy server that supplies replication of the policy database file.

Authenticity Evaluation of the Client The following client properties are sufficient to protect from external
attackers trying to hijack the remote access connection (security goal SG1, c.f. Attack) and thus from masquerading
an authorized user: (a) all network traffic must go through the personal firewall, (b) as long as the client is connected,
the personal firewall must only allow traffic between the client and the Intranet, (¢) we assume no attackers inside the
Intranet, which could establish a control flow in the client through the remote access tunnel.

We choose that the kernel enforce properties (a) and (b) because the kernel can be configured (and this configuration
validated) not to support hardware interfaces through which attackers could gain access to the client while bypassing
the policy enforcement architecture. We use the kernel image measurement and compare it with a known set of SHA-1
values of kernels exhibiting images with different (meaningful) configurations. Table 1 shows kernels with different
configurations. If our client kernel measurement equals one of the hashes in the table, then we assign to it the properties
that we induce from its integrity (i.e., authenticity implies that kernel integrity ensures that the code running is as
expected) shown in the rightmost column.

‘ Kernel(SHA-1) ‘ Configuration \ Property ‘
1| 123AD...A22D1 | IMA, Modem, Wireless, Onboard-Ethernet, Persfw medium
Netfilter, IPSEC, no other communication, modules support | Authenticity
2 | E1F98...34AA1 | IMA, Onboard-Ethernet, Persfw, Netfilter, IPSEC, no other | high
communications, no modules support, no serial port support | Authenticity
3 | AA424..4131B | IMA, Wireless, Bluetooth, USB-networking low
Infrared, Persfw, Netfilter, IPSEC Authenticity

Table 1: Properties Based on Kernel Configurations

Kernel #1 is classified medium because it supports Modem connections, which can use non-IP communication and
thus bypass the IP netfilter-based firewall. Additionally, this kernel could load kernel modules that support other IP

9

networking protocols (which would then be detected by the integrity heartbeat). Kernel #2 receives high authenticity
because the only external network communication is completely controlled by the IP netfilter-based personal firewall.
Additionally, it does not support features over the serial line, such as a wireless keyboard, which could be abused
by nearby attackers to issue unauthorized keyboard commands on behalf of the user. The remote access VPN server
only accepts properly received IPSEC packets that are authenticated against the remote client and the the remote
client only accepts properly authenticated packets from the VPN server. Thus, external attackers cannot control the
client during its remote access sessions. Kernel #3 cannot provide enough isolation to prevent potential attackers from
leveraging non-IP interfaces (which are not controlled by the netfilter and thus not policied by the personal firewall), so
it cannot control information flows as necessary on the client. We can consider only kernels that support the Integrity
Measurement Architecture (IMA [5]) because this is a preliminary to determine the client’s integrity.

We now combine the integrity level of the remote client with the authenticity level derived from its kernel image
and conclude that exemplary kernel #2 on a remote client with integrity validation of high (no unknown, no malicious,
no vulnerable software) ensures that the remote client satisfies security goal SG1 and thus requests from this client can
be trusted to have actually been initiated by the user logged into the remote client and authenticated against the VPN
server.

Confidentiality evaluation of the client. Given the assurance of the client system integrity, we now continue to
create a policy that protects the confidentiality of corporate data that is released to such a client system. We approach
this goal by confining data that is retrieved from the Intranet to the client system’s current boot cycle. Within this
boot-cycle, we ensure that this data cannot leak through client interfaces (e.g., USB, WIFI, Serial Port) or be carried
over to other (less restrictive) boot cycles via file systems or other persistent storage, c.f., Figure 8.

-
Keyboard %Display Confinement Area & Intranet
! !
7 * T ;
Client ‘ l — .‘I o
sysem | 1 S Server
\ - —
Storage: i
¥ uss, | Other |
Hard Drive 3 ;
Floppy Serial, IR Network t
CD-Writer Parallel Interfaces Y

Figure 8: Confining Data on the Remote Access Client

To achieve confidentiality, we require the client to exhibit the high integrity property, which implies strong policy
control on the client’s communication interfaces. Consequently, a kernel entrusted to enforce confidentiality properties
on data will have a configuration as shown for kernel #2 in Table 1 and cannot support any read/write file systems on
persistent client storage. We configure the client to mount file systems over the protected remote access link from the
Intranet. Additionally, we configure the client to use a RAM disk for its root file system, which supports just enough
functionality to run a Gnome Desktop and a web browser and the remote access policy architecture. This web browser
can then be used as the client interface to access confidential data inside the Intranet.

At the time the remote access client disconnects from the Intranet, it must reboot in order to clean the confidential
information from the memory. The personal firewall is configured not to re-open the network interface after a client
disconnects from the corporate VPN until the client reboots if it has accessed services requiring confidentiality properties.
We define a list of hash values of kernels that are accordingly configured and compare the measured kernel hash of the
client system to compare it against this list in the same way as it is shown for integrity in Table 1.

Some client interfaces however, such as the display and keyboard, must be allowed in order to render the client
usable. Whether sound is to be allowed or not is an issue of corporate policy. Attacks through these interfaces are
excluded from our attacker model as stated in Section 2.

We envision more flexible operation of the client if the kernel provides an encrypted file system, the key of which
is only available from the policy agent after it has verified the system (the capability of sealed storage with the TPM
security chip could be used as well). As we consider the best protection is not to store the data at all persistently outside
the Intranet, we consider only kernels without any local persistent file system (ext3, ext2, etc.) as of high confidentiality.
We consider kernels with local encrypted file systems as medium confidentiality (because many more things can go
wrong trying to securely store the file-system encryption keys) and other kernels as low confidentiality.

5 Implementation

This section describes the implementation of the policy enforcement prototype. First, we describe how we integrated
remote access service policies into Tivoli Access Manager. Then we describe our implementation of the remote access

10

policy enforcement. Finally, we sketch how remote attestation is implemented on our remote access client prototype.
5.1 Policy Integration

We build our corporate access control using the Tivoli Access Manager (TAM) [6]. TAM is a centralized server where
employee identities and their access rights are stored. Access rights are specified as permissions for subjects to perform
operations on objects.

We use the identity of the user logged into the remote client to find subject identity information (i.e., TAM user
id, member group ids). In our prototype, remote users are allowed to access a service if they have execute permission
(’x’) on the object. Objects are identified by a type of service (HTTP, ssh, etc.) combined with the service direction
(incoming, outgoing).

Permissions are stored in Access Control Lists (ACLs) attached to the service object and are extended by additional
security property requirements using TAM extended attributes of the ACL (e.g., required client security properties,
transport security on the remote access tunnel, or restrictions to specified server IP addresses). Access of a user id of a
remote client (subject) to an Intranet Service (object) is permitted, if the ACL attached to the Intranet Service object
allows the subject to execute this object and if additional security properties as specified in the extended attributes of
the object hold (c.f. Figure 9 and Table 10).

Using this approach, we define policies to (i) allow service-specific policies that take into account the service direction
(incoming/outgoing from the remote access client’s perspective) and (ii) attach additional security requirements (e.g.
client and packet constraints) to this service’s specific policy. For this purpose, we define a new objectspace in Tivoli AM
and call it “remoteAccessPolicy” and populate it with the supported services. An objectspace is basically a directory
structure, where each node and leaf represents a virtual resource to which access control lists can be attached. Figure 9
shows the object space tree for our remote access policy. Figure 10 shows attribute names and values, as well as
in the rightmost column the enforcement entity: packet-related constraints are enforced by the firewall, client-related
authenticity and confidentiality constraints are enforced by the client policy agent, and general client-integrity constraints
are enforced by the VPN server.

‘remoteAccessPolicy" Extended Attribute Name ‘ Value H Constraint

et services" "app-services” ServerPort | 80 packet (FW)
TransportProtocol | TCP packet (FW)
ServerIP | 10.9.** || packet (FW)
dns source ssh htts htt fio telnet TransmissionSecurity | SSL packet (FW)
l uy q%enlh lL % lL lL TransmissionSecurity | IPSEC packet (FW)
= 2 MinClientIntegrity | Medium || client (VPN)
(ﬁg:: gﬁﬂﬁé‘ﬁﬁfﬁuésj MinClientAuthenticity | Medium || client (PA)
Constraints... MinClientConfidentiality | NONE client (PA)

Fi 10: Extended Attributes E le: http_out
Figure 9: Remote Access Policy Object Space retre xende fibutes fxatmpie p-ou

The authorization request for a user Mycroft would look as follows: aznDecision(cap, ’/remoteAccess Policy/app-
services/http/out’, 'x’). Cap comprises the capabilities of Mycroft (IDs of groups of user Mycroft), the next parameter
denotes the service and type (virtual resource object), the third string specifically asks for “eXecute” permission. The
capabilities of the user are acquired by the authorization agent once throughout its initial binding to the authorization
replica and re-used as long as the client’s user does not change. The aznDecision call returns either accessdenied or
accesspermitted. If access is permitted, then it returns also the extended attributes connected to the ACL that was
used to determine the authorization result.

In our example, if the user at the remote access client is not member of the "http_out’ group, then the policy
client receives an ’access denied’ response. Otherwise, it receives back the ’access permitted’ including the additional
constraint attributes, implemented as a list of String-pairs. These extended attributes are shown in Table 10 and they
refine the access constraints for the outgoing HTTP service: we allow outgoing HT'TP ’http_out’ outgoing (from a client
perspective) for members of the ’http_out’ group to all servers in the subnet 10.9.*.* if the remote access tunnel is
either SSL or IPSEC protected. These constraints are enforced by the personal firewall (FW). Additionally, the client
must exhibit at least medium Integrity level, which is checked by the VPN server, and at least medium Authenticity
level, which is checked by the policy agent (PA) locally on the client. This example shows, how the corporate remote
access policy manages firewall rules and constraints for remote clients that are then enforced by the personal firewall as
described in the next section.

As an example, to allow a user with ID Mycroft outgoing HTTP, PING, DNSLookup, and SSH, we merely need
to put user Mycroft into the groups http_out, ping_out, dnslookup_out, and ssh_out. To require at least medium
authenticity properties of the client (c.f., Section 4.3) for outgoing HTTP traffic, we add an extended attribute pair

11

“MinClient Authenticity, Medium” to the ACL with the name http_out. We name the ACLs the same way as the service
objects because the specified extended security constraints bind them to a specific service.

5.2 Personal Firewall and Policy Agent

The personal firewall and the policy agent are the major policy enforcement functions on the client (c.f., Figure 5). The
client security constraints are evaluated in the policy agent, if applicable. The remaining packet-related constraints as
well as the overall result of this access control decision or a denied result are communicated to the personal firewall and
enforced there locally.

We integrated the personal firewall into the Linux kernel. It first registers a queue handler for INET packets with
the kernel netfilter [27]. It then registers to the NF_IP_.LOCAL_IN hook (delivers all incoming IP packets) and
NF_IP_POST_ROUTING hook (delivers all outgoing IP packets) a simple function that immediately re-inserts all
intercepted packets with the QUEUE verdict. This way, we receive them immediately back into our registered queue
handler and can be sure not to block the kernel or network traffic if we have to delay some packets to resolve access
control decisions that involve policy lookups in user space. The queue handler then enforces the remote access policy
on each data packet before re-inserting it with DROP or ACCEPT verdict according to the access control decision.

We implemented a stateful packet filter that keeps session information on TCP packets and thus requires access
control only on the the TCP connection setup packets. For packets that belong to an existing TCP session, we only
check whether the initial client security properties changed. For packets requiring access control decisions, the personal
firewall will create a policy query request and send it to the policy agent through the /dev/policy interface (returning
an earlier read request by a polling policy agent thread). It queues such packets in order and handles them as soon as
the access control information is received from the policy agent, which writes the result and extended requirements if
applies back into /dev/policy. The personal firewall keeps a cache of earlier access control decisions and tries first to
resolve the query locally with the cache. Usually, the cache is very effective because there are only a few services used
by typical clients. Then, this cache can be used until the policy changes, which is indicated by the policy agent.

We have implemented some global rules into the personal firewall, such as to drop all packets that are not initiated
by the client or the VPN server end of the remote access tunnel. Consequently, the client can communicate over IP only
through the tunnel. We also limit traffic to the remote access client and the corporate policy server for the protocol
and port used by the policy agent to replicate the policy data base. To avoid service interactions, we switched off any
IPTables kernel support that could compete with our registration of the personal firewall with netfilter hooks.

The policyagent uses the authorization interface [28] of Tivoli Access Manager to resolve authorization requests.
This interface is initialized by binding to it with the userid and password of the remote access user against the Tivoli
Authentication Server. It returns this user’s credentials back. These credentials are then used for subsequent authoriza-
tion requests as described in Section 5.1. We use the local mode of the authorization interface that creates a local replica
(about 600 KBytes for a tree as outlaid in Figure 9) of the AM master policy data base on the client. Authorization
requests are resolved locally on the client by the authorization library code, which improves the performance consider-
ably (about 11,000 authorizations / second). Tivoli Access Manager allows either periodical polling of the master policy
data base for updates or to receive a notification in case of master policy data base changes. We chose to implement the
latter because we do not want thousands of remote access clients to poll the corporate policy server unnecessarily. This
configuration is subject to notification deletion attacks; however, as the policy data base is measured and validated, the
VPN server can detect out-of-date policy data bases on clients.

The user space policy agent polls the “/dev/policy” character device file for authorization queries from the personal
firewall. Any received request is then translated into a format that is understood by the Policy Access Manager
authorization service (see Section 5.1). The translated request is fulfilled by the local replica of the master data base
that returns the authorization decision. The authorization agent process translates the decision into a data structure that
is written back into the “/dev/policy” device file. An included transaction number (strong monotonically increasing)
ensures that request and response are correctly related to each other. Waiting queues ensure smooth operation of the
kernel. The policy cache size is set to 15 entries, thus equivalent authorization requests (same service, direction, and
user) can usually be answered without user space interaction.

The policy agent determines the client security properties by reading the kernel measurement from the measurement
list and comparing it to known SHA-1 values with known properties stored in the local.conf configuration file, which is
measured and validated by the VPN server. Measuring this file at the client and validating it at the VPN server ensures
that the policy agent and the VPN server agree about the corresponding assignment of kernel SHA-1 value and client
security properties. The policy agent assumes the measurement list correct and expects the VPN server to disconnect
the client if the client integrity becomes compromised. If it applies, the policy agent then validates the required client
security properties with the ones derived from the current kernel measurement. If the requirements are satisfied (given
properties dominate the required properties), then the general verdict (accept) and remaining packet-related constraints
(e.g., server IP constraints, transport security constraints) are returned for enforcement to the personal firewall by
writing it into the “/dev/policy” character device file.

12

We implemented the policy agent on the remote access client system running Redhat Linux 9.0 with a 2.6.5-bk2
kernel. The policy agent agent comprises about 1100 lines of code (Loc) not including the authorization library that
is part of Tivoli AM. The kernel part comprises about 1800 Loc including cache handling, connection tracking, packet
classification, and authorization retrieval from user space.

5.3 Remote Attestation

We used a Linux Security Modules version of the Integrity Measurement Architecture (IMA) as described in [5]. We
wrote daemon process (1300 Loc) that allows local parties to easily obtain a new signed TPM aggregate (Quote) while
submitting a 120bit random number with the request. It is based on a public TPM library [29]. The remote attestation
prototype determining the client integrity property is implemented on the server system using Java. On the remote client
side, we have a small attestation server that accepts remote attestation requests —including a 120bit random number—
from dedicated machines (modeling the VPN server) and returns (i) the current kernel measurement list that is obtained
through a local proc interface and (ii) the signed current TPM measurement aggregate including the random number
from the request. On the VPN server side, we maintain a data base of SHA-1 values of known programs annotated
with attributes: trusted, malicious (which currently includes the “uncontrolled” programs, see Section 4.1), vulnerable,
lowvulnerable. This allows us to determine the client’s integrity tests as described in figure 4. The data base has about
25,000 entries hashed on the SHA-1 value, which makes fast lookups possible. A client running Redhat Linux, the
Gnome Desktop, Web Browser, and terminals accumulates about 400-550 measurement entries. As any executable is
only represented once in the measurement list, this number does not depend much on the uptime of the client as long
as the executables are not altered.

6 Analysis

Policy decisions and enforcement overhead. The remote access client runs Redhat Linux 9.0 on a 2GHz IBM
Thinkpad T30 that includes a TPM security chip. We used a 2 GHz Netvista Linux workstation as the VPN server
and a 2 GHz Windows 2000 Server for the Tivoli Access Manager run-time suite including LDAP and Authorization
server. Table 2 shows the network round-trip delay through the personal firewall performing policy decisions on each
data packet.

The personal firewall needs to lookup the policy for every TCP connection setup packet and for every UDP packet.
Using the policy cache means that authorization decisions are stored; thus, successive policy lookups are resolved in the
kernel cache and don’t involve interaction with the user space policy agent. This holds until the policy changes or the
client security properties change. The kernel cache and existing TCP connection tracking entries are marked dirty in this
case. Dirty-flagging the kernel cache is necessary because the policy client makes the client-based access control decision
when delivering the authorization request to the personal firewall. The personal firewall then makes the packet-based
access decisions, assuming that —for cached authorization results— the user space client-based access decision did not
change. The dirty-flagging of existing TCP connections is necessary because by default packets belonging to existing
TCP connections inherit the access control policies of the TCP connection setup packets.

| Configuration | RT | Overhead
1 Reference UDP 162 pus 0%

2 Reference TCP 200 ps 0%

3 | No Policy Cache UDP | 1087 us 570%

4 | No Policy Cache TCP | 209 us 5%

5 | Policy Caching UDP | 180 us 11%

6 | Policy Caching TCP | 208 us 4%

Table 2: Prototype Performance (PL 100 bytes)

The reported times in Table 2 are averages of 100,000 round trips times. Line 3 shows the overhead for UDP round-
trips when the policy cache is disabled compared to the baseline value reported in Line 1. In the case of a policy cache
miss, the user space authorization agent is asked for the authorization decision twice (for outgoing and incoming UDP
packets). As the authorization decision is the main overhead, this shows that a single user space authorization decision
induced by the personal firewall adds about (1087 — 162)/2 = 463us, which translates to about 2000 authorizations per
second. Line 4 measures only the TCP connection tracking overhead added by the policy agent because authorization
decision is made only once at TCP connection setup time (which is not included in the measurement). Line 5 shows
that using the policy cache, the overhead for UDP traffic is only about 11%. Most of the performance-critical traffic will
be TPC traffic, which yields about 4% overhead. The inital overhead to resolve authorization for TCP setup packets is
equivalent to the UDP overhead (5% in the case of a cache hit).

The initial binding of the authorization client to the authorization service consists of the local replication of the

13

master authorization data base (600 KBytes in our example) on the Access Manager server as well as acquiring the
remote user’s capability set. This one-time initialization at the startup of the policy agent takes about 2 to 3 seconds.
Thus, even in cases where the cache is not yet loaded with the necessary policy decision, our prototype delays the packet
for only a very short time, which should be invisible to the user. Even this could be eliminated by cache-preloading as
the general remote access policy is expected to be fairly static.

Deciding the client security properties by the policy agent on the client involves comparing the local kernel mea-
surement to a list of known kernel measurements and to read the properties of this kernel from the configuration file;
the related configuration file is measured and loaded by the policy agent at startup and validated by the VPN server
throughout the client integrity validation. As there are only a few kernel hashes to be considered, this operation does
not add visible overhead as our set of known kernels is pretty small. Thus, the overhead of the policy client enforcing
the client security constraints during the service access control are negligible. The overall overhead for service access
control on the client is dominated by the personal firewall packet-related access control and by the time to lookup the
policy in case it is not yet in the kernel cache or the kernel cache is marked dirty because of policy changes.

In summary, the maximum delay for UDP or TCP connection setup packets (e.g., delay when starting SSH) is about
463us. The average overhead afterwards is about 4%. The initial delay can be mostly eliminated by pre-loading the
cache with the most likely needed authorization decisions. Our experiences of the prototype system confirm that the
policy agent does not impose significant overhead on client systems.

Overhead of measuring clients The general overhead of the integrity measuring architecture is very low [5]. We
added the integrity-heart-beat, which requires signing of the current TPM aggregate and delivering it together with
the client’s measurement list to the VPN server. Full initial measurement validations incur about 3 seconds round-trip
delay. This includes sending the request from the VPN server to the client, receiving back the signed aggregate and a
list of 400-500 measurements, validating the measurement list against the signed aggregate, evaluating every individual
measurement against the database that identifies measurements as known, malicious, vulnerable, or lowvulnerable, and
finally inferring the client integrity properties as described in Figure 4. The related processes are not optimized and
use many string operations in Java as well as XML transport encapsulation. A subsequent evaluation needs only to
retrieve a new signed aggregate (1/5 second) and the newly added measurements plus the TCP round-trip between the
VPN server and the remote access client. The database size (flat file) contains about 25,000 lines, which corresponds
to 25 thousand entries (known hashes of libraries, binaries and bash command files) of a typical Redhat 9.0 system that
includes a Web Browser, tools, and web server etc. These entries are sorted by the fingerprint value and thus can be
easily searched.

7 Future work and Conclusion

We have designed and implemented a novel access control architecture that enables corporations to verify client
integrity properties and establish trust into the client’s policy enforcement before allowing clients remote access to
corporate Intranet services. To this end, we have shown how to (1) determine the integrity level of the client system
based on the code running on the client; (2) determine whether to trust this client to enforce information flow controls
necessary to make such integrity assumptions about client; (3) determine whether additional security properties, such
as confidentiality, need to be enforced by the client and whether the kernel supports these; (4) integrate the integrity of
the client into the remote access control policies governing the client’s access to the corporate servers; (5) enforce this
policy on remote access clients and the VPN server. Finally, we have introduced an integrity-heart-beat that enables
the VPN server to track changes in the remote client’s security properties (i.e., sense relevant changes in the client’s
software stack) and implement resulting policy changes. We have implemented a Linux 2.6 prototype system that utilizes
the TPM measurement and attestation framework, existing Linux network control (Netfilter), and existing corporate
policy management tools in the Tivoli Access Manager to control remote client access to corporate data. This prototype
illustrates that our solution integrates seamlessly into scalable corporate policy management and introduces only minor
performance overhead.

References

[1] Trusted Computing Group. Trusted Platform Module Main Specification, Part 1: Design Principles, Part 2: TPM Structures, Part 3:
Commands, October 2003. Version 1.2, Revision 62, http://www.trustedcomputinggroup.org.

[2] T. Frazer. LOMAC: Low water-mark integrity protection for cots environments. In IEEE Symposium on Security and Privacy, May
2000.

(3] J. P. Anderson. Computer Security Technology Planning Study, 1972.

[4] G. Karjoth. Access Control with IBM Tivoli Access Manager. ACM Transactions on Information and System Security, 6(2):232-257,
2003.

[5] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and Implementation of a TCG-based Integrity Measurement
Architecture. In Thirteenth Useniz Security Symposium, August 2004 (Accepted for publication).

(6] IBM Tivoli. IBM Tivoli Access Manager for e-business. http://www-3.ibm.com/software/ tivoli/products/access-mgr-e-bus/.

14

[7]
(8]

(10]
(11]

(12]
(13]

(14]
(15]

[16]
(17]
(18]
(19]

20]
(21]

(22]
(23]

[24]
(25]

[26]
27]
(28]
29]

Mark Corner and Brian Noble. Zero-interaction authentication. In ACM MOBICOM 2002. MOBICOM, September 2002.

S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a distributed firewall. In Proceedings of the ACM
Computer and Communications Security (CCS) 2000, pages 190-199, November 2000.

D. Eastlake and P. Jones. Secure Hash Algorithm 1 (SHA1), September 2001. Request for Comment 3174.

K. J. Biba. Integrity considerations for secure computer systems. Technical Report MTR-3153, Mitre Corporation, Mitre Corp, Bedford
MA, June 1975.

W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure and Reliable Bootstrap Architecture. IEEE Computer Society Conference on
Security and Privacy, pages 65-71, 1997.

S. W. Smith. Outgoing authentication for programmable secure coprocessors. In ESORICS, pages 72-89, 2002.

J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Weingart. Building the IBM 4758 Secure Coprocessor.
IEEE Computer, 34(10):57-66, 2001.

IBM PCI-X Cryptographic Coprocessor, 2004. http://www-3.ibm.com /security/cryptocards/html/pcixcc.shtml.

D. Hollingworth and T. Redmond. Enhancing operating system resistance to information warfare. MILCOM 2000. 21st Century Military
Communications Conference Proceedings, pages 1037-1041, 2000.

J. Dyer, R. Perez, R. Sailer, and L. van Doorn. Personal Firewalls and Intrusion Detection Systems. In 2nd Australian Information
Warfare €& Security Conference (IWAR), November 2001.

J. Molina A. Mishra and W. Arbaugh. The co-processor as an independent auditor. Available at http://www.missl.cs.umd.edu/komoku/
documents/coauditor.ps.

Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and Reiner Sailer. Secure Coprocessor-based Intrusion Detection. In
Tenth ACM SIGOPS European Workshop, September 2002.

Paul England and Marcus Peinado. Authenticated operation of open computing devices. In ACISP 2002, LNCS, pages 346-361.
Springer-Verlag, July 2002.

B. A. LaMacchia. Next-generation secure computing base (NGSCB), April 2003. RSA Conference 2003, San Francisco.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A Virtual Machine-Based Platform for Trusted Computing. In
Proc. 9th ACM Symposium on Operating Systems Principles, pages 193-206, 2003.

D.F. Ferraiolo and D.R. Kuhn. Role based access control. In 15th National Computer Security Conference, 1992.

R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control models. In IEEE Computer, volume 29(2), pages
38-47. IEEE Press, 1996.

D. E. Bell and L. J. LaPadula. Securecomputer system: Unified exposition and multics interpretation. Technical Report MTR-2997,
MITRE Corporation, Bedford, MA, July 1975.

D. R. Wilson D. D. Clark. A comparison of commercial and military computer security policies. In IEFE Symposium on Security and
Privacy, 1987.

S. M. Bellovin. Distributed Firewalls. login, November 1999.

The netfilter/iptables project, 2004. http://www.netfilter.org.

The Open Group. Authorization (AZN) API — Technical Standard. http://www.opengroup.org/products/publications/catalog/c908.htm.
IBM Watson Research - Global Security Analysis Lab: TCPA Resources, 2003. http://www.research.ibm.com/gsal/tcpa/.

15

