RC23211 (C0405-001) May 12, 2004
Mathematics

IBM Research Report

Towards Formal Verification of UML Diagrams
Based on Graph Transformation

Yu Zhao', Yushun Fan', Xinxin Bai', Yuan Wang', Hong Cai*, Wei Ding’
'CIM Research Center
Department of Automation
Tsinghua University
Beijing, China 100084

’IBM Research Division
China Research Laboratory
HaoHai Building, No. 7, 5th Street
ShangDi, Beijing 100085
China

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Towards Formal Verification of UML Diagrams Based on Graph

Transformation

Yu Zhao', Yushun Fan', Xinxin Bai', Yuan Wangl, Hong Cai%, Wei Ding2
' CIM Research Center
Department of Automatioin
Tsinghua University, Beijing, China 100084
zhaoyu0O@mails.tsinghua.edu.cn, fan@cims.tsinghua.edu.cn, {bxx02, yuan-wang02 } @mails.tsinghua.edu.cn

>IBM China Research Lab

4F, Haohai Building, 5th Shangdi Street

Haidian District, Beijing China 100085

{caihong, dingw }(@cn.ibm.com

Abstract

In this paper, a meta-level and highly automated technique that could formally transform UML
diagrams for verification is presented. Firstly, the meta-model hierarchical structure of UML is
reviewed and the relationships among different UML diagrams are analyzed from different views. An
approach for transforming and verifying UML statechart diagrams is developed based on graph
transformation. This approach can be used to transform UML diagrams to Petri-nets while preserving
dynamic consistency properties. Finally, the approach is validated through a case study.

Keywords: Graph Transformation, UML, Formal Verification, Petri-nets

1. Introduction

Models make (software) platforms more accessible by raising the level of abstraction and enabling
reuse of assets across platform changes. The Unified Modeling Language (UML), is a well known
dominant object-oriented modeling language for the design process of IT systems.

However, despite its success as being a unified and visual notation in industrial, UML still lacks
analysis and verification capabilities. Therefore, many models cannot really be analyzed in detail, in
particular when they are used to describe complex, distributed systems. Being lack of analysis and
verification methods limits the use of UML and reduces the quality of the UML models. Thus
developing technologies of analysis and verification of UML model is significant to modelers who
use UML to model their systems.

UML is lack of a precise formal semantics, which hinders the formal verification and validation of
system design. On the other hand, models established in many mathematical domains (like Petri-nets,
transition systems, process algebras, etc.) are precise and could be analyzed and verified by using
various tools in these domains. So transformations between UML and these models are significant for
analysis and verification of UML model. UML models are projected into mathematical models for
transformation, and the results of the formal analysis are back-annotated to the UML models to hide
the mathematics from designers.

Because of not only the abundant analysis techniques but also the understandability of Petri-nets,
and some existing successful research on the verification of the UML dynamic view diagrams by
Petri-nets, we also choose the Petri-nets as the target model of transformation for verification of UML
models. In order to get a more general transformation approach between UML and Petri-net, we

research the transformation at the meta-model level. And for reaching a automatic and correct process,
we use graph transformation grammars and systems to define and implement the transformation, and
verify the transformation itself.

The rest of the paper is structured as follows. In Section 2, the related works are reviewed first.
Existing researches on the verification and transformation of UML models mostly focus on the
various model elements, but the relationships among different diagrams are rarely discussed, so In
Section 3, the relationships among different UML diagrams and the potential target Petri-net of the
transformation for these relationship and the verification contents and approaches are analyzed Then
In Section 4, a brief introduction to Petri-net and its analysis ability are given. In Section 5, the graph
transformation technique that could transform UML diagrams into Petri-net is discussed. Because of
the importance of the verification of the transformation itself, some properties of a correct
transformation are analyzed. In section 6, we give a case study on transforming concrete UML
statecharts into Petri-nets using graph transformation techniques and present our debugging approach
for guarantee the correctness of transformation, too. Finally, the paper is concluded in Section 7 with
some concluding remarks and future directions.

2. Related work

Several projects based on graph transformation have been carried out to support model transformation
(not limit for UML):

AToM® M s 3 tool for Multi-Paradigm modeling under development at the Modeling, Simulation
and Design Lab (MSDL) at McGill University. The two main tasks of AToM® are meta-modeling and
model-transformation. UML diagrams are transformed by AToM® into Petri-nets for verification by
means of simulation. And it transforms the various diagrams (just from dynamic view) into one
combined Petri-net, and also accepts the UML models with incomplete or redundant information. But
it doesn’t consider the diagrams of static view, and the transformation environment is not responsible
for the correctness of transformation.

GROOVEP! is a project centered around the use of simple graphs for modeling the design-time,
compile-time, and run-time structure of object-oriented systems. Graph transformation is used as a
basis for model transformation and to define the operational semantics of language. Its shortcoming is
the same as that of AToM that it lacks the verification of transformation itself

The VIATRAM (VIsual Automated model TRAnsformations) model transformation system is a
prototype tool that provides a general and automated framework for specifying transformations
between arbitrary models conforming to their meta-model. The outstanding contribution of VIATRA
approach is the consideration of the verification of transformation. Fundamental characteristics of a
correct transformation have been summarized including the semantic correctness. But its model
checking based approach for verification of semantic correctness focuses on the model level but not
the meta-model level. So the verification is not general enough and hard to be implemented
automatically for any arbitrary source model.

3. UML meta-model and relationship between various diagrams

UML is based on a type of simple, general and unambiguous meta-modeling theory. UML
meta-model language is defined in itself recursively, i.e. it’s specified by a subset of UML
annotations and semantics. The structure of UML meta-model™ is conformable with the MOF
(Meta-Object Facility) framework, and has four layers: meta-meta-model, meta-model, model and

object.

In UML models, the various diagrams are not isolated, but are rather correlated. Some of the
relationships among the diagrams reflect the grammar rules and semantics of UML itself, e.g. an
object in the object diagram must be an instance of an existing class. Other relationships reflect some
essential characteristics of the system to be modeled or some rules a correct model must obey, e.g. in
the same context, the sequence diagram and collaboration diagram are equivalence in semantics. Thus,
when transforming a UML model into a Petri-net model, not only the static structure and dynamic
semantic of every single diagram need to be transformed, but also the relationships among the various
diagrams should be took into account and even be transformed when needed, such guarantee the
correctness of mapping.

The relationships can be classified into three layers:
® The relationships among the same UML diagrams from different contexts
This layer includes the relationships among sequence diagrams, activity diagrams and statechart
diagrams from their different contexts, respectively. They are mostly the aggregative relations. So we
can use hierarchical Petri-nets as target models to reflect the aggregation and analyze the correctness
of the relationships.
® The relationships among the various diagrams from one same view of a system
This layer includes the relationships among the various diagrams from the static structure view (class
diagram and object diagram), dynamic behavior view (use-case diagram, sequence diagram,
collaboration diagram, statechart diagram and activity diagram) and system architecture view
(component diagram and deployment diagram), respectively. The relationships of this layer are
mostly the encapsulation or equivalence relations. The mapping of these relations into Petri-nets can
also use hierarchical Petri-nets. Otherwise we can transform the different diagrams to their target
Petri-net model respectively and verify the equivalence of these Petri-nets.
® The relationship among the various diagrams from various views of a system
This layer describes the relationship between the diagrams of static structure view and the diagrams
of dynamic behavior view. All the objects included in the sequence, collaboration, statechart and
activity diagram and these objects’ attributes and operations must be defined in the classes which
these objects belong to. For this layer, we can use colored Petri-nets as target models to model the
static properties of the elements in the dynamic behavior models. And the verification of this layer is
by and large to evaluate the systems’ performance, e.g. the rationality or efficiency of one deployment
solution for components of a system. But according to the related work, this layer of relationships is
rarely concerned in the research on the verification and transformation of UML models.

4. Petri-Net and its analysis ability

Petri-nets is both a formal and a graphical modeling language. The primary reason why we select the
Petri-net as the target models of transformation is the abundant and mature analysis techniques of it.
Despite new concepts, such as color, hierarchy, stochastic concept etc., are fused into Petri-nets in
succession, the essence of syntax and dynamic behavior properties never changes. The basic
properties of systems which can be studied with Petri-nets can be divided into two groups: the
behavioral properties, including reachability, boundedenss, liveness, reversibility, coverability,
persistent, synchronic distance and fariness, etc.; and the structural properties, such as structural
liveness, controllability, structural boundedness,. conservativeness, repetitiveness, consistency and so
on. The definition of these properties can be found in [7]. And we can also evaluate the performance

-3

of the system modeled by advanced Petri-nets such as colored or stochastic Petri-net.

So within the transformation process, the content to be verified in the UML models should be
translated into one property or one combination of several properties of the corresponding Petri-nets
that can be analyzed by existing approaches. If with a transformation rule this translation could not
proceed, it should not be called a correct rule.

5. Graph transformation'® and verification of transformation

As both UML and Petri-net are based on the graphical notation, there comes a possibility of depicting

them by the common graph concepts, and with it the possibility of transforming UML models into

Petri-nets from the aspect of graph theory. Thereby, this is another reason for selecting Petri-net as

the verification tool and considering the graph transformation as the foundation theory and highly

automated mechanism for transformation.

Late in 1960’s Rosenfeld in the USA and Schneider, Ehrig, Pfender, and Wadsworth in Europe
introduced graph transformation for the generation manipulation recognition and evaluation of graphs.
Since then graph transformation has been studied in a variety of approaches motivated by application
domains such as pattern recognition, semantics of programming languages, compiler description
implementation of functional programming languages, specification of database systems specification
of distributed systems etc.

A graph consists of a set of labeled nodes and a set of labeled directed edges each of which
connects a pair of nodes. Graph transformation consists of applying a rule to a graph and iterating this
process. Each rule application transforms a graph by replacing a part of it by a graph. To this purpose
each rule r contains a left hand side L and a right hand side R. The application of r to a graph G
replaces an occurrence of the left hand side L in G by the right hand side R. The definition of rules
and application of rules in graph transformation are!'":

Rules: A graph transformation rule r = (L, R, K, glue, emb, appl) consists of two graphs L and R,
called the left hand side and the right hand side of r, respectively, a subgraph K of L called the
interface graph, an occurrence glue of K in R, relating the interface graph with the right hand side, an
embedding relation emb, relating nodes of L to nodes of R, and a set appl! specitying the application
conditions for the rule

Application of rules: An application of arule r= (L, R, K, glue, emb, appl) to a given graph G
yields a resulting graph H, provided that H can be obtained from G in the following five steps:

1) Choose an occurrence of the left hand side L in G.

2) Check the application conditions according to appl.

3) Remove the occurrence of L up to the occurrence of K from G as well as all dangling edges, i.e.
all edges incident to a removed node. This yields the context graph D of L which still contains an
occurrence of K.

4) Glue the context graph D and the right hand side R according to the occurrences of K in D and R.
That is, construct the disjoint union of D and R and for every item in K, identify the
corresponding item in D with the corresponding item in R, This yields the gluing graph E.

5) Embed the right hand side R into the context graph D according to the embedding relation emb.
For each removed dangling edge incident with a node v in D and the image of anode v’ of L in G,
and each node v’ in R, a new edge (with the same label) incident with v and the node v’ is
established in £ provided that (v, v’’) belongs to emb.

Fig. 1 illustrates the steps which have to be performed when applying a rule (L, R, K, glue, emb,

appl)

Fig. 1 Illustration of a graph transformation step

Given the notions of a rule and a direct derivation, graph transformation systems can be defined !,
A set P of rules is the simplest form of a graph transformation system, a set P of rules together with
an initial graph S and a set T of terminal labels forms a graph grammar. Given a set P of rules and a
graph Gy, a sequence of successive direct derivations Gy— G;—+*— G, is a derivation from G, to
G, by rules of P, provided that all used rules belong to P. The graph G, is said to be derived from G,
by rules of P. The set of all graphs labeled with symbols of T only that can be derived from the initial
graph S by rules of P, is the language generated by P, S and 7. When we use the graph transformation
system, we first have to choose one of the rules applicable to a given graph. Furthermore the chosen
rule may be applicable at several occurrences of its left hand side. So the result of a graph
transformation depends on these choices which are still completely arbitrary. This non-determinism
may be restricted by control conditions in several ways:

1) By prescribing an order in which rules have to be applied.
2) By determining the next rule depending on the previous one(s).
3) By applying a rule according to its priority.

The graph transformation rules and system can realize the automation of the transformation process,
but cannot verify the transformation itself. The formal verification of UML diagrams based on model
transformation requires not only that the target model language has the ability to verify the properties
we need, but also that the transformation can transform the source model correctly and even
effectively. In [9], the fundamental properties of a correct transformation are summarized as that the
transformation should be complete, unique, syntactic correct, semantic correct and could terminate.
And for a transformation in the interest of verification, we add a performance requirement that the
transformation should be effective, i.e. the contents that need to be verified of the source model
should be transformed to some properties of the target model that can be analyzed. This additional
requirement is correlated with the semantic correctness, because the semantics are usually one part of
the contents to be verified. In graph transformation research area, the completeness, uniqueness and
termination of transformation can be verified through the existing approaches. But the semantic
correctness and the effectiveness have not dealt with, except that a primary consideration of the
verification of semantic correctness comes out in [9].

So we try to analyze the reflection on the transformation rules of the requirements of semantic
correctness and effectiveness through the following case study.

6. Case study

Within the dynamic view of UML, there are two types of diagrams to describe the dynamic behavior
that state-based diagrams (including statechart and activity diagrams) and flow-based diagrams
(including sequence and collaboration diagrams). Because the activity diagram is a special type of the
statechart, so we first present a model transformation case from UML statechart diagrams (with some
static information from class diagrams for boundary analysis) to Petri-nets in order to demonstrate the
feasibility of our verification technique based on graph transformation. The case is a simple automat
system with two classes, Customer and Automat. (Fig.2). And the statechart diagrams of these two
classed are shown by Fig.3 and Fig.4 respectively. The target model we select is the basic Petri-net
model. The following transformation rules are applied at first:
® Each state node in statechart diagram is transformed to a place in the Petri-net model.
® Whether the place has a token represents the status of the corresponding state node. A state node
that is linked with the starting point is transformed to a place with one token, and other state
nodes are transformed to places with no token.
® Each event or action on the state-transition edge is transformed to a place, too.
® [Each transition edge in statechart diagram is transformed to a corresponding transition in the
Petri-net.
According to these rules, the statechart diagrams of Automat and Customer can be transformed to
the Petri-nets in Fig. 5 and Fig. 6, respectively.

Customer Automa
+PayMoney() +GatherMoney ()
+GetGoods() +Deliver()

Fig .2 Class Diagrams of Automat and Customer

GetMessage(no goods)/needGoods:=F

[needGoods=T]/order

reqmoney (price)
[price>money]/needGoods:=F

Fig. 3 Statechart of Customer

reqmoney(price)
[price<=money|
/c.PayMoney()/money:=money-

goods out/needGoods:=F price

timeout

receive order
[count>(] /reqmoney(price)

Gathering

receive order

[count<0] /message(no goods) ish paying

/a.gathermoney()/a.deliver()/count:=count- 1

Fig. 4 Statechart of Automat

Message (no goods)

a. gathermoney ()

gathering

receive order

finish paying

reqmoney (price)

Fig. 5 the Petri-net model of Automat

Price>money

needGoods: =F

Price<=money

A\ PayMoney ()

Goods out waiting

money :=money—price
Fig. 6 the Petri-net model of Customer
The completeness, termination uniqueness and syntactic correctness of the above transformation

process can be easily proved. But when we consider the semantic correctness, this transformation
should be modified.

A statechart diagram has one dynamic semantic that when the source state of a transition edge is
activate and the conditions on the edge are all satisfied, the system is moved from the source stated to
the target state of this edge, and one basic semantic constraint that every two state nodes cannot be
activated simultaneously. Additionally, for the different statechart diagrams of various objects in one
same system, another static semantic which describes the relationships among these diagrams exists,
that in the statechart of one object, the events or signals on the transition edges maybe come from i
other objects in the system, so the events or signals should be consistent with the corresponding
output events/actions in the statechart diagrams of the source objects. From the above case, no
semantic of the three can be transformed correctly to the target Petri-net, and we should debug the
transformation rules.
® According to the foregoing transformation rules, a guard condition on the transition edge of

statechart diagram is also regarded as an event and is transformed to a place without token and
input transition. Because of no input transition, the places from conditions have no chance to be
activated, and the dynamic semantics of these two models conflict. Thus we add an additional
rule for the guard condition, which transforms a condition event into a structure shown by Fig.7
with graph transformation rule, where the new Place3’ represents the decision of this condition
and another new Place4’ represents the result of decision. The whole structure is regarded as one
input for the output of the transition edge where the guard condition is.

] —mm
- 6
4
Name=node (1) . name
3
l ———
Guard_condition!=" " - r—»»
Name=" check=" +
node (1). Guard condition 2
_» P 6
9 type="" decision 4
8 5 7N 7
2 Weight-1 Weight=1§ Weight=1 U
3
Name==node (1) . name Name=" check=" + Name=node (1) . GuardConditior

_»

node (1) . name type=" condition”

Fig.7 transformation rule for the guard condition
® For a concrete Petri-net model induced by the above transformation rules, the semantic constraint
can be described directly by the graph. For example, in the Petri-net model of Customer, this
constraint can be defined by three places (Idle, Ready and Waiting) with no two places filled
with tokens simultaneously. But in the meta-model layer, this constraint is impossible to be
defined for Petri-net. And the reason can be found that we transform both the events and the
states into the places. Then we modify the meta-model of the basic Petri-net by assigning an

-8-

attribute “type” to place. The places coming from the state nodes are assigned “state” for
attribute “type”, while those places coming from the events or actions are assigned “event” for
“type”. Then the constraint can be defined as that every two places whose value are both “state”
can’t have tokens simultaneously, or that the number of places whose value are “state” after each
transition can’t be greater or equal than 2.
® Observing the above statechart diagrams of Customer and Automata, two types of interaction
between objects can be summarized then: the generation and receival of signals (e.g.
showmessage()), and the call and feedback of operations (e.g. gathermoney()).In order to
identify the connective events/actions during transformation automatically, the label of them
should be unique. In our approach, the generation of signal sig is labeled with send sig, while
the receival of it is labeled with receive_sig. On the other hand, the call of operation method is
labeled with call method, while the feedback of it is labeled with return_method. With these
labels, one additional transformation rule for combination of disjoint Petri-net models
transformed from different statechart diagrams can be attached: unite the event place coming
from send_sig and the event place from receive_sig into one place and label it with sig, and unite
the event place coming from call_method and the event place from return_method into one place
and label it with method.
After the debug for the semantic correctness, we transform the statechart diagrams of Customer and

Automa into a united Petri-net model as shown in Fig.8.
Check

¢. needGoods
. a. Idle

check a. count

a. count>C

Show message (no\g

C. needGoods:=F

¢

I I'l. gathermoney

a. count—

Fig. 8 United Petri-net of Customer and Automa
Then some general transformation rules at meta-model layer from UML statechart diagram to

-9.

Petri-net model can be induced from the above example. First the meta-models of statechart and
Petri-net is shown by Fig.9 and Fig.10, respectively. (The meta-model of Petri-net has been extended
according to the above discussion).

Based on the meta-models, we denote the ordinal transformation rules by graph transformation
grammars as shown in Fig.11 and Fig.12.
Rule I: States to Places. To transform all states in the statechart to the places with type valued “state”
of Petri-net.
Rule 2: Generate Transitions: To transform all transition edges to the transitions and to maintain the
link with the corresponding places.
Rule 3: OutputEvents to Places: To transform all output events on the transition edges to the places
with type valued “event” whose input transitions come from the transition edges by Rule 2.
Rule 4: Guard condition to Place: To transform the guard conditions on the transition edged to the
corresponding structure of Petri-net according to the foregoing discussion.
Rule 5: Input Events to Places [: To transform all input events on the transition edges to the places
with type valued “event” whose output transitions come from the transition edges by Rule 2. This
Rule is applicable for those transition edges where have no guard condition.
Rule 6: Input Events to Places II: To transform all input events on the transition edges to the places
with type valued “event” whose output transitions come from the guard condition on the same
transition edges by Rule 4. This Rule is applicable for those transition edges where have guard
condition.
Rule 7: Combine Event-pairs I: To combine the pair places representing the sending and receiving of
one same signal into one place.
Rule 8: Combine Event pairs II: To combine the pair places representing the call and feedback of one
same method into one place.
Rule 9: Initial State to Token: To add one token in the places whose corresponding states are linked
with the starting point in the statechart.
Rule 10: Delete Edges: To delete the transition edges.
Rule 11: Delete States: To delete the state nodes.

InitialConnection Initial State Belong tc
State Belong tc Class Ptol
name:string name:string weight:int qena
activate:bool Place . Transition
name:string name:string
token:int activate:bool
Edge type:string
name:string Event
inputEvents:Event[] - TtoF
guardcondition:string name:st e - -
outputEvents:Event[{CypeEString weight:int
Fig. 9 Meta- Model of StateChart Fig. 10 Modified Meta- Model of Petri-net

-10-

Rule 1 States to Places

TN
_/

9

Name=node (1). name +”
type

7 +node (2). name
7 state”

Rule 3 OutputEvents to Places

L —
i+
] —»

i<count(OuputEvents)

o=) 4
N :
2 - Weight1=1
Name=node (1). OuputEvents[node (1). i]. name

Name ==node (1). name type=node (1). OutputEvents [node (1). i]. type

Name ==node (1). name

Rule 2 Generate Transitions

6

Weight=1

Name=node (1). name

Rule 4 Guard condtion to Place

| —
Guard_conditior!="

Name =" check="" +

node (1), Guard_condition 2
type=" decisior” 0

8

9

9

Weight=1 Weight=1

Name=" check="" +
node (1). name

Name=node (1). GuardConditior

type=" condition”

Fig. 11 Graph Transformation Rules 1-4

Rule ¢ InputEvents to Places (1

_
i<count(OuputEvents) ! .
= 2
4
2 Weight-1
Name=-node (1) name Name=node (1). InputEvents [node (1). i] name

type=node (1). TnputEvents [node(1).i] type

!Iplacep| p.type =="condition"

Rule 7 combine event-pairs (1,

Type=" sig’
name=node (1) name

1

Type—" send-sig’ Type—" receive-sig’

name=node (1) . name

Rule 9 Initial state to Token

Rule 6 InputEvents to Places (I’

i<couni(OuputEvents)

2

Weight=1

Name-node (1). InputEvents [node(1).
type=node(1). TnputEvents [node (1)

i] name
il type

Name: check- ‘ “node (1). name

Iplacep| p.type =="condition"

Rule § combine event- pairs (II'

Type=" method”
name=node (1) . name

Type==" call method’

Type=="" returr -method”
name=node (1) . name

Rule 10 Delete Edges

e O O

Rule 11 Delete States

0 - O

Fig. 12 Graph Transformation Rules 5-11

7. Conclusions and Future Work

Through our experiment, we demonstrate a meta-level technique to verify UML diagrams by
transforming them into Petri-nets based on meta-modeling and graph transformation techniques.
Besides the elements of every single diagram, we emphasize the relationships among the various
UML diagrams in the contents for transformation and verification, and discussed the layers of these
relationships and the potential target Petri-net models and analysis approaches. As a correct
transformation, we regard the semantic correctness and effectiveness as the fundamental requirement

for transformation for verification, besides the completeness, uniqueness, termination and syntactic

-11-

correctness. Due to the lack of the verification technique of the semantic correctness and effectiveness
of transformation, we propose a debugging approach to modify the transformation rules according to
the concrete semantic constraints through a case study. Although we have only conducted
experiments on the verification of relatively simple UML statechart diagrams, the approach we have
proposed can be easily adapted to more complex statechart diagrams and provide meaningful
guidance for the verification of other UML diagrams.

In the experiment, we use transformation rules which are executed in sequential steps. In the future,
we aim to research on the design of more complex process for rule execution in order to cut down the
number of rules and verify our method through tool implementation. Furthermore, as the feedback of
verification for UML models, the back-annotation technique from Petri-nets will be considered in the
future work. Also, the other diagrams such as flow-based dynamic diagrams and the furthermore
conjunction contents worthy for verification between the dynamic and static views will be
experimented on.

References

[1]AtoM® home page: http://atom3.cs.mcgill.ca.

[2]de Lara, J. , Vangheluwe, H. 2002 AtoM’: A Tool for Multi-Formalism Modeling and
Meta-Modeling. In ETAPS/FASE’02, LNCS 2306, pp,:174-188. Springer.

[3]JGROOVE home page: http://wwwhome.cs.utwente.nl/~groove/groove-index

[4]G. Csertan, G. Huszerl, 1. Majzik, Z. Pap, A. Pataricza, and D. Varro. VIATRA: Visual automated
transformations for formal verification and validation of UML models. In Proc. ASE 2002: 17th IEEE
International Conference on Automated Software Engineering, Edinburgh, UK, September 23--27
2002.

[SJIOMG. OMG Unified Modeling Language Specification 1.5. http://www.omg.org/uml/

[6]OMG. OMG Meta Object Facility (MOF) Specification 1.4. http://www.omg.org/mof/

[7ITTADAO MURATA. Petri-nets: Properties, Analysis and Applications. Proceedings of the IEEE,
VOL.77, NO, 4, April 1989.

[8]G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Transformations:
vol.1. Foundations. World Scientific, 1997.

[9]D. Varrd, A. Pataricza. Automated Formal Verification of Model Transformations. Submitted to
CSDUML 2003 Workshop on Critical Systems Development with UML, October 20-24, 2003, San
Francisco, CA, USA. http://hobbit.inf.mit.bme.hu/FTSRG/Publications/uml03b_vp.pdf

[10]Lucinao Baresi, Reiko Heckel. Foundations and Applications of Graph Transformation: an
Introduction from a software engineering perspective. Presentation at ICGT2002.

[11]Lucinao Baresi, Reiko Heckel. Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. Proceedings of the First International Conference on Graph Transformation
(ICGT2002, Lecture Notes in Computer Science, 2505), Springer, 402-429

[12]D. Varr6. Towards automated formal verification of visual modeling languages by model
checking. Journal of Software and Systems Modeling, 2003. Submitted to the Special Issue on Graph
Transformation and Visual Modeling Techniques.

[13] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, Andrew Wood. Transformation: The
Missing Link of MDA. Proceedings of the First International Conference on Graph Transformation
(ICGT2002, Lecture Notes in Computer Science, 2505), Springer, 90-105

-12-

