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ABSTRACT
Detection of space-time clusters is an important function in
various domains (e.g., epidemiology and public health). The
pioneering work on the spatial scan statistic is often used
as the basis to detect and evaluate such clusters. State-of-
the-art systems based on this approach detect clusters with
restrictive shapes that cannot model growth and shifts in
location over time. We extend these methods significantly
by using the flexible square pyramid shape to model such ef-
fects. A heuristic search method is developed to detect the
most likely clusters using a randomized algorithm in combi-
nation with geometric shapes processing. The use of Monte
Carlo methods in the original scan statistic formulation is
continued in our work to address the multiple hypothesis
testing issues. Our method is applied to a real data set on
brain cancer occurrences over a 19 year period. The cluster
detected by our method shows both growth and movement
which could not have been modeled with the simpler cylin-
drical shapes used earlier. Our general framework can be
extended quite easily to handle other flexible shapes for the
space-time clusters.

General Terms
Clusters, space-time region, scan statistic, search, Monte
Carlo.

1. INTRODUCTION
Analyses of data to detect space-time clusters is relevant

to many domains. Details on what constitutes a space-time
cluster might vary from one domain to another. We will
use the epidemiology domain to motivate the models and
algorithms presented in this paper. For example, health
officials often evaluate if an observed excess of disease cases
in a space-time region is a cluster that warrants a thorough
investigation. Such an evaluation would include analyzing
known factors (e.g., population demographics) to determine
if they can explain the excessive cases. The evaluation must
also address the question whether the excessive cases could

..
An abbreviated version of this report will appear in the proceedings of the
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have occurred by chance. Detection of a space-time cluster
of excessive cases that is not explained by known factors and
is very unlikely to occur by chance would trigger a thorough
investigation.
The scan statistic is a statistical method widely used to

detect and evaluate such clusters [14, 13, 4]. A comprehen-
sive review of methods to detect spatial clusters is given in
[8, 4]. Two important categories in spatial methods are de-
tection of two dimensional spatial clusters and detection of
three dimensional space-time clusters. We will consider the
more general 3D space-time category in this paper.

1.1 The spatial scan statistic
The spatial scan statistic developed by Martin Kulldorff

[11, 7, 9] is widely referenced and used by epidemiologists.
This powerful method for detecting a significant region with
elevated disease rate has been developed using a Bernoulli
model and also using a Poisson model for the underlying
phenomena [7]. For the Poisson model, events are allowed
to be generated by an inhomogeneous Poisson process. For
example, the expected number of disease events in a region
would be proportional to its population assuming no other
contributing factors. We will use the Poisson model in this
paper to illustrate our work and to apply it to a data set
from the epidemiology domain.
These models have been implemented in a system (SaTScan)

for detecting space-time clusters [10]. SaTScan detects space-
time clusters using cylindrical windows (see Figure 1) with
a circular geographic base and the height of the cylinder
corresponding to some interval in time. Geographical lo-
cations are specified discretely (e.g., centers of counties) to
SaTScan. Input data to SaTScan includes the number of
cases and population information at these discrete locations
at various times. SaTScan evaluates a set of cylindrical win-
dows by considering all those spatially centered at any point
in a user-specified grid and exhaustively varying the cylin-
der’s radius and time duration. The evaluation computes
the likelihood ratio of the alternative hypothesis that there
is an elevated event rate within the cylindrical window and
the null hypothesis that the rate is the same inside and out-
side the window. For the Poisson model, this likelihood
function [7] is proportional to

LR = (c/n)c([C − c]/[C − n])(C−c)I() (1)

where C is the total number of cases over the entire space
and time, c is the number of cases within the window, and
n is the expected number of cases within the window un-
der the null hypothesis. The indicator function, I(), is 1
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when the window has more cases than expected under the
null hypothesis and is 0 otherwise. The cylindrical window
with the largest value of the likelihood function is the re-
sulting cluster R . The multiple hypothesis testing problem
is overcome in SaTScan by generating synthetic datasets for
the entire space-time region in which the event counts are
independently generated conforming to the Poisson model
for each location and time. Each of these synthetic datasets
is analyzed to determine its most dominant cluster and its
likelihood function value. Using these Monte Carlo experi-
ments one can determine the likelihood that the cluster R
could have occurred by chance under the null hypothesis
(p-value).

1.2 Strengths and Limitations
A key strength of the spatial scan statistic is its provable

power in detecting a significant time-space cluster with an
elevated counts for the phenomena being modeled [7]. How-
ever, the use of cylindrical windows in current implementa-
tions can limit the fit to the phenomena being modeled. Our
work was motivated by the need to consider space-time clus-
ters that can either grow or shrink over time and that can
also move over time. Intuitively, we expect clusters with
these characteristics to be very relevant in the epidemiol-
ogy domain and to also extend the applicability of the scan
statistic to other domains. The challenge is allow this flexi-
bility in the scanned regions while keeping the computation
tractable. The magnitude of this challenge becomes more
apparent when we realize that even for simpler shapes the
computation can be prohibitive if the grid is too fine, requir-
ing clever algorithms to prune the regions examined [15].
Our use of the Monte Carlo based approach to deal with
the multiple hypothesis testing problem as advocated in [7,
8] adds significantly to the computational challenge. Our
choice of a flexible shape for the clusters and our approach
to containing the computational needs is outlined in Section
2. Section 3 details our new algorithm to detect these flex-
ible clusters. Results of applying our method to a dataset
from the epidemiological domain are given in Section 4.
The clustering problem solved by the spatial scan statistic

is quite different from the formulation addressed by methods
like CLIQUE [1]. A key difference pointed out in [15] is that
hierarchical methods require the measure defining the clus-
ter to be monotonic so that bottom-up approaches can be
applied. However, the spatial scan statistic is not a mono-
tonic measure. The reader is referred to [15] for a detailed
discussion of this and other differences in the formulations.

2. OUR APPROACH
Our choice for the cluster shape is a pyramid with square

cross sections representing the included geographical area
at each time in an interval. Figure 2 illustrates this cluster
shape using a 3D view on the left and the 2D view from
the top on the right. Our pyramid cluster can be truncated
(need not include the apex) and is allowed to grow or shrink
from the start to the end of the time interval. The 3D view
in Figure 2 shows a cluster growing with time. The axis of
the pyramid along the time axis need not be orthogonal to
the two spatial axes allowing the cluster to model movement
of the phenomena. This is clearly illustrated in the 2D view
of Figure 2 where the squares represent the geographical
extent at 5 discrete times in the cluster time interval. The
2D view shows how the phenomena modeled by the cluster

moves over time in addition to growing. The example in
Figure 2 clearly illustrates the flexibility of the cluster shape
to model various aspects of real life phenomena.
Typically input data includes occurrence counts and other

information (e.g., disease counts and population) at discrete
locations at various times. The entire data can be repre-
sented using a set of points P in three dimensional space
where each point corresponds to a discrete location at a
particular time. We use a subset S of these points P to
represent a candidate cluster, provided that S conforms to
a square pyramid shape. We will denote such a subset S as
legal.

Definition D1 A subset S from a set of points P is legal,
iff there exists a square pyramid that contains all the
points in S and none from P − S.

The total number of legal candidate subsets can be very
large for most datasets. This rules out any exhaustive ap-
proach similar to the one used for cylindrical clusters. In-
stead we use a heuristic search with randomized algorithms
over the space of legal candidate clusters to find the clus-
ter with the largest likelihood function (Equation 1). Our
heuristic search cannot guarantee that we will find the clus-
ter with the largest likelihood function. The impact of using
a heuristic approach is discussed in Section 5. However, we
will demonstrate using a real-life dataset that our approach
can generate useful results and shed greater insights into the
modeled phenomena when compared to clusters restricted
to simple shapes (e.g., cylinder). A similar approach using
simulated annealing has been reported recently for two di-
mensional spatial clusters [2]. As expected, the extension to
three dimensional space-time clusters raises significant new
challenges which are addressed in our work.

3. ALGORITHM DETAILS

3.1 Randomized Search Method
The heuristic search algorithm generates a large number

of legal candidate clusters in a biased random fashion. The
cluster with the largest likelihood function amongst the gen-
erated set of candidates is chosen as the resulting cluster so-
lution. Our randomized search (Figure 3) is fashioned after
earlier works on genetic algorithms [6, 5, 17] and approaches
like simulated annealing [16].
The search algorithm is called for each input data of oc-

currences and expectations for the 3D points representing
locations in time. This implies that the search algorithm
will be called once for each experiment in the Monte Carlo
based hypothesis testing. The iterative search algorithm
uses and adds to a population of candidate solutions. The
maximum size of this population is one of the parameters
that can be set by the user. Intuitively, a larger population
allows a wider exploration of the solution space reducing
the likelihood of getting stuck in a locally optimal solution
prematurely. Typical values used in our experiments are
reported in Section 4. Step 1 in the search algorithm in Fig-
ure 3 is to initialize the population of candidate solutions. In
our experiments, we initialized the population to the clusters
containing single points with non-zero occurrences.
The number of iterations of steps 2 to 8 is specified by the

user. In each iteration, new candidate solutions (children)
are generated based on existing solutions in the population
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Figure 1: Cluster with a cylindrical shape (3D and 2D views)
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Figure 2: Cluster with a square pyramid shape (3D and 2D views)
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Figure 4: Parameters of the square pyramid Q

Method Search (Input: Occurrences and expectations for
3D points in space-time

Output: Most significant cluster with
square pyramid shape)

1. Initialize candidate solution population
2. For each iteration
3. Choose two solutions A1 and A2 from population
4. Generate multiple candidate solutions

using splits and combinations
5. Choose solution B from population
6. Generate multiple candidate solutions

using small changes at boundaries
7. Evaluate newly generated candidate solutions
8. Add to candidate solution population based

on likelihood ratio and population size
9. Output most significant cluster based on likelihood ratio

end Search

Figure 3: High level description of search algorithm

(parents). Our experiments suggest that both transforma-
tions causing large and small changes to parents are useful in
the search process. As reported extensively in the simulated
annealing literature, large changes are more effective earlier
in the iterative process and smaller changes more useful later
[16].
Steps 3 and 4 in Figure 3, generate children using large

changes to the parents. Two parents, A1 and A2, are se-
lected biased towards solutions with higher likelihood ratios
[17]. Both parents are cut by a 3D hyperplane chosen at
random to generate at most four pieces. The pieces are
combined to generate children analogous to the crossover
operation in genetic algorithms [6, 5, 17]. The pieces them-
selves are also considered as children of this transformation.
Each child, represented as a set C of points, need not be legal
at this point (Definition D1). The next subsection describes

in detail how a legal candidate solution S is generated from
a set C.
Steps 5 and 6 in Figure 3, mutate a single parent B with

small changes at its boundary. Mutations that increase the
size of B and that decrease its size are applied. One of the
six faces of the pyramid corresponding to B is chosen us-
ing heuristics for applying each kind of mutation. Points
close to the chosen face are selected for addition or removal
biased towards larger or smaller likelihood ratios, respec-
tively. Intuitively, if there is a point outside B but close to
its boundary with relatively high occurrence count it will
likely be added to B to form a new candidate solution. Sim-
ilarly, a point in B close to its boundary with relatively low
occurrence count will likely be removed to form a new can-
didate solution.
Step 7 evaluates all the legal candidate solutions by com-

puting their likelihood ratios. They are added to the can-
didate population and the weakest solutions dropped if the
population size limit has been reached (Step 8). The legal
candidate solution with the best likelihood ratio after all it-
erations are completed is output as the result of the search.

3.2 Shapes Processing
Generating a legal candidate solution S from a subset of

points C is the most critical and interesting part of our
search algorithm. We consider the given subset of points
C as the target for the points contained in a legal candidate
S solution derived from it. There are many intuitive for-
mulations for the generation of S and we list three of them
below.

1. Generate the minimum volume legal solution S that
contains all the points in C.

2. Generate the maximum volume legal solution S that
excludes all the points not in C.

3. Generate the legal solution S that is closest to the set
C, where closest could be measured in various ways
(e.g., absolute difference in points between S and C).
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Our system framework allows us to explore all such formu-
lations and we have experimented with the first two formu-
lations in the list above. Since the first two formulations
are quite similar, we will describe only the first one in more
detail in this paper.
In the first formulation, given a set of points C we need to

generate a legal solution S corresponding to a square pyra-
mid Q that minimizes the volume over all square pyramids
that include all the points in C. We will define Q using the
six parameters illustrated in Figure 4.
Figure 4 shows the cross-sections of the pyramid at the

minimum and maximum times, tmin and tmax, respectively.
Minimum and maximum times for Q are determined simply
by computing them over the set of points C. The anchor
(point with smallest x and y values) for the cross section
at tmin has coordinates (a, b). The side of the square cross-
section at tmin has dimension g. At tmax, the corresponding
parameters are c, d and h, as shown in Figure 4.
The coordinates of the cross-section anchor (u, v) at any

point in time t in the interval [tmin, tmax] can be calculated
as shown in Equation 2 below.

u = a

[

tmax − t

tmax − tmin

]

+ c

[

t − tmin

tmax − tmin

]

v = b

[

tmax − t

tmax − tmin

]

+ d

[

t − tmin

tmax − tmin

] (2)

A similar linear relation can be used to determine the side
w of the cross-section (Equation 3).

u = g

[

tmax − t

tmax − tmin

]

+ h

[

t − tmin

tmax − tmin

]

(3)

The cross-sectional parameters of Q computed in Equa-
tions 2 and 3 can be used to derive linear constraints that
have to be satisfied. For each point z in C that has to be
contained in Q, we can derive four linear constraints that
specify that z is within the square cross-section of Q at the
time t corresponding to z.
The objective function for this formulation is the mini-

mization of the volume of Q as specified in Equation 4 be-
low.

volume(Q) =

(

tmax − tmin

3

)

(

g2 + gh+ h2) (4)

The minimum volume square pyramid Q can be deter-
mined by solving the convex quadratic programming prob-
lem of minimizing volume(Q) subject to the four linear con-
straints for each point in C as discussed above. We use the
optimization package, OSL [18], to solve this problem in our
system. Once the parameters of the minimum volume Q
have been determined, we can easily determine the corre-
sponding solution S expressed as a set of points by deter-
mining all points contained in Q.
This intuitive formulation requires significant computa-

tional resources since the quadratic programming solver has
to be invoked for every potentially interesting candidate gen-
erated in the random search algorithm. In a randomized
search setting one can argue that insisting on the minimum
volume solution is overkill for candidates (C) generated by
the heuristics described earlier. To ease the computational
requirement we have also implemented an approximate ver-
sion that evaluates a restricted set of square pyramids and
picks the one with the smallest volume amongst them. In
this approximate approach, we consider three candidates for

each of the four vertical faces of the pyramid. These candi-
dates are combined to generate a set of legal square pyra-
mids containing all the points in C and the minimum volume
pyramid amongst them is chosen. This approximate formu-
lation need not find the solution with the absolute minimum
volume since it does not explore all square pyramids con-
taining the points in C. However, experimental results so
far with the approximate formulation are encouraging since
the generated solutions are comparable to those produced by
the exact formulation but at a fraction of the computational
cost.

3.3 Algorithm Summary
The algorithm in Figure 3 is applied to the data corre-

sponding to the actual occurrences and to the data synthe-
sized for each of the Monte Carlo experiments that represent
the null-hypothesis that the occurrences follow the Poisson
process based on the population distributions. The results
produced by our system include the likelihood ratio of the
strongest cluster in the actual occurrence data and its char-
acteristics. The p-value is computed from the rank of this
cluster (based on the likelihood ratios) amongst all the ex-
periments (actual and Monte Carlo). The p-value is used to
determine if the cluster is significant or could have occurred
by chance. Significant clusters would merit more detailed
investigations by domain experts.

4. EXPERIMENTAL RESULTS
We will demonstrate the use of our approach by doing ret-

rospective analysis on a brain cancer data set that has been
analyzed earlier [9, 12]. We will use the condensed version
of this data that is used as a sample dataset in SaTScan
[10] for retrospective analysis using the Poisson model. The
data has counts for occurrences of brain cancer in 32 coun-
ties each year from 1973 to 1991. The data set also includes
covariates like age and gender which can be factored out by
various methods [9, 10] in a comprehensive epidemiological
investigation. In Section 4.1, we will ignore these covariates
and compare the results of our analysis with that achieved
using the simpler cylindrical models [10] using just the can-
cer occurrences and the population and geographical infor-
mation on the counties. In Section 4.2, we will incorporate
the covariates into the analyses and show their impact on
the results.

4.1 Analyses ignoring covariates
The population information is provided with gaps of about

10 years requiring that we interpolate to get the values for
the remaining years [10]. There are a total of 1175 occur-
rences of brain cancer in this data set. Since the occurrences
are given annually for each of the 32 counties, there are a
total of 19× 32 = 608 space-time points to be considered in
our analysis.
First, we will present results for the cylindrical clusters

using the SaTSan system [10]. SaTScan can be applied in a
default mode using the 32 county locations as the possible
centroids for the circular cross-sections of the cylinders con-
sidered. Using a limit of 100 Cartesian units for the radius
and allowing the temporal cluster extent to reach up to 90%
of the total period we get the results displayed in Table 1 for
the most likely cluster (with maximum log likelihood ratio).
The ratio of number of actual cases to the expected gives
the relative risk value. The p-value was computed using 999
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Monte Carlo replications. This detected cluster is specified
by the centroid and radius of the circular cross-section and
the time frame.

Log likelihood ratio 15.39
Number of cases 483 (391.83 expected)
Overall relative risk 1.233
p-value 0.001
Centroid coordinates (82,91)
Cross-section radius 62.73
Time frame 1983-1991

Table 1: Cylindrical cluster results ignoring covari-
ates (locations as centroids)

This default application of SaTScan is inadequate for com-
parisons with the square pyramid clusters since it considers
only a restricted set of centroids, limiting the point sets be-
ing evaluated. In contrast, our approach can consider any
possible legal subset of points as a candidate cluster. A bet-
ter comparison can be done by forcing consideration of a
larger set of cylindrical candidates in SaTScan by providing
a fine grid for the centroids. The results of using a grid of
size 1 Cartesian unit along both geographical axes is in Ta-
ble 2. Not surprisingly, this more exhaustive search detects
a cluster with a higher likelihood ratio (17.93) that will be
used for comparisons with our square pyramid clusters.

Log likelihood ratio 17.93
Number of cases 475 (377.30 expected)
Overall relative risk 1.259
p-value 0.001
Centroid coordinates (81,103)
Cross-section radius 72.42
Time frame 1983-1991

Table 2: Cylindrical cluster results ignoring covari-
ates (fine grid for centroids)

Our algorithm (Figure 3) for detecting more flexible clus-
ters was applied to this data using the approximate shapes
processing for square pyramids described in Section 3.2. In
our algorithm, the choices for the maximum number of it-
erations and the upper limit on the population of candidate
solutions are made considering the following tradeoff. In-
creasing the population of candidate solutions expands the
search space improving the chances of finding the global op-
timum but also slows the convergence to any local optimum
by requiring more iterations. The maximum number of it-
erations in search algorithm was set at 100K and the maxi-
mum size of the population of candidate solutions was set at
10K. Characteristics of the square pyramid cluster with the
highest likelihood are given in Table 3. The square pyramid
cluster has a higher likelihood ratio (23.52). The cluster
is significant as indicated by a p-value of 0.002 using 999
Monte Carlo replications. Interestingly, the expected num-
ber of cases for the square pyramid cluster is smaller than
for the cylindrical one in Table 2. However, the excess cases
in the cluster results in a higher overall relative risk (1.319
versus 1.259).
The resulting cluster can be visualized using the 3D and

2D views in Figure 5. The 3D view clearly shows the growth
in the cluster size with time. The movement in space over

Log likelihood ratio 23.52
Number of cases 454 (344.15 expected)
Overall relative risk 1.319
p-value 0.002
Time frame 1976-1991

Table 3: Square pyramid cluster results ignoring co-
variates

time is also apparent from both the 3D and 2D views. The
squares (both solid and with dashed lines) represent the
cross-sections of the pyramid cluster increasing in size from
1976 to 1991. The points marked by ∗ in the 2D view rep-
resent the locations of the 32 counties in the data. We
have also plotted the circular cross-section of the cylindri-
cal cluster specified in Table 2 in the 2D view of Figure 5.
The squares with the solid lines correspond to the years
for which the cylindrical cluster was active (i.e., 1983-1991).
The squares with the dashed lines represent the portion of
the square pyramid cluster for the years (1976-1982) preced-
ing the cylindrical cluster. The value of the flexibility in the
cluster shape becomes clear when we compare the clusters
with cylindrical and the pyramid shapes in Figure 5.
The power of using a more flexible cluster shape comes

with increased computational costs. Our prototype imple-
mentation took 39 hours to perform the 1000 experiments
needed to report the results in Table 3 on an IBM Intellis-
tation M-Pro computer with an Intel P4 processor running
at 2.2 Ghz. In comparison, the SaTScan run to detect the
cylindrical cluster (using the fine grid) took only 2.5 hours
on the same machine.
The convergence behavior of the search algorithm for the

square pyramid cluster on the actual occurrence data is
given in Figure 6. The x-axis plots the number of iterations
performed in the search algorithm. The two curves with
solid lines plot the maximum and minimum log likelihood
ratios (left y-axis) achieved over 5 experiments with differ-
ent random starting seeds for the search algorithm. These
curves show a sharp increase followed by a long period of
small improvements that are typical for such randomized
search algorithms. The small spread between the best and
worst behavior over 5 random starting seeds is encouraging
and indicates some robustness in the search algorithm. The
curve with dashed line shows the number of unique point
sets (mean over the 5 random experiments) examined by
the search algorithm (right y-axis). This curve clearly in-
dicates that the number of point sets continues to increase
even as the likelihood ratio achieved saturates. The number
of point sets examined overall (around 750K) is still small
for a set of size 608.
Good heuristics are clearly important for randomized search

algorithms to have any chance of efficiently finding solutions
close to optimal in the huge space of candidate solutions.
Our current prototype system is practically useful for ret-
rospective analysis provided the total number of space-time
points is kept within limits by grouping along the space or
time axes. The independent Monte Carlo experiments allow
parallelization leading to easily achievable reductions in the
elapsed times for this analysis.
In Section 3.2, we had indicated that shapes processing

using the approximate algorithm can miss some solutions
because of the restricted search used. We reran the search
algorithm by using the shapes processing algorithm with
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Figure 5: Detected cluster with a square pyramid shape ignoring covariates (3D and 2D views)
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Figure 6: Convergence behavior of search algorithm
for square pyramid cluster
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the quadratic programming optimizer invoked whenever log
likelihood ratio saturated for many iterations. The result-
ing solution was slightly better with a log likelihood ratio of
23.59. This new solution along with the earlier one in Ta-
ble 3 are illustrated in Figure 7 with dashed lines and solid
lines, respectively. The two solutions are almost the same
except that the better solution includes an extra county in
1986 while excluding another in 1988. Clearly, in this in-
stance, the restricted search of the approximate algorithm
does not result in any significant loss of insight to the user.
Further more, as with the simpler cylindrical clusters, these
algorithms should be used to determine the major charac-
teristics of the clusters. However, they should not be relied
upon to define the boundaries precisely for real-life phenom-
ena.

4.2 Analyses considering covariates
Other factors influencing the phenomena being studied

may be known in the form of covariates for the space-time
region under study. Cluster detection should be done after
adjusting for these confounding variables so that their influ-
ence is factored out. There are various ways in which this
adjustment can be done to get an expected number of cases
for each location and time considering the values of these co-
variates. We will use the method of indirect standardization
for this task following the approach used in the SaTScan sys-
tem [3, 10, 9]. The condensed brain cancer dataset includes
values for two covariates, age (discretized) and gender. We
will give the results for the cylindrical and square pyramid
clusters after factoring out these two covariates.
Using SaTScan with the same grid for centroids as before

we get the cluster results in Table 4. The cluster is much
smaller and extends only for five years. The p-value (0.003)
is higher after factoring out the covariates, but the cluster
is still significant (threshold of 0.05).

Log likelihood ratio 13.69
Number of cases 265 (195.36 expected)
Overall relative risk 1.356
p-value 0.003
Centroid coordinates (90, 82)
Cross-section radius 50.21
Time frame 1985-1989

Table 4: Cylindrical cluster results considering co-
variates (fine grid for centroids)

The square pyramid cluster detected by our system is also
smaller when the covariates are factored out. The cluster
characteristics are given in Table 5. The p-value estimated
is much higher (0.017) after factoring out the covariates but
suggest that the cluster is significant (using threshold of
0.05). The cluster is visualized as before in Figure 8. The 2D
view comparing the cylindrical and square pyramid clusters
clearly shows the growth and movement captured by our use
of the more flexible square pyramid shape.
The importance of considering confounding factors is clear

when we compare the results in Sections 4.1 and 4.2. The
detected clusters change significantly once the covariates are
taken into consideration, irrespective of the cluster shape
used.

5. DISCUSSION

Log likelihood ratio 17.105
Number of cases 292 (211.57 expected)
Overall relative risk 1.38
p-value 0.017
Time frame 1982-1989

Table 5: Square pyramid cluster results considering
covariates

The randomized search algorithm does not guarantee that
it will converge to the square pyramid cluster with the high-
est likelihood ratio in each of the experiments. As discussed
in Section 4, the impact of this on the cluster detected for
the actual data seems small. However, we still need to con-
sider the impact on all the other Monte Carlo experiments
and on the p-value computed for the detected cluster. The
p-value we compute is an estimate and its accuracy depends
on the convergence properties of our algorithm in all the ex-
periments. We can visualize and partly assess the impact
on the p-value by performing multiple runs with different
starting seeds for the random search algorithm. Each run
will converge to some solution for each Monte Carlo experi-
ment (with synthesized data).
Figure 9 shows these results for the data ignoring covari-

ates. We have plotted the best (◦) and worst (∗) log like-
lihood ratios for each Monte Carlo experiment over 5 runs
(with different random seeds). The experiments are sorted
order along the x-axis by their mean likelihood ratio. The
solid horizontal line with a log likelihood ratio of 23.52 corre-
sponds to the cluster in the actual data (all 5 runs happened
to converge to the same value). The dashed lines at 21.04
and 18.02 correspond to p-value thresholds of 0.01 and 0.05,
respectively. Most of the convergence problems occur well
below these p-value thresholds. Figure 10 has the similar
plot for the data considering covariates. The solid line at
17.1 corresponds to the cluster in the actual data and the
dashed lines at 18.22 and 15.82 correspond to the p-value
thresholds of 0.01 and 0.05, respectively. The convergence
problems in this case appear more likely to impact the p-
value, but it seems unlikely that the p-value could slip above
the 0.05 threshold.
This visualization does not address any systematic weak-

ness in the randomized search algorithm that may prevent
it from finding solutions close to the optimal. It is useful
only to display the spread due to the randomization in the
search. Our conjecture to explain the convergence behav-
ior is that our algorithm is more effective when there is a
dominant cluster but requires more iterations when there
are many comparable clusters at different parts of the solu-
tion space (as can happen in the Monte Carlo experiments).
While improvements in the search algorithm could make it
more robust, one cannot guarantee finding the optimal solu-
tion for each experiment with heuristic search. Further work
is needed to formally characterize the p-value estimated by
such methods.

6. CONCLUSION
We have presented a novel approach to detecting space-

time clusters that can model growth (or shrinkage) and
movement of the phenomena over time. This was accom-
plished by extending the formulation of the space-time scan
statistic to clusters with a square pyramid shape. A heuris-
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Figure 8: Detected cluster with a square pyramid shape considering covariates (3D and 2D views)

tic search algorithm was developed to detect clusters with
this more flexible shape since exhaustive methods are not
practical. The randomized search algorithm was combined
with geometrical shapes processing functions to determine
the most likely square pyramid clusters. Our approach was
applied to a real brain cancer data set that included co-
variates representing other confounding factors. We detect
stronger clusters with very different characteristics using our
approach compared to earlier results for simpler cylindrical
clusters. The square pyramid cluster detected by our ap-
proach exhibits both growth and movement in the disease,
something that could not be modeled with the cylindrical
geometry. Our framework can be extended quite easily to
handle clusters with other flexible shapes by adding the ap-
propriate geometric modules.
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