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Abstract 

This paper presents a new predictive modeling algorithm that draws 
inspiration from the Kolmogorov superposition theorem. An initial version 
of the algorithm is presented that combines gradient boosting with decision-
tree methods to construct models that have the same overall mathematical 
structure as Kolmogorov’ s superposition equation. Improvements to the 
algorithm are then presented that significantly increase its rate of 
convergence. The resulting algorithm, dubbed “ transform regression,”  
generates surprisingly good models compared to those produced by the 
underlying decision-tree method when the latter is applied outside the 
transform regression framework. 

1 Introduction 

In many respects, decision trees and neural networks represent diametrically opposed classes 
of learning techniques. A strength of one is often a weakness of the other. Decision-tree 
methods approximate response surfaces by segmenting the input space into regions and 
using simple models within each region for local surface approximation. The strengths of 
decision-tree methods are that they are nonparametric, ful ly automated, and computationally 
efficient. Their weakness is that statistical estimation errors increase with the depth of trees, 
which ultimately l imits the granularity of the surface approximation that can be achieved for 
f ixed sized data. In contrast, neural network methods fit highly f lexible famil ies of nonlinear 
parametric functions to entire surfaces to construct global approximations. The strength of 
this approach is that it avoids the increase in estimation error that accompanies segmentation 
and local model f itting. The weakness is that f itting nonlinear parametric functions to data is 
computationally demanding, and these demands are exacerbated by the fact that several 
network architectures often need to be trained and evaluated in order to maximize predictive 
accuracy. 

This paper presents a new modeling approach that attempts to combine the strengths of the 
methods described above—specifically, the global f i tting aspect of neural networks with the 
automated, computationally efficient, and nonparametric aspects of decision trees. To 
achieve this union, this new modeling approach draws inspiration from the Kolmogorov 
superposition theorem [1]: 
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Theorem (Kolmogorov, 1957). For every integer dimension d 
�

 2, there exist 
continuous real functions hij(x) defined on the unit interval U = [0,1], such that for every 
continuous real function f(x1,…,xd) defined on the d-dimensional unit hypercube Ud, 
there exist real continuous functions gi(x) such that 
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Stronger versions of this theorem have also been reported [2,3]. Hecht-Nielson [3] has noted 
that the superposition equation can be interpreted as a three-layer neural network and has 
suggested using the theorem as basis for understanding multi layer neural networks. This 
suggestion, however, has been criticized [5] for several reasons, one being that applying 
Kolmogorov’ s theorem would require the inductive learning of nonparametric activation 
functions. Neural network methods, by contrast, usually assume that the activation functions 
are given and the problem is to learn values for the weights that appear in the networks. 
Although the usual paradigm for training weights can be extended to incorporate the 
learning of smooth parametric activation functions (i.e., by including their parameters in the 
partial derivatives that are calculated during training), the incorporation of nonparametric 
learning methods into the training paradigm was seen as problematic. 

Nonparametric learning, on the other hand, is a key strength of decision-tree methods. The 
learning of nonparametric activation functions thus provides a starting point for combining 
neural network methods with decision-tree methods. 

In the sections that follow, an initial algorithm is presented that uses decision-tree methods 
to inductively learn instantiations of the gi and hij functions that appear in Kolmogorov’ s 
superposition equation so as to make the equation a good predictor of underlying response 
surfaces. In this respect, the initial algorithm is inspired by, but is not mathematically based 
upon, Kolmogorov’ s theorem. Improvements to the initial algorithm are then presented to 
achieve a much faster rate of convergence. Evaluation results are also presented that 
compare the performance of the transform regression algorithm to the underlying decision-
tree method that is employed. 

2 An initial  algorithm 

Inspiration for the initial algorithm presented in this section is based on interpreting 
Kolmogorov’ s superposition equation as a gradient boosting model [6,7] in which the “base 
learner”  constructs generalized additive models [8] whose outputs are then nonlinearly 
transformed to remove systematic errors in their residuals. 

To motivate this interpretation, suppose that we are trying to infer a predictive model for y 
as function of x1,…,xd given a set of training vectors { � x1,…,xd, y 	 }. As a first attempt, we 
might try constructing a generalized additive model of the form 
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This modeling task could be performed, for example, using Hastie and Tibshirani’ s iterative 
backfitting algorithm [8]. Backfitting assumes the availabil ity of a nonparametric learning 
technique, called a “ smoother,”  for estimating univariate functions. With backfitting, a 
smoother would be repeatedly applied to successive input variables to iteratively 
(re)estimate the h1j functions until  convergence is achieved. A faster, though weaker, 
approach would be to use a greedy one-pass method that independently estimates univariate 
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models jh1
ˆ  for each input feature (i.e., without iterative backfitting) and then combines the 

outputs of these models using l inear regression to obtain a model of the form 
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Independent of which of the above methods is used for generalized additive modeling, 
systematic errors can stil l appear in the relationship between the additive model output 

�
1 

and the target value y. To remove such errors, the same nonparametric learning technique 
(i.e., smoother) can again be applied, this time to l inearize 

�
1 with respect to y. The resulting 

combined model wil l  then have the form 
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To further improve the model, Friedman’ s gradient boosting method [6,7] can be applied by 
using the above two-stage modeling technique as the base learner.  The resulting gradient 
boosting model wil l  then have the form 
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Equations 4a and 4b define the gradient boosting stages. Equation 4a defines the generalized 
additive models 

�
i that are constructed in each boosting stage. The hij functions could be 

estimated using either backfitting or the greedy one-pass approximation described above—
Equation 4a reflects both choices. Equation 4b defines the boosting stage outputs � i, which 
are nonlinear transformations of the corresponding additive model outputs 

�
i. Equation 4c 

defines the output �  of the overall model, which is the sum of the boosting stage outputs � i. 

The gradient boosting model in Equation 4 is trained one boosting stage at a time. For the 
first stage (i = 1), the original target values that appear in the training data are used to first 
learn an additive model (Equation 4a) and then a nonlinear transformation of its output 
(Equation 4b). In each successive boosting stage (i > 1), the target values that are used are 
the differences between the original target values y and the sum � 1 + … + � i-1 of the outputs of 
the previous boosting stages. 

Note that the above modeling approach defines a class of algorithms that generate predictive 
models that have the same mathematical form as Kolmogorov’ s superposition equation. 
However, the gi and hij functions that appear in these models wil l clearly not have the forms 
defined in the proofs of the various versions of the superposition theorem. Instead, their 
forms would depend on the nonparametric learning method (i.e., smoother) that is used to 
estimate univariate functions. 

In the experiments reported below, the ProbE linear regression tree algorithm [9] was used 
for univariate function estimation, the one-pass greedy approach to additive modeling was 
used in conjunction with stepwise linear regression, and a holdout validation set was used in 
both of these methods to estimate generalization error in order to avoid overfitting. To 
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Figure 1: An example of the modeling behavior of the initial algorithm. 
(a) The target function. (b) The model output after one gradient boosting stage. 

(c) After two boosting stages. (d) After ten boosting stages. 

 

demonstrate the behavior of the resulting concrete algorithm, the algorithm was applied to 
synthetic training data that was generated using the following target function: 
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Synthetic data was generated by sampling the above function in the region 2]1,1[, −∈
��

yx  at 
grid increments of 0.01. This data was then subsampled at increments of 0.1 to create a test 
set, with the remaining data divided into a training set and a holdout validation set for model 
pruning purposes to avoid overfitting. 

Figure 1 i l lustrates the above target function and the predictions on the test set after one, 
two, and ten boosting stages. As can be seen in Figure 1, the algorithm is able to model the 
cross-product term in Equation 5, but the convergence of the algorithm is very slow. Even 
after ten boosting stages, the root mean squared error is 0.239, which is quite large given 
that no noise was added to the training data. 

Figure 2 i llustrates how the initial algorithm is able to model cross-product interactions 
without explicitly introducing cross-product terms into the model. Figures 2a and 2b show 
scatter plots of the test data as viewed along the x and y axes, respectively. Also plotted in 
Figures 2a and 2b as solid curves are the feature transformations � 1x(x) and � 1y(y) 
constructed from the x and y inputs, respectively. Figure 2c shows a scatter plot of the test 
data as viewed along the additive model output 

�
1, together with the output of the g1(

�
1) 

function plotted as a solid curve. 

As can be seen in Figures 2a and 2b, only the l inear terms in the target function are 
extracted by the first stage feature transformations �  1x(x) and �  1y(y). From the point of view  
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Figure 2: The test data as seen from various points in the first boosting stage. 
(a) Test data and � 1x(x) plotted against the x axis. (b) Test data and � 1y(y) plotted against the 

y axis. (c) Test data and g1(
�

1) plotted against the derived 
�

1 axis. 

 

of these transformations, the cross-product relationship appears only as heteroskedastic 
noise. However, as shown in Figure 2c, from the point of view of the additive model output �

1, the cross-product relationship appears as residual systematic error together with lower 
heteroskedastic noise. This residual systematic error is modeled by the g1(

�
1) transformation, 

which gives rise to the first boosting stage approximation of the cross-product interaction 
shown in Figure 1b. As this example i llustrates, the nonlinear transformations gi in Equation 
4b (and in Kolmogorov’ s theorem) are essential for modeling cross-product interactions. 

3 The transform regression algorithm 

To improve the rate of convergence, two modifications are made to the above algorithm in 
order to arrive at the transform regression algorithm. The first modification is to convert the 
gi functions into hij functions by eliminating Equation 4b and by using the outputs of the 
additive models in Equations 4a as first-class input features to all subsequent gradient 
boosting stages. The second modification is to introduce multivariate hij functions by further 
allowing the outputs of the additive models in Equations 4a to appear as additional inputs to 
the hij functions in all subsequent stages. With these changes, the mathematical form of the 
resulting transform regression models is given by the following system of equations: 
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where the notation ( )11 ˆ,...,ˆ −ijij yyxh  is used to indicate that function hij is meant to be a 
nonlinear transformation of xj and that this transformation is allowed to vary as a function of 

11 ˆ,...,ˆ −iyy . Likewise for the ( )11 ˆ,...,ˆˆ −− idkik yyyh  functions that appear in Equation 6b. The 
latter are the counterparts to the gi functions in Equation 4b. Equation 6a corresponds to the 
first boosting stage while Equation 6b corresponds to all subsequent stages. Because 
Equation 6b requires multivariate transformations, univariate learning techniques (i.e., 
smoothers) must be replaced with multivariate techniques in order to construct the additive 
models in this equation. 



 

 6

Although the above changes depart from the mathematical form of Kolmogorov’ s 
superposition equation, they improve the rate of convergence of the resulting algorithm by 
making better use of the information that is extracted by the gradient boosting stages defined 
in Equations 6a and 6b. The output of a boosting stage can be viewed as a derived feature 
that has been identif ied by the base learner as being highly predictive of the target values for 
that boosting stage. The first modification of using the outputs of boosting stages as first-
class input features to subsequent stages enables the subsequent stages to take full advantage 
of the predictive power of these derived features, and hence to do a better job of modeling. 
The second modification of further using the outputs of boosting stages as additional 
multivariate inputs to the feature transformation functions hij and hik provides a 
supplementary mechanism for modeling cross-product interactions, in addition to the 
modeling capabil ity provided by the hik functions. This use l ikewise contributes to doing a 
better job of modeling. 

To obtain a concrete algorithm, the ProbE linear regression tree (LRT) algorithm [9] was 
again used, this time exploiting its abil ity to construct multivariate regression models in the 
leaves of trees. When transforming a given feature, the LRT algorithm was constrained to 
split only on that feature; however, all inputs to the feature transformation were allowed to 
be included in the l inear regression models in the leaves of the resulting tree. As with the 
initial algorithm, one-pass greedy additive modeling was used with stepwise l inear 
regression, and a holdout validation set was used to estimate generalization error in order to 
avoid overfitting. 

Figure 3 i l lustrates the increased rate of convergence of the transform regression algorithm 
compared to the initial algorithm when transform regression is applied to the same data as 
for Figures 1 and 2. As shown in Figure 3a, because the gi functions have been removed, the 
first stage of transform regression extracts the two linear terms in the target function, but not 
the cross-product term. The first boosting stage therefore has a higher approximation error 
than the first boosting stage of the initial algorithm, as can be seen in Figure 3d. However, 
for all subsequent boosting stages, transform regression outperforms the initial algorithm, as 
can be seen in Figures 3b-d. As this example demonstrates, using gradient boosting stage 
outputs as additional inputs to subsequent boosting stages can produce a considerable 
increase in the rate of convergence. 

4 Experimental evaluation 

Table 1 shows evaluation results that were obtained on eight data sets used to compare the 
performance of the transform regression algorithm to the underlying LRT algorithm that it 
employs. Also shown are results for the first gradient boosting stage of transform regression, 
and for the stepwise l inear regression algorithm that is used both in the leaves of l inear 
regression trees and in the greedy one-pass additive modeling method. The first four data 
sets are available from the UCI Machine Learning Repository and the UCI KDD Archive. 
The last four are internal IBM data sets. Because all data sets have nonnegative target 
values, and because all but one (i.e., KDDCup98 TargetD) have 0/1 target values, 
comparisons were made based on Gini coefficients of cumulative gains charts [10] that were 
calculated on holdout test sets. 

On all data sets but one, transform regression produces better models than the underlying 
LRT algorithm, and for the one exception the LRT model is only sl ightly better. 
Remarkably, the first gradient boosting stage also produces better models than the LRT 
algorithm on a majority of the data sets. In one case, the first stage model is also better than 
the overall transform regression model, which indicates an overfitting problem with the 
prototype implementation used for these experiments. 
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Figure 3: An example of the modeling behavior of the transform regression algorithm. (a) 
Model output after one gradient boosting stage. (b) After two stages. (c) After three stages. 

(d) RMS errors of successive gradient boosting stages. 

 

 

Table 1: Gini coefficients for different data sets and algorithms. For each data 
set, the best coefficient is highlighted in bold, the second best in ital ics. 

 

Data 
Set 

Transform 
Regression 

First 
Boosting 

Stage 

Linear 
Regression 

Trees 

Stepwise 
Linear 

Regression 

Adult 0.655 0.559 0.566 0.429 
CoIL 0.431 0.382 0.311 0.373 

KDDCup98 B 0.217 0.216 0.160 0.164 
KDDCup98 D 0.157 0.140 0.102 0.000 

A 0.536 0.468 0.541 0.162 
D 0.536 0.543 0.447 0.409 
M 0.690 0.682 0.638 0.380 
R 0.508 0.481 0.491 0.435 

 

Initial Algorithm 

Transform Regression 
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5 Conclusions 

The experimental results presented above clearly demonstrate the benefits of the global 
function-fitting approach of transform regression compared to the local f itting approach of 
the underlying l inear regression tree (LRT) algorithm. Transform regression uses the LRT 
algorithm to construct a series of global functions that are then l inearly combined. Although 
this use of LRT is very constrained, in many cases it enables better models to be constructed 
than with the pure local f itting of LRT. 

Transform regression is also computationally efficient. Only two passes over the data are 
required to construct each boosting stage: one to build l inear regression trees for all input 
features to a boosting stage; another to perform the stepwise l inear regression that combines 
the outputs of the resulting trees to form an additive model. The amount of computation that 
is required is between one to two times the computation needed to build the first level of a 
conventional l inear regression tree when the LRT algorithm is applied outside the transform 
regression framework. 

Transform regression, however, is stil l  a greedy hil l-cl imbing algorithm. As such, it can get 
caught in local minima and at saddle points. In particular, in order to model cross-product 
interactions, at least one of the input features that appears in an interaction must f irst be 
introduced by one gradient boosting stage in order to enable subsequent boosting stages to 
model the interaction. For example, in the case of Equation 5, if symmetric sampling is used 
to generate synthetic data as done for Figures 1-3, then at least one of the x or y terms must 
appear in the target function in order for the cross-product interaction to be discovered. On 
the other hand, if the x and y terms are dropped but asymmetric sampling is used (e.g., i f 
only one quadrant is sampled) then the asymmetry would itself cause nonlinear 
transformations of x and/or y to be constructed by the first gradient boosting stage and 
subsequent boosting stages would then be able to model the cross-product interaction. 

In order to avoid local minima and saddle points entirely, additional research is needed to 
further improve the transform regression algorithm. One obvious research direction is to 
exploit the mathematical implications of Kolmogorov’ s superposition theorem, and not 
simply the form of his equation. Several authors [11-16] have been investigating the 
computational aspects of directly applying Kolmogorov’ s theorem. Given the strength of the 
results obtain above using the form of the superposition equation alone, research aimed at 
creating a combined approach could potentially be quite fruitful. 
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