
RC23227 (W0406-014) June 3, 2004
Computer Science

IBM Research Report

Transform Regression and the Kolmogorov
Superposition Theorem

Edwin Pednault
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Transform Regression and the Kolmogorov
Superposition Theorem

 Edwin Pednault
 IBM T. J. Watson Research Center
 1101 Kitchawan Road, P.O. Box 218
 Yorktown Heights, NY 10598
 pednault@us.ibm.com

Abstract

This paper presents a new predictive modeling algorithm that draws
inspiration from the Kolmogorov superposition theorem. An initial version
of the algorithm is presented that combines gradient boosting with decision-
tree methods to construct models that have the same overall mathematical
structure as Kolmogorov’ s superposition equation. Improvements to the
algorithm are then presented that significantly increase its rate of
convergence. The resulting algorithm, dubbed “ transform regression,”
generates surprisingly good models compared to those produced by the
underlying decision-tree method when the latter is applied outside the
transform regression framework.

1 Introduction

In many respects, decision trees and neural networks represent diametrically opposed classes
of learning techniques. A strength of one is often a weakness of the other. Decision-tree
methods approximate response surfaces by segmenting the input space into regions and
using simple models within each region for local surface approximation. The strengths of
decision-tree methods are that they are nonparametric, ful ly automated, and computationally
efficient. Their weakness is that statistical estimation errors increase with the depth of trees,
which ultimately l imits the granularity of the surface approximation that can be achieved for
f ixed sized data. In contrast, neural network methods fit highly f lexible famil ies of nonlinear
parametric functions to entire surfaces to construct global approximations. The strength of
this approach is that it avoids the increase in estimation error that accompanies segmentation
and local model f itting. The weakness is that f itting nonlinear parametric functions to data is
computationally demanding, and these demands are exacerbated by the fact that several
network architectures often need to be trained and evaluated in order to maximize predictive
accuracy.

This paper presents a new modeling approach that attempts to combine the strengths of the
methods described above—specifically, the global f i tting aspect of neural networks with the
automated, computationally efficient, and nonparametric aspects of decision trees. To
achieve this union, this new modeling approach draws inspiration from the Kolmogorov
superposition theorem [1]:

 2

Theorem (Kolmogorov, 1957). For every integer dimension d
�

 2, there exist
continuous real functions hij(x) defined on the unit interval U = [0,1], such that for every
continuous real function f(x1,…,xd) defined on the d-dimensional unit hypercube Ud,
there exist real continuous functions gi(x) such that

� �+

= = ���
�����=

12

1 1
1)(),...,(

d

i
j

d

j
ijid xhgxxf .

Stronger versions of this theorem have also been reported [2,3]. Hecht-Nielson [3] has noted
that the superposition equation can be interpreted as a three-layer neural network and has
suggested using the theorem as basis for understanding multi layer neural networks. This
suggestion, however, has been criticized [5] for several reasons, one being that applying
Kolmogorov’ s theorem would require the inductive learning of nonparametric activation
functions. Neural network methods, by contrast, usually assume that the activation functions
are given and the problem is to learn values for the weights that appear in the networks.
Although the usual paradigm for training weights can be extended to incorporate the
learning of smooth parametric activation functions (i.e., by including their parameters in the
partial derivatives that are calculated during training), the incorporation of nonparametric
learning methods into the training paradigm was seen as problematic.

Nonparametric learning, on the other hand, is a key strength of decision-tree methods. The
learning of nonparametric activation functions thus provides a starting point for combining
neural network methods with decision-tree methods.

In the sections that follow, an initial algorithm is presented that uses decision-tree methods
to inductively learn instantiations of the gi and hij functions that appear in Kolmogorov’ s
superposition equation so as to make the equation a good predictor of underlying response
surfaces. In this respect, the initial algorithm is inspired by, but is not mathematically based
upon, Kolmogorov’ s theorem. Improvements to the initial algorithm are then presented to
achieve a much faster rate of convergence. Evaluation results are also presented that
compare the performance of the transform regression algorithm to the underlying decision-
tree method that is employed.

2 An initial algorithm

Inspiration for the initial algorithm presented in this section is based on interpreting
Kolmogorov’ s superposition equation as a gradient boosting model [6,7] in which the “base
learner” constructs generalized additive models [8] whose outputs are then nonlinearly
transformed to remove systematic errors in their residuals.

To motivate this interpretation, suppose that we are trying to infer a predictive model for y
as function of x1,…,xd given a set of training vectors { � x1,…,xd, y 	 }. As a first attempt, we
might try constructing a generalized additive model of the form

=

=
d

j
jj xhy

1
11)(~ . (1)

This modeling task could be performed, for example, using Hastie and Tibshirani’ s iterative
backfitting algorithm [8]. Backfitting assumes the availabil ity of a nonparametric learning
technique, called a “ smoother,” for estimating univariate functions. With backfitting, a
smoother would be repeatedly applied to successive input variables to iteratively
(re)estimate the h1j functions until convergence is achieved. A faster, though weaker,
approach would be to use a greedy one-pass method that independently estimates univariate

 3

models jh1
ˆ for each input feature (i.e., without iterative backfitting) and then combines the

outputs of these models using l inear regression to obtain a model of the form

 ()

===

+=+==
d

j
djjj

d

j
jjj

d

j
jj xhxhxhy

1
10

1
11

1
1110

1
11)(ˆ)(ˆ)(~ λλλλ . (2)

Independent of which of the above methods is used for generalized additive modeling,
systematic errors can stil l appear in the relationship between the additive model output

�
1

and the target value y. To remove such errors, the same nonparametric learning technique
(i.e., smoother) can again be applied, this time to l inearize

�
1 with respect to y. The resulting

combined model wil l then have the form

 () ���
�����==

=

d

j
jj xhgygy

1
11111)(~ˆ . (3)

To further improve the model, Friedman’ s gradient boosting method [6,7] can be applied by
using the above two-stage modeling technique as the base learner. The resulting gradient
boosting model wil l then have the form

 ()

==

+==
d

j
idjijij

d

j
jiji xhxhy

1
0

1

1

)(ˆ)(~ λλ (4a)

 () ���
�����==

=

d

j
jijiiii xhgygy

1

)(~ˆ (4b)

 ���
�����==

=i

d

j
jiji

i
i xhgyy

1

)(ˆˆ . (4c)

Equations 4a and 4b define the gradient boosting stages. Equation 4a defines the generalized
additive models

�
i that are constructed in each boosting stage. The hij functions could be

estimated using either backfitting or the greedy one-pass approximation described above—
Equation 4a reflects both choices. Equation 4b defines the boosting stage outputs � i, which
are nonlinear transformations of the corresponding additive model outputs

�
i. Equation 4c

defines the output � of the overall model, which is the sum of the boosting stage outputs � i.

The gradient boosting model in Equation 4 is trained one boosting stage at a time. For the
first stage (i = 1), the original target values that appear in the training data are used to first
learn an additive model (Equation 4a) and then a nonlinear transformation of its output
(Equation 4b). In each successive boosting stage (i > 1), the target values that are used are
the differences between the original target values y and the sum � 1 + … + � i-1 of the outputs of
the previous boosting stages.

Note that the above modeling approach defines a class of algorithms that generate predictive
models that have the same mathematical form as Kolmogorov’ s superposition equation.
However, the gi and hij functions that appear in these models wil l clearly not have the forms
defined in the proofs of the various versions of the superposition theorem. Instead, their
forms would depend on the nonparametric learning method (i.e., smoother) that is used to
estimate univariate functions.

In the experiments reported below, the ProbE linear regression tree algorithm [9] was used
for univariate function estimation, the one-pass greedy approach to additive modeling was
used in conjunction with stepwise linear regression, and a holdout validation set was used in
both of these methods to estimate generalization error in order to avoid overfitting. To

 4

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

 (a) (b)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

 (c) (d)

Figure 1: An example of the modeling behavior of the initial algorithm.
(a) The target function. (b) The model output after one gradient boosting stage.

(c) After two boosting stages. (d) After ten boosting stages.

demonstrate the behavior of the resulting concrete algorithm, the algorithm was applied to
synthetic training data that was generated using the following target function:

��

���� ⋅⋅
��

���� ⋅++==
2

sin
2

sin),(
yx

yxyxfz
ππ

 (5)

Synthetic data was generated by sampling the above function in the region 2]1,1[, −∈
��

yx at
grid increments of 0.01. This data was then subsampled at increments of 0.1 to create a test
set, with the remaining data divided into a training set and a holdout validation set for model
pruning purposes to avoid overfitting.

Figure 1 i l lustrates the above target function and the predictions on the test set after one,
two, and ten boosting stages. As can be seen in Figure 1, the algorithm is able to model the
cross-product term in Equation 5, but the convergence of the algorithm is very slow. Even
after ten boosting stages, the root mean squared error is 0.239, which is quite large given
that no noise was added to the training data.

Figure 2 i llustrates how the initial algorithm is able to model cross-product interactions
without explicitly introducing cross-product terms into the model. Figures 2a and 2b show
scatter plots of the test data as viewed along the x and y axes, respectively. Also plotted in
Figures 2a and 2b as solid curves are the feature transformations � 1x(x) and � 1y(y)
constructed from the x and y inputs, respectively. Figure 2c shows a scatter plot of the test
data as viewed along the additive model output

�
1, together with the output of the g1(

�
1)

function plotted as a solid curve.

As can be seen in Figures 2a and 2b, only the l inear terms in the target function are
extracted by the first stage feature transformations � 1x(x) and � 1y(y). From the point of view

 5

-6

-4

-2

0

2

4

6

8

-1 -0.5 0 0.5 1

Z
 A

xi
s

X Axis
-6

-4

-2

0

2

4

6

8

-1 -0.5 0 0.5 1

Z
 A

xi
s

Y Axis
-6

-4

-2

0

2

4

6

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Z
 A

xi
s

Linear Regression Output
 (a) (b) (c)

Figure 2: The test data as seen from various points in the first boosting stage.
(a) Test data and � 1x(x) plotted against the x axis. (b) Test data and � 1y(y) plotted against the

y axis. (c) Test data and g1(
�

1) plotted against the derived
�

1 axis.

of these transformations, the cross-product relationship appears only as heteroskedastic
noise. However, as shown in Figure 2c, from the point of view of the additive model output �

1, the cross-product relationship appears as residual systematic error together with lower
heteroskedastic noise. This residual systematic error is modeled by the g1(

�
1) transformation,

which gives rise to the first boosting stage approximation of the cross-product interaction
shown in Figure 1b. As this example i llustrates, the nonlinear transformations gi in Equation
4b (and in Kolmogorov’ s theorem) are essential for modeling cross-product interactions.

3 The transform regression algorithm

To improve the rate of convergence, two modifications are made to the above algorithm in
order to arrive at the transform regression algorithm. The first modification is to convert the
gi functions into hij functions by eliminating Equation 4b and by using the outputs of the
additive models in Equations 4a as first-class input features to all subsequent gradient
boosting stages. The second modification is to introduce multivariate hij functions by further
allowing the outputs of the additive models in Equations 4a to appear as additional inputs to
the hij functions in all subsequent stages. With these changes, the mathematical form of the
resulting transform regression models is given by the following system of equations:

=

=
d

j
jj xhy

1
11)(ˆ (6a)

 () () 1,ˆ,...,ˆˆˆ,...,ˆˆ
1

1
11

1
11 >+=

 −+

+=
−−

=
− iyyyhyyxhy

id

dk
idkik

d

j
ijiji (6b)

�

=
i

iyy ˆˆ , (6c)

where the notation ()11 ˆ,...,ˆ −ijij yyxh is used to indicate that function hij is meant to be a
nonlinear transformation of xj and that this transformation is allowed to vary as a function of

11 ˆ,...,ˆ −iyy . Likewise for the ()11 ˆ,...,ˆˆ −− idkik yyyh functions that appear in Equation 6b. The
latter are the counterparts to the gi functions in Equation 4b. Equation 6a corresponds to the
first boosting stage while Equation 6b corresponds to all subsequent stages. Because
Equation 6b requires multivariate transformations, univariate learning techniques (i.e.,
smoothers) must be replaced with multivariate techniques in order to construct the additive
models in this equation.

 6

Although the above changes depart from the mathematical form of Kolmogorov’ s
superposition equation, they improve the rate of convergence of the resulting algorithm by
making better use of the information that is extracted by the gradient boosting stages defined
in Equations 6a and 6b. The output of a boosting stage can be viewed as a derived feature
that has been identif ied by the base learner as being highly predictive of the target values for
that boosting stage. The first modification of using the outputs of boosting stages as first-
class input features to subsequent stages enables the subsequent stages to take full advantage
of the predictive power of these derived features, and hence to do a better job of modeling.
The second modification of further using the outputs of boosting stages as additional
multivariate inputs to the feature transformation functions hij and hik provides a
supplementary mechanism for modeling cross-product interactions, in addition to the
modeling capabil ity provided by the hik functions. This use l ikewise contributes to doing a
better job of modeling.

To obtain a concrete algorithm, the ProbE linear regression tree (LRT) algorithm [9] was
again used, this time exploiting its abil ity to construct multivariate regression models in the
leaves of trees. When transforming a given feature, the LRT algorithm was constrained to
split only on that feature; however, all inputs to the feature transformation were allowed to
be included in the l inear regression models in the leaves of the resulting tree. As with the
initial algorithm, one-pass greedy additive modeling was used with stepwise l inear
regression, and a holdout validation set was used to estimate generalization error in order to
avoid overfitting.

Figure 3 i l lustrates the increased rate of convergence of the transform regression algorithm
compared to the initial algorithm when transform regression is applied to the same data as
for Figures 1 and 2. As shown in Figure 3a, because the gi functions have been removed, the
first stage of transform regression extracts the two linear terms in the target function, but not
the cross-product term. The first boosting stage therefore has a higher approximation error
than the first boosting stage of the initial algorithm, as can be seen in Figure 3d. However,
for all subsequent boosting stages, transform regression outperforms the initial algorithm, as
can be seen in Figures 3b-d. As this example demonstrates, using gradient boosting stage
outputs as additional inputs to subsequent boosting stages can produce a considerable
increase in the rate of convergence.

4 Experimental evaluation

Table 1 shows evaluation results that were obtained on eight data sets used to compare the
performance of the transform regression algorithm to the underlying LRT algorithm that it
employs. Also shown are results for the first gradient boosting stage of transform regression,
and for the stepwise l inear regression algorithm that is used both in the leaves of l inear
regression trees and in the greedy one-pass additive modeling method. The first four data
sets are available from the UCI Machine Learning Repository and the UCI KDD Archive.
The last four are internal IBM data sets. Because all data sets have nonnegative target
values, and because all but one (i.e., KDDCup98 TargetD) have 0/1 target values,
comparisons were made based on Gini coefficients of cumulative gains charts [10] that were
calculated on holdout test sets.

On all data sets but one, transform regression produces better models than the underlying
LRT algorithm, and for the one exception the LRT model is only sl ightly better.
Remarkably, the first gradient boosting stage also produces better models than the LRT
algorithm on a majority of the data sets. In one case, the first stage model is also better than
the overall transform regression model, which indicates an overfitting problem with the
prototype implementation used for these experiments.

 7

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

 (a) (b)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-6
-4
-2
0
2
4
6
8

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

R
M

S
 E

rr
o

r

Boosting Stage

 (c) (d)

Figure 3: An example of the modeling behavior of the transform regression algorithm. (a)
Model output after one gradient boosting stage. (b) After two stages. (c) After three stages.

(d) RMS errors of successive gradient boosting stages.

Table 1: Gini coefficients for different data sets and algorithms. For each data
set, the best coefficient is highlighted in bold, the second best in ital ics.

Data
Set

Transform
Regression

First
Boosting

Stage

Linear
Regression

Trees

Stepwise
Linear

Regression

Adult 0.655 0.559 0.566 0.429
CoIL 0.431 0.382 0.311 0.373

KDDCup98 B 0.217 0.216 0.160 0.164
KDDCup98 D 0.157 0.140 0.102 0.000

A 0.536 0.468 0.541 0.162
D 0.536 0.543 0.447 0.409
M 0.690 0.682 0.638 0.380
R 0.508 0.481 0.491 0.435

Initial Algorithm

Transform Regression

 8

5 Conclusions

The experimental results presented above clearly demonstrate the benefits of the global
function-fitting approach of transform regression compared to the local f itting approach of
the underlying l inear regression tree (LRT) algorithm. Transform regression uses the LRT
algorithm to construct a series of global functions that are then l inearly combined. Although
this use of LRT is very constrained, in many cases it enables better models to be constructed
than with the pure local f itting of LRT.

Transform regression is also computationally efficient. Only two passes over the data are
required to construct each boosting stage: one to build l inear regression trees for all input
features to a boosting stage; another to perform the stepwise l inear regression that combines
the outputs of the resulting trees to form an additive model. The amount of computation that
is required is between one to two times the computation needed to build the first level of a
conventional l inear regression tree when the LRT algorithm is applied outside the transform
regression framework.

Transform regression, however, is stil l a greedy hil l-cl imbing algorithm. As such, it can get
caught in local minima and at saddle points. In particular, in order to model cross-product
interactions, at least one of the input features that appears in an interaction must f irst be
introduced by one gradient boosting stage in order to enable subsequent boosting stages to
model the interaction. For example, in the case of Equation 5, if symmetric sampling is used
to generate synthetic data as done for Figures 1-3, then at least one of the x or y terms must
appear in the target function in order for the cross-product interaction to be discovered. On
the other hand, if the x and y terms are dropped but asymmetric sampling is used (e.g., i f
only one quadrant is sampled) then the asymmetry would itself cause nonlinear
transformations of x and/or y to be constructed by the first gradient boosting stage and
subsequent boosting stages would then be able to model the cross-product interaction.

In order to avoid local minima and saddle points entirely, additional research is needed to
further improve the transform regression algorithm. One obvious research direction is to
exploit the mathematical implications of Kolmogorov’ s superposition theorem, and not
simply the form of his equation. Several authors [11-16] have been investigating the
computational aspects of directly applying Kolmogorov’ s theorem. Given the strength of the
results obtain above using the form of the superposition equation alone, research aimed at
creating a combined approach could potentially be quite fruitful.

References

[1] Kolmogorov, A.N. (1957) On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addition. Doklady
Akademii Nauk SSSR, 144(5):953-956. Translated in American Mathematical Society
Translations Issue Series 2, 28:55-59 (1963).

[2] Lorentz, G.G. (1962) Metric entropy, widths, and superposition of functions. American
Mathematical Monthly, 69:469-485.

[3] Sprecher, D.A. (1965) On the structure of continuous functions of several variables.
Transactions American Mathematical Society, 115(3):340-355.

[4] Hecht-Nielsen, R. (1987) Kolmogorov's mapping neural network existence theorem.
Proc. IEEE International Conference on Neural Networks, Vol. 3, 11-14.

[5] Girosi, F. & Poggio, T. (1989) Representation properties of networks: Kolmogorov's
theorem is irrelevant. Neural Computation 1(4):465-469.

[6] Friedman, J.H. (2001) Greedy function approximation: a gradient boosting machine.
Annals of Statistics 29(5):1189-1232.

 9

[7] Friedman, J.H. (2002) Stochastic gradient boosting. Computational Statistics & Data
Analysis 38(4):367-378.

[8] Hastie, T. & Tibshirani, R. (1990) Generalized Additive Models. New York: Chapman
and Hall.

[9] Natarajan, R. & Pednault, E.P.D. (2002) Segmented regression estimators for massive
data sets. Proc. Second SIAM International Conference on Data Mining, available online at
www.siam.org.

[10] Hand, D.J. (1997) Construction and Assessment of Classification Rules. New York:
John Wiley and Sons.

[11] K
�
rková, V. (1991) Kolmogorov’ s theorem is relevant. Neural Computation 3(4):617-

622.

[12] K � rková, V. (1992) Kolmogorov's theorem and multi layer neural networks. Neural
Networks 5(3):501-506.

[13] Sprecher, D.A. (1996) A numerical implementation of Kolmogorov's superpositions.
Neural Networks 9(5):765-772.

[14] Sprecher, D.A. (1997) A numerical implementation of Kolmogorov's superpositions II.
Neural Networks 10(3):447-457.

[15] Roman, N., Arnošt, Š & Jitka, D. (2000) Towards feasible learning algorithm based on
Kolmogorov theorem. Proc. International Conference on Artificial Intelligence, Vol. II,
pp. 915-920. CSREA Press.

[16] Sprecher, D.A. (2002) Space-fi l l ing curves and Kolmogorov superposition-based neural
networks. Neural Networks 15(1):57-67.

