
RC23238 (W0406-045) June 10, 2004
Computer Science

IBM Research Report

Refactoring Techniques for Migrating Applications to
Generic Java Container Classes

Frank Tip, Robert Fuhrer, Julian Dolby
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Adam Kiezun
MIT Computer Science and AI Laboratory

32 Vassar Street
Cambridge, MA 02139

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Refactoring Techniques for Migrating Applications to
Generic Java Container Classes

Frank Tip Robert Fuhrer Julian Dolby
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

{ftip,rfuhrer,dolby}@us.ibm.com

Adam Kiezun
MIT Computer Science & AI Lab

32 Vassar St
Cambridge, MA 02139 USA

akiezun@mit.edu

ABSTRACT
Version 1.5 of the Java programming language will include gener-
ics, a language construct for associating typeparameterswith classes
and methods. Generics are particularly useful for creating statically
type-safe, reusable container classes such that a store of an inappro-
priate type causes a compile-time error, and that no down-casting
is needed when retrieving elements. The standard libraries released
with Java 1.5 will include generic versions of popular container
classes such as HashMap and ArrayList. This paper presents
a method for refactoring Java programs that use current container
classes into equivalent Java 1.5 programs that use their new generic
counterparts. Our method uses a variation on an existing model
of type constraints to infer the element types of container objects,
and it is parameterized by how much, if any, context sensitivity to
exploit when generating these type constraints. We present both a
context-insensitive instantiation of the framework and one using a
low-cost variation on Agesen’s Cartesian Product Algorithm. The
method has been implemented in Eclipse, a popular open-source
development environment for Java. We evaluated our approach on
several small benchmark programs, and found that, in all but one
case, between 40% and 100% of all casts can be removed.

1. INTRODUCTION
Java’s class libraries provide a range of standard container data

types, such as hash-tables and lists, in the java.util package.
These containers enhance the productivity of Java programmers by
allowing them to concentrate on the aspects unique to their appli-
cation without being burdened with the unexciting task of building
basic infrastructure. In our experience, nearly all Java applications
use these standard containers, and many use them extensively.
A limitation of the current Java container classes is that they are

not statically type safe. That is, access methods such as get()
and set() all refer to type Object, which means there can be
no compile-time type checking to enforce a programmer’s notion
of what types may be stored into particular containers. This also
means a down-cast to a specific type is often needed when retrieving
objects from such containers. When containers are misused, these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

casts fail at runtime, with ClassCastExceptions.
This problem will be ameliorated by generics [3] in Java 1.5;

generics allows programmers to associate type parameters with
classes and methods. Generics are particularly useful for creating
reusable container classes with compiler-enforced type safe usage.
The standard libraries that will be released with Java 1.5 will in-
clude generic versions of the container classes that are functionally
equivalent to the current ones, but use type parameters to specify
each container’s element type, and refer to these type parameters
in their accessor methods. That is, a Collection will become a
Collection<T>, with accessors that enforce the parametric type
T, e.g. void add(T) and T get(int). See Figure 1.
The premise of this paper is that, once generics are available, pro-

grammers will want to refactor applications that use current con-
tainer classes into equivalent Java 1.5 programs that use their new
generic counterparts. We present a 3-step approach to address this
problem:

1. A low-cost variation on Agesen’s Cartesian Product Algo-
rithm [1] is used to infer a set of contexts for each method.
Roughly speaking, each context corresponds to a different
combination of container objects on which the method oper-
ates. For methods that do not manipulate container objects,
only one context is used.

2. A set of type constraints [13] is derived from the program.
These type constraints are similar to those used in previous
work by some of the present authors [17, 6], but differ from
that previouswork by explicitly representing context informa-
tion and the element types of container objects. Solving the
system of constraints produces element types for declarations
and allocations of container class types.

3. The solution of step 2 is used to determine where declarations
and allocations that refer to container classes can be made to
refer to generic types, and where down-casts are rendered un-
necessary. This involves an analysis of the results computed
for the different contexts of each method, and introducing
generic classes and generic methods where necessary.

We have implemented this approach as as a source-to-source refac-
toring in the existing refactoring framework [2] of Eclipse1. We
applied the refactoring to several small benchmark programs that
use the standard container classes, and our findings indicate that for
these small programs, in all but one case, between 40% and 100%
of all casts can be removed.

1See www.eclipse.org.

1

interface Collection<T1> {
void add(T1 e);
<T11 extends T1> void addAll(Collection<T11> c);
Iterator<T1> iterator();

}
interface List<T2> extends Collection<T2> {
void add(int index, T2 e);
T2 get(int index);

}
class Vector<T3> implements List<T3> {

· · ·
}
interface Iterator<T4> {
boolean hasNext();
T4 next();

}

Figure 1: Simplified generic Collection API.

2. JAVA GENERICS
In Java 1.5, a class C may have one or more formal type pa-

rameters T1, · · · , Tn, which can be used in non-static decla-
rations within C. Type parameter Tj may be bounded by types
B1

j , · · · , Bk
j , at most one of which may be a class. Syntactically,

formal type parameters follow the class name in a comma-separated
list between the symbols ‘<’ and ‘>’. Bounds are specified using
the keyword extends; multiple bounds are separated by ‘&’. Fig-
ure 2(b) shows an example of a generic Java program. Inheritance
works just as for normal classes; type parameters of the subclass
may be used in extends declarations (see Figure 1).
Instantiating a generic classC<T1, · · · , Tn> requires that n ac-

tual type parametersA1, · · · , An be supplied, where eachAj must
be a subtype of all the bounds of the corresponding formal type pa-
rameter Tj . Syntactically, actual type parameters follow the class
name in a constructor call, in a comma-separated list between the
symbols ‘<’ and ‘>’. This syntax is also used in declarations. For
example, method foo() of class A in Figure 2(b) instantiates a
Vector with actual type parameter String.
Type parameters may also be associated with static or non-static

methods. Syntactically, the type parameters of generic methods
must be supplied at the beginning of the method’s signature. In
Figure 2(b), method A.reverse() has a type parameter T. Inner
classes inherit the type parameters of their enclosing instance(s), but
may also add their own.
A few important details regarding Java generics deserve mention.

Java generics are implemented by erasure: the Java 1.5 compiler
replaces each occurrence of a type variable by its (class) bound,
and inserts down-casts at the appropriate places to ensure that the
program is statically type-correct. These casts are guaranteed to
succeed at run-time. Unlike arrays, generic types are not covariant:
C is a subtype of C<A> if and only if B = A. Primi-
tive types cannot be used as actual type parameters of a generic
class. However, autoboxing, another new Java 1.5 feature, effec-
tively eliminates this limitation.
Java 1.5 also provides a mechanism, called raw types, for instan-

tiating and referring to a generic class without supplying actual type
parameters. This is equivalent to instantiating the class with the
each parameter’s bound as the corresponding actual type parameter.
Raw types permit Java programs to interact with legacy code that
does not use generics. Section 6.2 discusses the repercussions of
such interactions to our refactoring.
For more details about Java generics and their erasure semantics,

we refer the reader to the specification [3], and to earlier work on
the Pizza [12] and GJ [4, 11] languages.

2.1 Generic Container Classes
Figure 1 shows a small hierarchy of container classes that are

similar in spirit to the containers in the generic standard libraries,
but omitting many details. Our algorithms easily extend to ac-
commodate those as well. As Figure 1 shows, Collection’s al-
low adding elements (add()), adding from another Collection
(addAll()), and iterating over its elements (iterator()).
Collection and its subtypes each have a single type param-
eter that designates the type of the Collection’s elements.
Iterator’s also have a single type parameter representing the
type of the elements being iterated over.

2.2 Example
Figure 2(a) shows a Java program containing 3 Vector alloca-

tion sites inmethods foo(), bar(), and baz(), labelled L1–L3.
Method insert() (called from foo()) inserts into a List and
reverse (called from bar() and baz()) reverses a Vector.
In Figure 2(a), observe the down-casts needed at lines 13 and 22
because Iterator.next() returns Object.
Figure 2(b) shows the result of our refactoring algorithm on Fig-

ure 2(a). Changes are indicated by underlining. Declarations and
allocation sites make use of generics at lines 3, 8, 12, 18, 24, and 27.
Moreover, the down-casts at lines 13 and 22 have been removed.
In general, inferring a precise generic type for a container may

require changing types of other declarations. For example, the
type of parameter o of A.insert() is changed from Object
to String. This change2 is needed to infer type List<String>
for v4, v1 and allocation site L1 since one cannot store Object’s
into a List<String>.
A.reverse() on line 27 illustrates how context-sensitive anal-

ysismay be needed to compute tight generic types. A.reverse()
is called on both lines (11) and (21). On line (11), argument v2
refers to a Vector of Strings. On line (21), argument v3 is a
Vector of Integers. Two approaches for declaring v2, v3, and
v4 as generic Vectors produce a type-correct program:

1. Use the same concrete3 type T as the type parameter in the
declarations of v2, v3, and v4. T must satisfy all type con-
straints imposed on v2, v3, and v4. In particular, T must be
a supertype of String because of the call v2.add(s2) in
bar() and it must be a supertype of Integer because of
the call v3.add(i1) in baz(). Therefore, giving v2, v3,
and v4, e.g., type Vector<Object> is correct. However,
no choice of type for T permits the removal of the down-casts
on lines (13) and (22).

2. Make reverse() a generic method, with v4 becoming a
Vector<T>. If v2 is declared Vector<String> and
v3 Vector<Integer>, both can be passed correctly to
reverse and the casts on lines (13) and (22) are obviated.
Figure 2(b) illustrates this approach.

The advantage of (1) is that it is easy to compute via unification
of element types, but offers limited potential for removing casts
when a “helper method’’ is invoked at multiple sites. Approach (2)
enables the removal of more casts, but requires determining that
the Vectors that are passed to reverse() from bar() do not
flow to baz(), and vice versa. In other words, a context-sensitive
analysis is required to compute the solution of Figure 2(b).

2.3 Scope and Assumptions
2Other options include turning insert() into a generic method
<T> public void insert(List<T> v4, T o), or
leaving the type of v4 raw.
3We will use the term concrete type in this paper to refer to any type
that is not a type parameter.

2

(1) class A {
(2) public void foo(){
(3) Vector v1 = new VectorL1();
(4) String s1 = new String("aaa");
(5) this.insert(v1, s1);
(6) }
(7) public void bar(){
(8) List v2 = new VectorL2();
(9) String s2 = new String("bbb");
(10) v2.add(s2);
(11) this.reverse(v2);
(12) for (Iterator it = v2.iterator();

it.hasNext();){
(13) String s3 = (String)it.next();
(14) System.out.println(s3);
(15) }
(16) }
(17) public void baz(){
(18) List v3 = new VectorL3();
(19) Integer i1 = new Integer(17);
(20) v3.add(i1);
(21) this.reverse(v3);
(22) Integer i2 = (Integer)v3.iterator().next();
(23) }
(24) public void insert(List v4, Object o){
(25) v4.add(o);
(26) }
(27) public void reverse(Vector v5){
(28) for (int t=0; t < v5.size()/2; t++){
(29) Object temp = v5.get(v5.size()-t);
(30) v5.add(v5.size()-1, v5.get(t));
(31) v5.add(t, temp);
(32) }
(33) }
(34)}

(1) class A {
(2) public void foo(){
(3) Vector<String> v1 = new Vector<String>L1();
(4) String s1 = new String("aaa");
(5) this.insert(v1, s1);
(6) }
(7) public void bar(){
(8) List<String> v2 = new Vector<String>L2();
(9) String s2 = new String("bbb");
(10) v2.add(s2);
(11) this.reverse(v2);
(12) for (Iterator<String> it = v2.iterator();

it.hasNext();){
(13) String s3 = it.next();
(14) System.out.println(s3);
(15) }
(16) }
(17) public void baz(){
(18) List<Integer> v3 = new Vector<Integer>L3();
(19) Integer i1 = new Integer(17);
(20) v3.add(i1);
(21) this.reverse(v3);
(22) Integer i2 = v3.iterator().next();
(23) }
(24) public void insert(List<String> v4, String o){
(25) v4.add(o);
(26) }
(27) <T> public void reverse(Vector<T> v5){
(28) for (int t=0; t < v5.size()/2; t++){
(29) T temp = v5.get(v5.size()-t);
(30) v5.add(v5.size()-1, v5.get(t));
(31) v5.add(t, temp);
(32) }
(33) }
(34)}

(a) (b)
Figure 2: (a)Example programthat uses non-generic container classes. (b)Refactored version of the programof (a). Here, underlining
is used to indicate declarations and allocation sites for which a different type is referred, and assignment statements in which casts
have been removed.

In the remainder of this paper, we assume that the original pro-
gram is type-correct, and, moreover, does not contain any up-casts
(i.e., casts (C)E in which the type of E is a subclass of C)4.
Furthermore, we assume that the original program does not con-

tain any generic types (primarily because the Eclipse infrastructure
that our implementation relies upon does not support them yet).
Finally, we assume that user programs do not define subclasses of
Collection.

3. CONTEXT INFERENCE
This section describes a context-sensitive points-to analysis that

computes: (i) a set of contexts for each method, (ii) for each expres-
sion, a points-to set for that expression in each of the contexts of
its containing method, and (iii) calling relations between a call site
(for a given context of its containing method), and contexts of meth-
ods reachable from that call site. The resulting context-sensitive call
graph and points-to information serve as input for the type inference
algorithm described in the next section.

3.1 Classification of the Analysis
The points-to analysis that we will use is a subset-based flow-

insensitive, context-sensitive, field-sensitive5 [15], points-to analy-
sis that is a variation onAgesen’s Cartesian ProductAlgorithm [1] in
which distinct allocation sites are maintained for container-related
4Up-casts are only needed in rare cases for the explicit resolution
of overloaded methods and shadowed fields, and their treatment is
analogous to that of down-casts.
5That is, each field is analyzed separately for each allocation site
that contains it.

types, but where all other allocation sites are unified into a single
logical allocation site.
We use a model of the container classes in which a

single class CollectionModel represents all subtypes of
java.util.Collection. This class CollectionModel
has a single instance field elem, and calls to methods such as
Collection.add() and List.get() are modeled as writ-
ing and reading this field, respectively. This container class model
deserves a few additional remarks. In particular, the Iterator
objects that are returned by methods in a container class (e.g.,
Vector.iterator()) are modeled by identifying the returned
iterator object with the container object that is being iterated over.
Furthermore, container methods that combine containers (e.g.,
Collection.addAll()) are modeled using assignments be-
tween their elem fields.
Several important pragmatic issues arise, including the treatment

of subtypes of Map and array types, and dealing with incomplete
applications. With respect to the latter issue, we make a distinction
between application code for which source code is available, and
external code (including that in the JDK libraries) for which it is
not. Our approach for dealing with these issues is discussed in
Section 6.2.

3.2 Notation and Terminology
Inwhat follows,m, m′ denotemethods, f, f ′ denotefields,C, C′

denote classes, I, I ′ denote interfaces, T, T ′ denote types6, and

6In this paper, the term type will denote a class or an interface, and
the subtype relationship ‘≤’ is derived from the program’s class
hierarchy.

3

X, X ′ denote type variables. Moreover, the notation E, E′ will
be used to denote an expression or declaration, corresponding to a
specific node in the program’s abstract syntax tree. It is assumed that
type information about expressions is available from the compiler.
A method m is virtual if m is not a constructor, not private and

not static. A virtual methodm in typeC overrides a virtual method
m′ in type B ifm andm′ have identical signatures and C is equal
to B or C is a subtype of B. In this case, we also say that m′ is
overridden bym. Note that, using this definition, a virtual method
overrides itself.

3.3 Information Computed
Wewill use a set of labelsL to identify occurrences of the constant

null and allocation sites. Specifically, we assume each allocation
site E ≡ new T(E1, · · · , Ek) to be labeled with a unique label
L ∈ L if T is a subtype of Collection, and that each occurrence
of the constant null is labeled similarly. Furthermore, a distinct
label Lext ∈ L will be used to represent all container objects that
are allocated outside of the application7. Finally, a single “blob’’
label • ∈ L is used to represent the allocation sites of all types that
are not subtypes of Collection.
Our algorithm computes, for each method T.m(T1, · · · , Tn), a

set of contexts Contexts(T.m(T1, · · · , Tn)) , where each context
α ∈ Contexts(m(T1, · · · , Tn)) is a list of the form [p1, · · · , pn]
and where pi ∈ L, (1 ≤ i ≤ n). Intuitively, each pi identifies the
allocation site of objects bound to the ith formal parameter of its
method. For virtual methods and constructors, the this pointer is
considered to be the method’s first parameter.
The inference rules of Figure 3 also determine for each expression

E that occurs in method m a set of objects Objectsα(E) ⊆ 2L

that expression E may point to when m is executed in context α.
Points-to sets are also computed for fields. For each field T.f , let
p1, · · · , pn be the allocation sites of type T . Then, the value stored
in field f of the objects allocated at allocation site pi will be denoted
by Objectspi(f) ⊆ 2L. Note that, because the allocation sites of
all non-container types are represented by the logical allocation site
•, only one set Objects•(f) will be computed for any field f that is
declared in a non-container type.

3.4 Description of the Inference Rules
Our analysis assumes that the user has specified a number of

entry point methods that serve as the entry points for the analysis.
Definition 3.1 below defines the set of objects that can be bound to
a parameter of an entry point method. There are three cases: (i) if
the type of a formal parameter is a subtype of Collection, then
it is made Lext , (ii) if the type of a formal parameter is a primitive
or class type that cannot be a Collection, then it is made bound
•, and (iii) otherwise it can be bound to • and Lext .

Def. 3.1 (ExternalObjects). Let T be a type. Define:

ExternalObjects(T) =




{ Lext } if T≤Collection
{ • } if T �≤Collection
{ Lext , • } otherwise

Rule (C1) of Figure 3 defines the set of contexts for method
T.m(T1, · · · , Tk) using these type estimates. Rule (C2) defines
the points-to relations for the method’s formal parameters based on
these type estimates. Here, the auxiliary notionParam(m′, i) is used
to refer to the expression that constitutes the ith formal parameter
ofm′ (this is considered to be the first formal parameter ofm′).

7 Alternatively, one could create a more fine-grained model by an-
alyzing the byte-codes for unavailable classes, similar to [7].

Rule (C3) models the flow of values through assignment state-
ments using a subset relationship of their points-to sets. Rule (C4)
is concerned with container allocation expressions of the formE ≡
new TL (E1, · · · , Ek) (with T≤java.util.Collection)
that occur in a method m. The rule states that object L
is a member of Objectsα(E), for each α ∈ Contexts(m).
Rules (C5)–(C7) are concerned with constructor calls of the form
E0 ≡ new T(E1, · · · , Ek) to a constructor method m′, where
T �≤java.util.Collection. For each method m in which
such an expression occurs, and each α ∈ Contexts(m), we first
determine the contexts α′ associated with the constructor method,
using the auxiliary function SelectContexts (see Definition 3.2). Se-
lectContexts takes two arguments: a contextα of the callingmethod,
and the actual parameters expressionsE0, · · · , Ek, and creates con-
texts α′ for m′ based on the points-to sets associated with these
actual parameters in context α. Rule (C5) adds these contexts α′ to
the set of contexts associated withm′.

Def. 3.2 (SelectContexts). Let E0, · · · , Ek be expressions.

SelectContexts(α,E0, · · · , Ek) =
{ [p0, · · · , pk]| pi ∈ Objectsα(Ei), 0 ≤ i ≤ k }

The points-to set associated with the entire allocation expression
is • because T is not a container type (see Rule (C6)). Rule (C7)
models the effect on points-to relationships of binding the actual
parameter expressionsE0, · · · , Ek to the corresponding formal pa-
rameters ofm′.
Modeling the effect of direct and virtual method calls on con-

text creation and points-to sets is defined by rules (C8)–(C10) and
(C11)–(C13), respectively. These rules are very similar to those
for constructor calls except for the fact that there is no allocated
object that must be included in the points-to set for the call expres-
sion. Moreover, passing of return values from callees to callers
is modeled by associating an additional parameter returnm with
each method m, and generating an inclusion constraint involving
returnm and the call expression. For virtual method calls, dy-
namic dispatch is approximated by assuming that a virtual call to
method m′ can resolve to any method m′′ that overrides m′. This
effectively amounts to using Class Hierarchy Analysis (CHA) [9]
for virtual call resolution.
Rule (C14) is concerned with return statements of the form

return E that occur in a methodm for which α ∈ Contexts(m).
In this case, the set of objects associated with E in context α is a
subset of the set of objects associated withm’s return parameter in
context α.
Rules (C15) and (C16) handle field accesses. These generate in-

clusion constraints for the rval or lval expression respectively from
or to the appropriate field cell for each allocation site of the con-
tainer E′. Rule (C17) states that the set of objects associated with
a cast expression E ≡ (T)E′ is a subset of set of objects asso-
ciated with E′. Rules (C18) and (C19) define the points-to sets
associated with literal values. Literal references besides null can-
not flow to Collection typed expression, so they are all de-
fined to be • (Rule (C18)). Some null literals may be assigned to
Collection typed variables, so we represent them as allocation
sites (Rule (C19)).

3.5 Example
Figure 2(a) shows an example program that contains methods

foo(), bar(), baz(), insert(), and reverse() and three
container allocation sites (labeled L1—L3) as well as three (unla-
beled) allocation sites that are not container-related.
Table 1 shows all contexts inferred for the example pro-

gram, assuming that all 5 methods have been designated as en-

4

method context
A.foo() α1 ≡ [•]
A.bar() α2 ≡ [•]
A.baz() α3 ≡ [•]
A.insert(Vector,Object) α4 ≡ [•, Lext , •]
A.insert(Vector,Object) α5 ≡ [•, Lext , Lext]
A.insert(Vector,Object) α7 ≡ [•, L1, •]
A.reverse(Vector) α6 ≡ [•, Lext]
A.reverse(Vector) α8 ≡ [•, L2]
A.reverse(Vector) α9 ≡ [•, L3]

Table 1: Contexts inferred for the example program.

try points, and using ExternalObjects(Vector) = { Lext } and
ExternalObjects(Object) = { •, Lext } (see Definition 3.1).

4. TYPE INFERENCE
Once contexts have been inferred, a set of type constraints is

generated for each context of each method, using an adaptation of
the formalism of [17, 13]. Solving the resulting set of type con-
straints produces inferred types for declarations and allocation sites
of container classes.
For each program construct, a set of type constraints specifies

the relationships that must exist among the types of the construct’s
constituent expressions for the construct to be type-correct. By
definition, a program is type-correct if the declared types satisfy the
constraints of all of its constructs. Type constraints are expressed
in the following notation. For a declaration or expression E, [E]α
denotes the type of E in context α. Furthermore, [f]L denotes
the type of field f in objects with label L, and [m]α denotes the
return type of methodm in context α. For a field f or a methodm,
Decl(f) and Decl(m) denote the type in which f orm is declared,
respectively. Finally, for types T and T ′, T ′≤T denotes that T ′ is
equal toT , orT ′ is a subtype ofT . Definition 4.1 defines, for a given
methodm, the set RootDefs(m) of methodsm′ that are overridden
by m but do not override any methods but themselves. Since the
original program is assumed type-correct, this set is guaranteed to
be non-empty.

Def. 4.1 (RootDefs) . Letm be a method. Define:

RootDefs(m) = { m′| m overridesm′, and there exists
nom′′ (m′′ �= m′) such that
m′ overridesm′′ }

Def. 4.2. Let T be a type. Define:

NewType(T) =
{

T<X> if T≤Collection
T otherwise

A constraint variable c is eitherT (a typeconstant) or [E] (the type
of a declaration or expressionE). A type constraint is a relationship
between two or more constraint variables that must hold in order for
a program to be type-correct. In this paper, a type constraint has
one of the following forms: (i) c1�c2, indicating that c1 is defined
to be the same as c2 (ii) c1≤c2, indicating that c1 must be equal to
or be a subtype of c2, (iii) c1=c2, indicating that c1≤c2 and c2≤c1,
or (iv) cL

1 ≤cR
1 or · · · or cL

k ≤cR
k , indicating that cL

j ≤cR
j must hold

for at least one j, 1 ≤ j ≤ k.
In discussions about types and subtype-relationships that occur

in a specific program P , we will use the same notation as that for
constraint variables with subscript P . For example, [E]P denotes
the type of expression E in program P , and T ′≤P T denotes a
subtype-relationship that occurs in program P . In cases where the
program under consideration is unambiguous, we will frequently
omit these P -subscripts.

4.1 Deriving Type Constraints
Figure 4 shows a set of inference rules (adapted from [13]) that

infer type constraints for several important Java constructs, such as
assignments, constructor calls, virtual method calls, field accesses,
and cast expressions. Due to space limitations, we only describe a
few rules in detail.
Constraint (B1) concerns assignments E1 = E2 that occur in

method m such that α ∈ Contexts(m), and states that the assign-
ment is type correct if the type of E2 in context α is the same as or
a subtype of that of E1 in context α.
Rules (B6)–(B8) concern virtual calls of the form E ≡

E0.n(E1, · · · , Ek) that occur in method m for which α ∈
Contexts(m). We assume that α′ is one of the contexts of callee
m′, and thatm′′ is any method that overridesm′. Rule (B6) defines
the type of the call expression E in context α to be the return type
of callee m′ in context α′. Rule (B7) imposes the proper subtype-
relationships between corresponding actual and formal parameters
(including the this pointer). Finally, rule (B8) concerns the re-
lationship between the type of receiver E0 in context α and the
root definition types T1, · · · , Tq in which methods are declared that
are overridden by m′. Because the behavior of the virtual method
call only depends on the run-time type of E0, we may change the
declared type of E0 to any subtype of any Ti without affecting be-
havior. This is expressed by using Definition 4.1 to compute the
types T1, · · · , Tq , and generating an or constraint that requires the
type of E0 in context α to be a subtype of at least one Ti.
Rules (B11) and (B12) generate constraints for down-cast expres-

sions of the form E ≡ (T)E′. Rule (B11) requires that the type of
the cast expression E in context α is T . That is, the “target type’’
of the cast cannot be changed. This requirement, along with the
fact that we change neither the types of allocation sites nor data-
flow, guarantees that the run-time behavior of down-casts will be
unchanged.
Rules (B14)—(B27) in Figure 4 concern the inference of

Collection element types. For each expression E that occurs
in method m for which α ∈ Contexts(m), these rules define a set
Typesα(E) of types that may be stored in containers that E may
point to in context α, and a type Elemα(E) that is an upper bound
of the types in Typesα(E) (the relationship between Elemα(E)
and Typesα(E) is expressed by rule (B24)). As an example of a
Collection-related rule, consider Rule (B16), concerning calls
to Collection.add(). For a call E ≡ E0.add(E1) to method
m′ occurring in method m for which α ∈ Contexts(m), this rule
adds the type ofE1 in contextα to the setTypesα(E0) of types that
may be stored in Collection objects bound toE0 in α. Figure 4
only shows rules for a representative subset of the Java Collections
API; the remainder is handled similarly.
It is important to note that the type constraint rules (specifically,

(B1), (B26), and (B27)) are carefully designed to allow specific
container types such as Vector to be assigned to more general
container types such as List, provided that the element types are
the same. This reflects the fact that, e.g., Vector<T> is a subtype
of List<T> for all T.
As an example, Figure 5 shows the type constraints generated for

context α9 of method A.reverse() of Figure 2.

5. SOURCE CODE TRANSFORMATION
Once contexts and type constraints have been inferred, the last

step is to transform the program’s source code. In the context-
insensitive approach, this involves: (i) rewriting declarations and
allocation sites to reflect the new types inferred from the constraint
system, (ii) removing casts that have been rendered redundant, and

5

T0.m(T1, · · · , Tn) is an entry point, pi ∈ ExternalObjects(Ti), α = [p0, · · · , pn], 1 ≤ i ≤ n

α ∈ Contexts(m(T0, · · · , Tn)) (C1)
pi ∈ Objectsα(Param(m(T0, · · · , Tn), i)) (C2)

m contains assignment E1 = E2, α ∈ Contexts(m)
Objectsα(E2) ⊆ Objectsα(E1) (C3)

m contains call E ≡ new T L(E1, · · · , En) to constructorm′, T≤Collection, α ∈ Contexts(m)
L ∈ Objectsα(E) (C4)

m contains call E0 ≡ new T L(E1, · · · , En) to constructorm′, T �≤Collection,
α ∈ Contexts(m), α′ ∈ SelectContexts(α, E0, · · · , En), 0 ≤ i ≤ n

α′ ∈ Contexts(m′) (C5)
• ∈ Objectsα(E0) (C6)

Objectsα(Ei) ⊆ Objectsα′ (Param(m′, i)) (C7)

m contains direct call E ≡ T.m(E1, · · · , En), α ∈ Contexts(m), α′ ∈ SelectContexts(α, E1, · · · , En), 1 ≤ i ≤ n

α′ ∈ Contexts(m′) (C8)
Objectsα(Ei) ⊆ Objects′α(Param(m′, i)) (C9)
Objectsα′ (returnm′) ⊆ Objectsα(E) (C10)

m contains virtual call E ≡ E0.n(E1, · · · , En) to methodm′,
α ∈ Contexts(m),m′′ overridesm′, α′ ∈ SelectContexts(α, E0, · · · , Ek), 0 ≤ i ≤ n

α′ ∈ Contexts(m′′) (C11)
Objectsα(Ei) ⊆ Objectsα′ (Param(m′′, i)) (C12)
Objectsα′ (returnm′′) ⊆ Objectsα(E) (C13)

m contains expression return E, α ∈ Contexts(m)
Objectsα(E) ⊆ Objectsα(returnm) (C14)

m contains a readE ≡ E′.x from field f , α ∈ Contexts(m), L ∈ Objectsα(E′)
ObjectsL(f) ⊆ Objectsα(E) (C15)

m contains write E ≡ E′.x to field f , α ∈ Contexts(m), L ∈ Objectsα(E′)
Objectsα(E) ⊆ ObjectsL(f) (C16)

m contains cast expressionE ≡ (T)E′, α ∈ Contexts(m)
Objectsα(E′) ⊆ Objectsα(E) (C17)

m contains numeric/boolean/string constant expressionE, α ∈ Contexts(m)
• ∈ Objectsα(E) (C18)

m contains expressionE ≡ nullL, α ∈ Contexts(m)
L ∈ Objectsα(E) (C19)

Figure 3: Rules for context inference.

(iii) rewriting certain object equality and type tests that are guaran-
teed to fail and that would lead to type-errors if left untransformed.
The context-sensitive approach has the additional step of inserting
type parameters into method signatures to allow multiple contexts
with different inferred types tomap to the same transformedmethod.
We present the context-insensitive approach first, and then address
the additional issues of the context-sensitive approach.

5.1 Context-Insensitive Code Generation
In the context-insensitive approach, the types of declarations and

allocation sites are updated to reflect the types inferred from the
constraint system. For a container-related declaration or allocation
site E, this involves adding a type parameter Elem (E) 8. Note
that declarations that do not refer to container types in the original
program may be rewritten as well. In the example of Figure 2, the
type of parameter o of method A.insert() was changed from
Object to String.
We remove any down-cast (T)E for which we infer that [E]

is equal to, or a subtype of T . For the example of Figure 2, the
cast (String)it.next() on line (13) is removed because we
inferred that [it.next()] = Elem (it) = String, which is
the same as the target type of the cast, String

8If Elem (E) is bound to a type variable, we associate a new type
parameter with the method. Such situations may occur when ana-
lyzing incomplete applications or class libraries.

It is possible that when we tighten a declared type, the types of
the operand expressions of operators such as == and instanceof
and casts may become incomparable. Then offending construct is
rewirtten into a boolean constant false (for == or instanceof)
or to an expressionthrow new ClassCastException() (for
down-casts).

5.2 Context-Sensitive Code Generation
With context-sensitive analysis, a method can have multiple con-

texts with different (element) types for a parameter. If a type param-
eters can be introduced for this argument, a single generic method
can “fit� the different contexts. We add type parameters when differ-
ent Elem types are inferred for a Collection-typed parameter in
different contexts. Since the Java type system places many painful
restrictions on the use of generic types due to its erasure seman-
tics, this limits when parameters can be introduced. In such cases,
the more-restrictive context-insensitive solution is applied to parts
of the program by unifying the results obtained for different con-
texts. In this section, we first present the criteria for introducing
type parameters, and then discuss the code transformation. As we
do so, we will illustrate the operations on the reverse()method
of Figure 2.
The first step is to determine the set of declarations for which

type parameters would ideally be introduced. This comprises any
parameter v of a method m for which different types Elem (v) are

6

m contains assignmentE1 = E2, α ∈ Contexts(m)
[E2]α≤[E1]α (B1)

m contains constructor call E0 ≡ new T (E1, · · · , Ek) to constructorm′, T �≤Collection,
α ∈ Contexts(m), α′ ∈ SelectContexts(α, E0, · · · , Ek),E′

i = Param(m′, i), 0 ≤ i ≤ k

[E0]α�T (B2)
[Ei]α≤[E′

i]α′ (B3)

m contains direct call E ≡ T.n(E1, · · · , Ek) to methodm′, T �≤Collection,
α ∈ Contexts(m), α′ ∈ SelectContexts(α, E1, · · · , Ek),E′

i = Param(m′, i), 1 ≤ i ≤ k

[E]α�[m′]α′ (B4)
[Ei]α≤[E′

i]α′ (B5)

m contains call E ≡ E0.n(E1, · · · , Ek) to virtual methodm′, α ∈ Contexts(m),m′′ overridesm′,
RootDefs(m′) = { T1, · · · , Tq }, ∀j(1 ≤ j ≤ q) : Tj �≤Collection,
α′ ∈ SelectContexts(α, E0, · · · , Ek),E′

i = Param(m′′, i), 0 ≤ i ≤ k

[E]α�[m′]α′ (B6)
[Ei]α≤[E′

i]α′ (B7)
[E0]α≤T1 or · · · or [E0]α≤Tq (B8)

m contains field access E ≡ E′.f to field F , L ∈ Objectsα(E′), T = Decl(f), T �≤Collection, α ∈ Contexts(m)
[E]α�[F]L (B9)
[E′]α≤T (B10)

m contains down-cast expression E ≡ (T)E′, T �≤Collection, α ∈ Contexts(m)
[E]α�T (B11)

m contains down-cast expressionE ≡ (T)E′, T �≤Collection, α ∈ Contexts(m), T is a class, [E′]P is a class
T≤[E′]α (B12)

m contains an expression E ≡ this, T = Decl(m)
E�T (B13)

m contains an expression E ≡ new T (), T≤Collection, α ∈ Contexts(m), T ′ = NewType(T)
[E]α�T ′ (B14)

m contains a call E0.n(E1) to methodm′, α ∈ Contexts(m),
RootDefs(m′) = { T1, · · · , Tk }, 1 ≤ i ≤ k, (Ti≤Collection or Ti≤Iterator), T ′

i = NewType(Ti)
[E0]α≤T ′

1 or · · · or [E0]α≤T ′
k (B15)

m contains a call E0.add(E1) to methodm′, α ∈ Contexts(m), Decl(m′)≤Collection
[E1]α ∈ Typesα(E0) (B16)

m contains a call E0.add(Int, E1) to methodm′, α ∈ Contexts(m), Decl(m′)≤Collection
[E1]α ∈ Typesα(E0) (B17)

m contains a call E ≡ E0.get(Int) to methodm′, α ∈ Contexts(m), Decl(m′)≤Collection

[E]α�Elemα(E0) (B18)

m contains a call E0.addAll(E1) to methodm′, α ∈ Contexts(m), Decl(m′)≤Collection
Elemα(E1)≤Elemα(E0) (B19)

m contains a call E ≡ E0.iterator() to methodm′, α ∈ Contexts(m), Decl(m′)≤Collection

ItElemα(E)�Elemα(E0) (B20)

m contains a call E ≡ E0.next() to methodm′, α ∈ Contexts(m), Decl(m′)≤Iterator

[E]α�ItElemα(E0) (B21)

m contains down-cast expression E ≡ (T)E′, T≤Collection, α ∈ Contexts(m), T ′ = NewType(T)
[E]α�T ′ (B22)

m contains down-cast expressionE ≡ (T)E′, T≤Collection, α ∈ Contexts(m),
T is a class, [E′]P is a class, T ′ = NewType(T)

T ′≤[E′]α (B23)

T ∈ Typesα(E)
T≤Elemα(E) (B24)

Elemα(T0<T1>)�T1 (B25)

Elemα(T1) = T2 (B26)
[T1]α≤Collection<T2>

[E1]α≤[E2]α′
Elemα(E1) = Elemα′ (E2) (B27)

Figure 4: Inference rules for deriving type constraints from various Java constructs.

7

inferred for multiple contexts associated with m. Since overriding
requires identical argument signatures, we examine the contexts
associated with any method that has an overriding relationship with
m, as specified in Definition 5.1.

Def. 5.1. MethodSet(m) =

mi

∣∣∣∣∣∣
mi = m∨
∃mj

(
mj ∈ MethodSet(m)∧(

mj overridesmi ∨ mi overridesmj
))




For method A.reverse() in Figure 2, we have that
MethodSet(A.reverse()) = { A.reverse() }.
Definition 5.2 defines, for methodm, the subset of its parameters

for which different element types are inferred in different contexts
associated.

Def. 5.2 (TypeParameterCandidates) . TPC(m) =



pi

∣∣∣∣∣∣∣∣∣

pi = Param(m, i)∧
∃α1, α2, m1, m2
 m1 ∈ MethodSet(m) ∧ m2 ∈ MethodSet(m)∧

α1 ∈ Contexts(m1) ∧ α2 ∈ Contexts(m2)∧
Elemα1 (Param(m1, i)) �= Elemα2 (Param(m2, i))







For method A.reverse() in Figure 2, we previously inferred
the contexts α6 = [•, Lext], α8 = [•, L2], and α9 = [•, L3]. For
parameterv5 ofreverse(), we haveElemα6(v5) = Object9,
Elemα8(v5) = String, and Elemα9(v5) = Integer. There-
fore, v5 ∈ TPC(reverse()).
Giving a method parameter a type parameter may require altering

typeswithin themethod to also use that type parameter. Specifically,
if E is given type parameter T , then expressions E′ to which E
is assigned must also be given type parameter T . Furthermore,
expressions E′′ which may also be assigned to E′ must also be
given type parameter T . This is expressed by Definition 5.3 below.
Here, ≤∗ denotes the transitive and reflexive closure of ≤.

Def. 5.3. Related(E) =

{Ei |∃Ej , α : [Ej]α≤∗[Ei]α ∧ [Ej]α≤∗[E]α }

For v5 of the reverse() method in Figure 2, the set of re-
lated variables for v5 contains temp because of the presence of
[temp]α9≤Elemα9(v5) and similar constraints. No other vari-
ables are related to v5.
It is legal to rewrite the relevant declarations to use the new type

parameter only if no such declaration needs a typemore precise than
the inferred type. This could only happen in the presence of down-
casts and instanceof tests that could fail. Definition 5.4 below
9This constraint would arise for calls to reverse from outside the
program.

28 (B15) [v5]α9≤Collection< X25 >
29 (B15) [v5]α9≤Collection< X26 >
29 (B15) [v5]α9≤List< X27 >

29 (B18) [v5.get(v5.size()-t)]α9�Elemα9 (v5)
29 (B1) [v5.get(v5.size()-t)]α9≤[temp]α9
30 (B15) [v5]α9≤List< X28 >

30 (B18) [v5.get(t)]α9�Elemα9 (v5)
30 (B15) [v5]α9≤List< X29 >
30 (B17) [v5.get(t)]α9 ∈ Typesα9

(v5)
31 (B15) [v5]α9≤List< X30 >
31 (B15) [temp]α9 ∈ Typesα9

(v5)

Figure 5: Type constraints generated for context α9 associated
with method A.reverse()

public void reverse(Vector v5) {
for (int t=0; t < v5.size()/2; t++) {
Integer temp = (Integer)v5.get(v5.size()-t);
v5.add(v5.size()-1, v5.get(t));
v5.add(t, temp);

}
}

Figure 6: reverse method with bad cast

states a condition sufficient to ensure this. For example, Figure 6
shows the reverse method altered to cast temp to an Integer.
In this case, parameter v5 of method reverse() will fail the
test because in context α7, we have that [temp]α7 = Integer but
Elemα7(v5) is String, which is not a subtype of Integer. If
a parameter passes this test, we replace all declarations related to it
with its type parameter. In the case of method reverse(), a type
parameter can be associated with parameter v5, because the type
inferred for its related variables (i.e., temp) is the same as the type
inferred for v5, in each context.

Def. 5.4. ParamOK(E) =

�E′, α


 E′ ∈ Related(E)

[E′]α = T
[E]α �≤T




Bounds may need to be imposed on type parameters that are
introduced. The ParamOK test ensures that all declared types of
related variables are supertypes of the types we inferred for the
parameter itself . Thus, when we introduce a type parameter, we
can always choose bound that is a supertype of the types inferred
for the parameter and is a subtype of all declarations. There may be
more than one such type, of which any will do. This is specified in
Definition 5.5, in which Ei is the ith parameter of methodm.

Def. 5.5. TypeBound(Ei, m) =

T

∣∣∣∣∣∣Elem(()Ei)≤T ∧ ∀E, α, P


 Ei ∈ TPC(m)∧

E ∈ Related(Ei)
T≤[E]α







There is no need for a bound in our reverse example, since it
could just be Object.

6. IMPLEMENTATION AND RESULTS

6.1 Implementation Details
We implemented our algorithms as an Eclipse refactoring [2],

building on Eclipse’s Java Development Toolkit (JDT), which pro-
vide Abstract Syntax Trees (AST’s), searching (e.g., for call sites),
and source rewriting. We extended its type constraint infrastructure,
previously developed for generalization-related refactorings [17], in
order to accommodate generic types and context-sensitivity. As the
JDT does not yet support Java 1.5 generics, we verified the trans-
formed code using a beta-release of Sun’s JDK 1.5 compiler.
The context-inference algorithm of Section 3 is implemented as a

classic propagation-based call-graph construction engine [9]. Start-
ing from a rootmethods, data flow and call-graph construction inter-
twine: processing newly reached methods reveals new call sites and
allocation sites, and as allocation sites reach call sites, new contexts
are added to the call graph. The analysis engine is is currently a sim-
ple worklist-based solver andmanywell-known optimizations (e.g.,
topological ordering, efficient bit sets) remain to be incorporated.
TheAST’s are traversed to generate type constraints as presented

in Section 4, with one exception. Similar to [6], we replace an
or-constraint of the form [E]α≤T1 or · · · or [E]α≤TN with one

8

of its “branches’’ [E]α≤Tj in order to simplify the solving process.
While this restricts the set of types that can be given toE, the original
type of E must be solution.
A graph is then constructed whose nodes are variables, fields,

returns and expressions (aswell asElem variables), andwhose edges
encode the type constraints. Each node has a type estimate, either a
finite set of types, or a type variable. Initial type estimates are: (i) for
anElem node, a distinct type variable10, (ii) for nodes corresponding
to entities in binary classes, the entity’s type in the original program,
and (iii) for any other node, the set of all types. The inference engine
uses a work-list based approach that involves: removal of elements
from concrete sets of types, unification of type parameters with
concrete sets of types, and recursive unification of element type
variables when processing nodes that have container sub-structure.
Type estimate sets monotonically decrease in size, guaranteeing the
algorithm’s termination.
When constraint solution terminates, nodes may still have type

estimate sets S of size > 1. The solver processes these nodes
iteratively, by selecting a single specific type s ∈ S for each such
noden, and entering n on the work-list. Here, the least specific type
in S is chosen for container-typed nodes, while the most specific
type inS is chosen for other nodes, so as to maximize the possibility
that casts may be removed.

6.2 Pragmatic Issues
Many language constructs andAPI limitations in Eclipse required

pragmatic solutions. Space limitations prevent us from mentioning
all but the most significant of these.
Support for anonymous and local classes in the Eclipse JDT is

rudimentary, so we refactored them out of our benchmarks.
Our implementation preserves original typesof declarationswhich

lack source code. We do not infer parametric types for such dec-
larations of Collection’s. This requires two steps: (i) an addi-
tional constraint is generated that forces the element type of such
Collection-related declarations to be Object, and (ii) the type
of anyCollection-related declaration or allocation site forwhich
element type Object is inferred is left “raw’’.
Our refactoring must be applicable to arbitrary groups of classes,

not just to single programs. Therefore, we make conservative ap-
proximations about data flow within external classes, call-backs
from library code, and reflection, similar in spirit to, e.g., [18, 14].
Weuse a single logical expressionEext for all external code. Calls to
external methods cause assignments between their arguments (and
return value) andEext . We ignore calls to a few heavily used meth-
ods in the class libraries that are known to be benign. An example
is the constructor of java.lang.Object.
The treatment of Map-style container classes such as

java.util.Hashtable and java.util.HashMap is anal-
ogous to that of Collection’s, but two implicitly created
Collection’s (one representing the Map’s set of keys, the other,
its set of values) need to be modeled.
Arrays pose several interesting challenges. To reduce pollu-

tion, each array creation gets a distinct allocation site, similar to
that of Collection’s and Map’s. Arrays are handled using
an ArrayModel class similar to that for Collection’s, and
reads/writes to/from arrays are modeled as calls to get/set methods
in ArrayModel. Another array-related issue stems from limi-
tations in Java 1.5’s erasure semantics, which disallows arrays of
generic types. The type inference engine ensures that element type
Object is inferred for any container-related value that flows into
an array. This technique effectively forces the use of the raw type
10except for Elem nodes of container-related array-index expres-
sions, as noted in Section 6.2.

for such declarations.

6.3 Experimental Results
Weevaluated two variations of our technique on a number of small

Java benchmarks, as indicated in Table 2. The context-insensitive
(CI) variation uses one context permethod, and the context-sensitive
(CS) variation uses the variation on Agesen’s algorithm described
in Section 3.
We used the following benchmarks. Hanoi11 is a simple animated

AWT applet that solves the Towers of Hanoi problem and makes
limited use of containers. JUnit12 is a widely used framework for
unit and regression testing that includes both Swing andAWT UI’s.
JLex13 is a lexical-analyzer generator that makes significant use of
vectors and maps. JavaCup14 is an LALR(1) parser generator that
uses tables heavily to represent shift and reduce actions. Mango15
is a set of utility algorithms for searching, sorting and transforming
collections. Its methods are relatively generic, and so client usage
determines whether context sensitivity is required to genericize it.
For all benchmarks except Mango1, Mango2, and Mango3 the

application’s main() routine(s) were designated as the sole entry
point method. To evaluate our approach on the Mango library, we
wrote three tests similar to Mango’s unit tests that exercise major
portions of its functionality. Mango1 tests the algorithms find,
count and remove, that use object equality to examine collec-
tions. Mango2 tests findIf and removeIf, which instead use a
predicate function. Mango3 exercises the Transform algorithms,
which create new collections based upon existing ones.
The results of Table 2 can be summarized as follows. First, no

benchmark except Mango required context-sensitivity because of
the simple way in which container objects were used. In both
Mango1 and Mango2, the context-sensitive approach discussed in
the paperwas sufficient, while forMango3, more context-sensitivity
was required.
A reasonable measure of the effectiveness of our technique is

the percentage of down-casts in the program that can be removed
when generic types are inferred. As can be seen from Table 2, with
the exception of Mango3, our method removes between 40% and
100% of the casts. A manual inspection of the refactored programs
revealed that most of the remaining casts are not related to the use
of container classes, or are constrained by the use of fixed/binary
API’s, such as AWT.

7. RELATEDWORK
Theproblemof introducinggeneric types into a program tobroaden

its use has been approached before by several researchers.
Siff and Reps [16] focused on translating C into C++ by detecting

latent polymorphism and introducing function templates. Our aim,
in addition to genericisingmethods, is to specialize the use of generic
containers in user code. Also, we introduce type parameters only
when needed, while Siff and Reps add restraints to prevent over-
generalizing.
Duggan [8] gives an algoritm (not implemented) for genericising

classes in a small subset of Java into a particular polymorphic variant
of that subset.
The programming environments CodeGuide [5] and IntelliJ

IDEA [10] provide “Generify’’refactorings with goals that are com-
parable to our tool’s. No details of implementation or analysis are
11See www.alphaworks.ibm.com/tech/jax.
12See www.junit.org.
13See www.cs.princeton.edu/∼appel/modern/java/JLex/.
14See www.cs.princeton.edu/∼appel/modern/java/CUP/
15See www.jezuk.co.uk/cgi-bin/view/mango.

9

benchmark #classes/methods/ #container #container #casts #casts %casts #casts %casts
fields/LOC allocations declarations removed removed removed removed

(CI) (CI) (CS) (CS)
Hanoi 41/343/206/4028 3 6 20 14 70 14 70
JUnit 105/528/123/5317 24 63 54 21 39 21 39
JLex 26/151/235/7841 17 45 71 53 75 53 75

JavaCup 36/371/215/10598 19 78 502 373 74 373 74
Mango1 92/357/69/2808 2 9 2 0 0 2 100
Mango2 92/357/69/2808 3 13 4 0 0 2 50
Mango3 92/357/69/2808 1 17 10 0 0 0 0

Table 2: Benchmark program characteristics and results.

provided in either case so we cannot directly compare the results.
Donovan, Kiezun and Ernst [7] present a technique for converting

non-generic Java code to use generic libraries. A context-sensitive
concrete class analysis that discovers elements of containers (or
any generic class) at their allocation site is followed by context-
insensitive type constraint system creation and resolution. The re-
sult is a typing for references to generic types. The transforma-
tion preserves behavior by retaining the program’s erasure, which
may be, in our view, too conservative a constraint. Their work
differs from ours in several other important ways: it targets a non-
current version of the specification and will need adaptation to the
final one. It does not introduce method type parameters, so cer-
tain declared types must remain unchanged (e.g., the parameter of
method reverse() in Figure 2). Their approach is aimed at any
generic library, while ours is targeted for what in our experience
are the most widely used generic types—containers, which makes
our model simpler and still extensible. Their analysis requires a
modified compiler to create bytecode that retains source-level in-
formation required for source modifications. Our analysis is fully
source-code based and thus more readily available.
Tip, Kiezun, and Baümer [17] give an algorithm in which type

constraints are used for refactoring, to determine whether a set of
declarations can be updated to refer to a superinterface of a given
class. The goal of that work is that of generalization while the anal-
yses presented here both specialize (references to container types)
and generalize (by introducing generic methods) to produce a better
typing for a program.

8. CONCLUSIONS AND FUTUREWORK
We presented context-sensitive and insensitive techniques for

genericizing uses of the Java Collections API. Our evaluation sug-
gests considerable scope for even a context-insensitive approach, at
least for the relatively small programs we have evaluated so far. The
context-sensitive approach was needed for Mango, which provides
a layer of generic functionality on top of the Collections API, and
hence benefits from the insertion of type parameters into its code.
For all benchmarks exceptMango3, our techniques remove between
40% and 100% of all down-casts.
Future work includes the evaluation of our techniques on more

and larger benchmarks, and the release of our refactoring as part
of Eclipse. In Mango, we encountered complex uses of containers
for which a more precise context-sensitive analysis is needed to
remove down-casts. We plan to explore scalable adaptive schemes
that attempt to introduce additional context-sensitivity only where
it is useful.

9. REFERENCES
[1] Agesen, O. Concrete Type Inference: Delivering

Object-Oriented Applications. PhD thesis, Stanford
University, December 1995.

[2] Bäumer, D., Gamma, E., and Kiezun, A. Integrating
refactoring support into a Java development tool. In
OOPSLA’01 Companion (October 2001).

[3] Bracha, G., Cohen, N., Kemper, C., Odersky, M.,
Stoutamire, D., Thorup, K., and Wadler, P. Adding
generics to the Java programming language: Public draft
specification, version 2.0. Tech. rep., Java Community
Process JSR-000014, June 23 2003.

[4] Bracha, G., Odersky, M., Stoutamire, D., and Wadler,
P. Making the future safe for the past: Adding genericity to
the Java programming language. In Proc. of OOPSLA (1998).

[5] Omnicore codeguide.
http://www.omnicore.com/codeguide.htm.

[6] De Sutter, B., Tip, F., and Dolby, J. Customization of Java
library classes using type constraints and profile information.
In Proc. of ECOOP (2004).

[7] Donovan, A., Kiezun, A., and Ernst, M. Converting Java
programs to use generic libraries. Submitted for publication.

[8] Duggan, D. Modular type-based reverse engineering of
parameterized types in Java code. In Proc. of OOPSLA
(1999).

[9] Grove, D., and Chambers, C. A framework for call graph
construction algorithms. ACM TOPLAS 23, 6 (2001).

[10] JetBrains IntelliJ IDEA.
http://www.intellij.com/idea/.

[11] Igarashi, A., Pierce, B. C., and Wadler, P. Featherweight
Java: a minimal core calculus for Java and GJ. ACM
TOPLAS 23, 3 (2001).

[12] Odersky, M., and Wadler, P. Pizza into Java: Translating
theory into practice. In Proc. of POPL (1997).

[13] Palsberg, J., and Schwartzbach, M. Object-Oriented
Type Systems. John Wiley & Sons, 1993.

[14] Rountev, A., Ryder, B. G., and Landi, W. Data-flow
analysis of program fragments. In Proc. of FSE (1999).

[15] Ryder, B. Dimensions of precision in reference analysis of
object-oriented programming languages. In Proc. of CC
(2003).

[16] Siff, M., and Reps, T. W. Program generalization for
software reuse: From C to C++. In Foundations of Software
Engineering (1996), pp. 135–146.

[17] Tip, F., Kiezun, A., and Bäumer, D. Refactoring for
generalization using type constraints. In Proc. of OOPSLA
(2003).

[18] Tip, F., Sweeney, P. F., Laffra, C., Eisma, A., and
Streeter, D. Practical extraction techniques for Java. ACM
TOPLAS 24, 6 (2002).

10

