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Abstract 

Systems that use mobile, transient, or unreliable re-
sources typically use descriptive names (also known as 
intentional or data-centric names) to specify those re-
sources. Such names identify what data is needed rather 
than where that data is to be found. The Context Weaver 
middleware for collecting and composing data from per-
vasive networked data providers uses a descriptive nam-
ing system that is easily extended to handle the wide vari-
ety of data sources that exist today, as well as future data 
sources still unimagined. The system is based on a hier-
archy of “provider kinds” and exploits emerging XML 
standards so that arbitrarily complex constraints can be 
specified. 

1. Introduction 

A number of systems are designed to obtain services 
from network resources such as sensors, cameras, print-
ers, and web services. These resources may be mobile, 
they may be ephemeral, and their quality of service may 
fluctuate. It has become widely accepted that such sys-
tems should not require users to name a specific resource 
from which they wish to obtain services, but rather, to 
describe what the resource is expected to provide, so that 
the system can discover an appropriate resource. 

This approach, known as descriptive [5], data-centric 
[11], or intentional [1] naming, has a number of advan-
tages. It allows the system to select the best available re-
source, based on current conditions (including processor 
loads, network congestion, and other factors affecting 
quality of service), and to select a new resource when 
those conditions change. It makes an application robust 
against the failure of any one device. It accommodates the 
frequent addition of resources to, or removal of resources 
from, the system, without modification of the application 
that uses such resources. It allows an application written 
for one environment to be ported easily to another envi-
ronment with a different set of resources. 

Despite the consensus that has developed around que-
ries that describe what is to be retrieved rather than where 
it is to be retrieved from, there is little consensus on what 
the meaning of what is. In much of the literature describ-

ing systems that support descriptive queries, the actual 
content of those queries is treated almost as an after-
thought. We believe that there are important issues that 
must be addressed in defining a querying scheme that is 
capable of describing detailed constraints on any kind of 
existing resource, yet flexible enough to evolve gracefully 
as new kinds of resources are invented. 

This paper examines the nature of the descriptive que-
ries supported by the Context Weaver system, an evolu-
tion of iQueue [6]. Context Weaver data providers are 
categorized as belonging to provider kinds. Provider 
kinds are organized in a hierarchy of subkinds and su-
perkinds, so that a query for providers of a kind K can be 
satisfied by providers belonging to any subkind of K. A 
data provider has certain properties, depending on its 
provider kind. A Context Weaver provider query names a 
provider kind and specifies a test to be applied to the 
properties meaningful for providers of that kind. This test 
may be an arbitrary boolean combination of arbitrary 
conditions. As new sources of data are devised, new pro-
vider kinds with their own sets of properties can be 
added. A provider kind can be inserted above or below 
specified already-existing provider kinds in the subkind-
superkind hierarchy, allowing the hierarchy to evolve 
flexibly. 

Our focus is on the query model, not the implementa-
tion, of Context Weaver. Section 2 gives a brief external 
view of Context Weaver and its requirements for descrip-
tive-name queries. Section 3 explains the nature of these 
queries and the underlying model. Section 4 presents an 
enhancement to make these queries more expressive, and 
more likely to be satisfied. Section 5 discusses related 
work and Section 6 presents our conclusions.  

2. Context Weaver 

Context Weaver is designed to collect and combine 
data from a wide variety of resources called data 
providers. These include data providers external to the 
system—such as fixed and mobile sensors, web services, 
publish/subscribe services, and databases—as well as 
programmed entities that reside inside the system and 
generate values based on input data from other providers. 
A data provider may be passive, reporting its current 
value when asked; active, generating new values without 
being asked; or both. A Context Weaver application 
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issues a provider query and Context Weaver replies with 
a set of handles corresponding to data providers that have 
been registered with the system and satisfy the query. The 
application may query a handle for the current value of its 
data provider, and it may issue a subscription to a handle 
to be notified when the handle’s data provider generates a 
new value. Thus, the subject of a provider query is not a 
value, but the continuously evolving stream of values 
associated with a data provider. A query may be 
reprocessed periodically as the dynamic properties of data 
providers fluctuate, possibly yielding different results.  In 
addition, the query itself can be modified dynamically, 
based on previously received data. For example, as a 
mobile entity moves from point a to point b, a query for 
all data providers of a certain kind within a given radius 
of point a may be reprocessed as a query for all data 
providers of that kind within the given radius of point b. 

Because Context Weaver is targeted to a wide variety 
of applications, the scheme for writing a provider query 
must be flexible enough to describe any data provider. 
Different applications may need to query, for example, 
for providers of Fahrenheit temperatures at a given lati-
tude and longitude, Celsius temperatures of the patient in 
a given hospital bed, current prices of IBM stock in U.S. 
dollars, the number of the room where a given active 
badge was last sensed, and the identification numbers of 
all vehicles in a specified zone with excessive engine 
temperatures. Clearly, it is untenable to establish a fixed 
vocabulary of concepts and data types to be used in que-
ries. 

Neither can we rely on natural-language understand-
ing, because we want a query to be precise. A given data 
provider should unambiguously satisfy, or fail to satisfy, 
a given provider query: A query for “providers of identi-
fication numbers of nearby lawn mowers” is ambiguous 
both because the notion of “nearby” is not well defined, 
and because (as a too-clever knowledge-based system 
would deduce) a “lawn mower” can be either a piece of 
machinery or a person using such machinery to mow a 
lawn. 

So that our scheme is extensible to arbitrary domains, 
we must recognize arbitrarily complex data types, such as 
a location data type consisting of latitude and longitude 
components, each in turn consisting of degree, minute, 
and second components. We must also be able to test ar-
bitrary conditions, such as that one point is within a given 
distance of another, that a given point lies within one of 
three specified polygons, or that a given point lies within 
one polygon but not within another, overlapping, poly-
gon. 

To satisfy these requirements, we turn to two emerging 
XML standards, XML Schema [8] and XQuery [4]. Every 
data provider registered with Context Weaver is described 
by an XML document called a provider descriptor. XML 
schemas can define arbitrarily complex data structures 

that can be contained in provider descriptors, and XQuery 
expressions can specify arbitrarily complex computations 
on the contents of these XML documents.  

3. The nature of a provider query 

We discuss underlying concepts related to provider 
queries in Sections 3.1 and 3.2, and turn to provider que-
ries themselves in Section 3.3. 

3.1. Provider kinds 

Context Weaver provider queries are based on the no-
tion of provider kinds. Every data provider is registered 
with Context Weaver as belonging to a particular pro-
vider kind. The definition of a provider kind specifies the 
data type of the values returned by the provider, the 
names and types of its activation parameters, and a set of 
attributes describing properties of the provider. Activation 
parameters provide the information needed to initialize a 
data-provider handle. Activation parameters might in-
clude, for example, the unique identifier of a particular 
real-world entity about which data is to be collected, or an 
authentication token. As Section 3.3 will explain in 
greater detail, a provider query names a provider kind; the 
query must specify a value for each of that provider 
kind’s activation parameters, and the predicate of the 
query may refer to any of that provider kind’s properties. 

Figure 1 defines a provider kind for providers of the 
location of a vehicle with a specified vehicle identifica-
tion number (VIN). This definition indicates that a pro-
vider of kind VINToLocation provides values of type 
LatLongType and is activated with a parameter vehicleID 
of type VINType, but it says nothing about the semantic 
relationship between the LatLongType value provided and 
the VINType value used for activation—that is, that the 
location provided is the location of the vehicle with the 
specified VIN. The definition in Figure 1 could apply just 
as easily to a kind for providers that give the location of 
the registered owner of the vehicle with the specified 
VIN. We expect a given provider kind to reflect a particu-
lar semantic relationship; providers with different seman-
tics belong to different provider kinds, say VINTo-

VehicleLocation and VINToOwnerLocation, that may 

Provider kind VINToLocation: 
     Type of provided values: LatLongType 
     Activation parameters: 
          vehicleID: VINType 
     Properties:  
          radiusOfErrorInMeters: float 
          freshnessInSeconds: int 

Figure 1. Definition of provider kind 
VINToLocation 
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happen to have the same provided type, activation pa-
rameters, and properties. 

Provider kind VINTo3DLocation: 
     Type of provided values: LatLongElevType 
     Activation parameters: 
          vehicleID: VINType 
     Properties:  
          radiusOfErrorInMeters: float 
         freshnessInSeconds: int 

These semantic relationships reflect a human’s view of 
the world. We do not attempt to formalize the semantics 
of a provider kind. Rather, we rely on the humans who 
(aided by search tools) name provider kinds in queries  to 
be familiar with the intended semantics of those provider 
kinds, just as users of a relational database are expected to 
be familiar with the semantics of the tables they name in 
SQL queries. 

Figure 2. Definition of provider kind 
VINTo3DLocation 

The definition of new provider kinds is an ongoing 
administrative activity, as is the registration of new data 
providers whose provider kinds have been defined. Our 
work is largely shaped by the need to ensure that the 
provider-kind hierarchy can evolve smoothly over the 
course of weeks, months, and years. However, during the 
instant that a provider query is processed, the set of 
provider kinds and the set of registered providers can be 
regarded as static. 

3.1.1.Subkinds and superkinds. Provider kinds can be 
organized into hierarchies of superkinds and subkinds, 
such that a query for a provider of kind k can be satisfied 
by a provider of any subkind of k. To formalize this hier-
archy, we assume that the types to which provided values 
and activation-parameter values belong are themselves 
organized in a supertype-subtype hierarchy. (This is true 
of Context Weaver types, which are based on XML 
Schema types.) A provider kind p can be the direct parent 
of a child provider kind c only if each of the following 
conditions holds: 

• The type of value provided by c is a subtype of the 
type of value provided by p. 

• For each activation parameter of kind c, kind p has 
an identically named activation parameter, and the 
type of each parameter of c is a supertype of the 
type of the corresponding parameter of p. (Thus the 
set of parameter values that can be understood by a 
provider of kind c includes at least every parameter 
value that can be understood by a provider of kind 
p; p may have “extra” parameters that have no coun-
terpart in c, which are ignored when activating a 
data provider of kind c as if it were of kind p.) 

• The set of properties of c is a superset of the set of 
properties of p. 

To these formal conditions, we add an informal one: 
• The semantics of c (as understood informally by a 

human) should be consistent with the semantics of 
p. 

(The formal conditions determine when it is legal to 
declare p to be a direct parent of c, and the informal 
condition determines when it is appropriate to do so.) 

The superkinds of a provider kind k consist of k and the 
superkinds of all direct parents of k; if x is a superkind of 
y, then y is a subkind of x. (Every provider kind is a 
subkind and a superkind of itself.) 

For example, suppose the type LatLongType, giving a 
two-dimensional location in terms of latitude and longi-
tude, has a subtype LatLongElevType, giving a three-
dimensional location that also includes elevation above 
sea level. Figure 2 defines a kind for providers of three-
dimensional locations of vehicles with a given VIN. Be-
cause LatLongElevType is a subtype of LatLongType, 
VINTo3DLocation is a subkind of VINToLocation. That is, 
a query for a provider of kind VINToLocation could be 
satisfied by provider of kind VINTo3DLocation; an appli-
cation would use the LatLongElevType values it receives 
from the provider as if they were LatLongType values. 

Some providers of vehicle-location information might 
use GPS receivers on the vehicles, and for those providers 
it is meaningful to define an additional property, the num-
ber of GPS satellites contributing to the reading. Figure 3 
defines a provider kind for these GPS-based providers. 

VINToGPSLocation is also a subkind of VINToLocation, 
since its properties include all the VINToLocation proper-
ties. Any query for a provider of kind VINToLocation can 
be satisfied by a provider registered as having kind VIN-
ToGPSLocation. (The query will not refer to the satel-
lites property, since that property is not defined for the 
provider kind in the query, VINToLocation.) 

Provider kind VINToGPSLocation: 
     Type of provided values: LatLongType 
     Activation parameters: 
          vehicleID: VINType 
     Properties:  
          radiusOfErrorInMeters: float 
          freshnessInSeconds: int 
         satellites: int

Figure 3. Definition of provider kind 
VINToGPSLocation 
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We can go one step further, and define a provider kind 
for GPS-based providers of three-dimensional location, as 
shown in Figure 4. VINToLocation, VINTo3DLocation, 
and VINToGPSLocation all qualify to be direct parents of 
VINToGPS3DLocation. Indeed, we allow a kind to have 
more than one direct parent. If we define VINTo3D-
Location and VINToGPSLocation to be direct parents of 
VINToGPS3Dlocation, we obtain the subkind hierarchy 
shown in Figure 5. This hierarchy indicates that a query 
for a provider of kind VINToLocation could be satisfied 
by a provider registered as having kind VIN-

ToGPS3DLocation, VINTo3DLocation, VINToGPSLocation, 
or VINToLocation; a query for a provider of kind VIN-
ToGPSLocation could be satisfied by a provider registered 
as having kind VINToGPS3DLocation or VINToGPS-

Location; and a query for a provider of kind VIN-
ToGPS3DLocation can be satisfied only by a provider reg-
istered as having kind VINToGPS3DLocation. 

3.1.2. Bottom-up definition of superkinds. Tradition-
ally, subtype hierarchies are built from the top down; that 
is, the definition of a type names its direct parents, which 
must have been defined earlier. In contrast, the definition 
of a new provider kind in Context Weaver allows both a 
set of direct parents and a set of direct children to be 
named. Thus the new provider kind can be installed as a 
superkind of some existing kind, as a subkind of some 
existing kind, or wedged between two existing kinds as 
the subtype of the first and the supertype of the second, 
provided that no circularity results. 

Just as top-down growth of a hierarchy allows for spe-
cialization, the bottom-up growth of a hierarchy allows 
for generalization. Such generalization allows the vo-
cabulary of provider queries to evolve without disruption 
as new provider kinds are devised. We give two exam-
ples. 

First, suppose there is a standard type TelematicsData 
that has been extended independently by company X to a 
type XTelematicsData and by company Y to a type 
YTelematicsData. Each company markets a device that 
reports a value of its own extended telematics-data type, 
given a VIN. These devices correspond to provider kinds 

VINToXTelematicsData and VINToYTelematicsData de-
fined by the two companies. We are managing a fleet that 
had been using company X’s device to obtain standard 
TelematicsData values (by treating XTelematicsData 
values as TelematicsData values, ignoring company X’s 
extensions); however, we have now added vehicles with 
company Y’s devices to the fleet. So that we can write a 
query that will find all providers of TelematicsData val-
ues, regardless of which devices they use, we define a 
new provider kind, VINToTelematicsData, as a superkind 
of VINToXTelematicsData and VINToYTelematicsData.  

A second use of bottom-up superkind definition in-
volves activation parameters rather than provided values. 
Suppose we have some data providers, of kind VINTo-
Location, that provide the location of a vehicle given its 
VIN, and other data providers, of kind PlateToLocation, 
that provide the location of a vehicle given its license-
plate number. Suppose further that we have both the VIN 
and license-plate number of all vehicles of interest. 
Rather than issue one query for VINToLocation data pro-
viders and, if that fails, a second query for PlateToLoca-
tion data providers, we can define a new provider kind 
VINAndPlateToLocation, which takes both a VIN and a 
license-plate number as activation parameters. Since VIN-
AndPlateToLocation has activation parameters corre-
sponding to those of both VINToLocation and PlateTo-
Location, VINAndPlateToLocation can be defined as a 
superkind of both those provider kinds. Then we can is-
sue a single query for VINAndPlateToLocation data pro-
viders, which will be satisfied by both VINToLocation 
data providers and PlateToLocation data providers. 

3.2. Provider descriptors 

Every data provider has a provider descriptor that con-
veys the identity of the provider and some information 
about its state. This information may include static infor-
mation about the nature and capabilities of the data pro-
vider as well as dynamic information; the dynamic infor-
mation may include provider’s current value, as well as 
information about the quality of information and quality 
of service currently being provided. A provider query is, 
essentially, a test that a given provider descriptor either 

VINToLocation 

Provider kind VINToGPS3DLocation: 
     Type of provided values: LatLongElevType 
     Activation parameters: 
          vehicleID: VINType 
     Properties:  
          radiusOfErrorInMeters: float 
          freshnessInSeconds: int 
        satellites: int

VINTo3DLocation VINToGPSLocation 

Figure 5. A multiple-inheritance subkind 
hierarchy showing VINTo3DLocation,  

VINToGPS3DLocation, and VINToGPS-
Location as subkinds of VINToLocation

VINToGPS3DLocation 

Figure 4. Definition of provider kind VIN-
ToGPS3DLocation 
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passes or fails. Sometimes, this test can be performed 
without fully materializing the provider descriptor. 

A provider descriptor includes: 
• a unique identifier for the data provider 
• the name of its provider kind 
• values for the properties defined for providers of 

that kind 
• the provider’s current value 

If a provider kind s is a subkind of a provider kind k, a 
descriptor for a provider of kind s includes at least the 
properties found in a descriptor for a provider of kind k. 
In Context Weaver, a provider descriptor is represented in 
XML, as illustrated in Figure 6. 

3.3. Provider queries 

A provider query has four elements: 
• the name of a provider kind, indicating that a pro-

vider of that kind or one of its subkinds is desired 
• values for the activation parameters associated with 

that provider kind 
• a predicate, possibly referring to the values of 

stream properties associated with the provider kind, 
to be applied to the property values in a given pro-
vider descriptor, yielding true if the descriptor 
should be considered to satisfy the query, and false 
otherwise 

• a selection mechanism for determining which pro-
vider descriptors, among those determined to satisfy 
the query, should be returned in the query result 

Since Context Weaver provider descriptors are XML 
documents, the predicates in Context Weaver provider 
queries are boolean-valued XQuery [4] expressions ap-
plied to provider descriptors. For example, to test whether 
a provider descriptor like that in Figure 6 represents a 
provider with a radiusOfErrorInMeters property less 
than 75 and a value with a latitude greater than 38, we 

could write the following XQuery expression:  <provider id="VTL003" kind="VINToLocation"> 
  <streamProperties> 

/provider/streamProperties/property     <property name="freshnessInSeconds"> 
   [@name="radiusOfErrorInMeters"] lt 75 and       <data type="#long">60</data> 
/provider/value/data/lat gt 38.0     </property> 

    <property name="radiusOfErrorInMeters"> Presently, the selection mechanism is a two-valued 
field: The value ALL indicates that a list should be re-
turned containing every provider descriptor satisfying the 
query, and the value ANY_ONE indicates that at most one 
provider descriptor, chosen arbitrarily by the query en-
gine from among those satisfying the query, should be 
returned. We envision a more powerful selection mecha-
nism, consisting of two parts: 

      <data type="#int">50</data> 
    </property> 
  </streamProperties> 
  <value> 
    <data type=  
     "http://example.org/types#LatLongType"> 
         <lat>38.8976</lat> 
         <long>-77.0366</long> 
    </data> 
  </value> 
</provider> • an integer-valued expression, possibly referring to 

the properties and current value of a particular 
stream, to be applied to a given provider descriptor, 
yielding a provider-descriptor score 

Figure 6. A provider descriptor for a 
VINToLocation data provider 

• a criterion indicating how to select the descriptors to 
be returned, such as returning the n top-scoring de-
scriptors, returning all descriptors with a score 
greater than or equal to x, returning the first n de-
scriptors found, or returning all descriptors found 
within a given timeout interval 

(A similar mechanism has been proposed [17] as an ex-
tension to the Service Location Protocol.) 

3.3.1. Predicates versus activation parameters. The 
predicate and the activation parameters play distinct roles. 
The predicate tests whether the properties and value of a 
data provider satisfy certain conditions, but does not nec-
essarily constrain any property to hold one specific value. 
The activation parameters supply specific values needed 
to establish and initialize a connection to a data provider.   

Sometimes, the same information must be supplied re-
dundantly as an activation parameter and in a predicate. 
Consider, for example, a query for providers of IBM 
stock prices. Some providers of this data might be general 
stock-quote services, which require a stock symbol to be 

Provider kind PriceBySymbol: 
     Type of provided values: USDollars 
     Activation parameters: 
          symbolParameter: string 
     Properties:  
          symbolProperty: string 
          tickerDelayInMinutes: int 

Provider kind IBMPrice: 
     Type of provided values: USDollars 
     Activation parameters: (none)  
     Properties:  
          symbolProperty: string 
          tickerDelayInMinutes: int 

Figure 7. Definition of provider kind 
PriceBySymbol and its subkind IBMPrice
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passed as an activation parameter and supply a price for a 
stock identified by that symbol; other providers might be 
dedicated specifically to providing the price of IBM 
stock. These two varieties of providers might belong, 
respectively, to the provider kind PriceBySymbol and to 
its subkind IBMPrice, defined in Figure 7. We write a 
query for the provider kind PriceBySymbol, so that the 
query can be satisfied by a provider of either kind. How-
ever, the provider kind PriceBySymbol would also be 
matched by providers belonging to other subkinds of 
PriceBySymbol, such as IntelPrice and Microsoft-
Price. To filter out data providers of these other sub-
kinds, we write a query that not only specifies a value of 
"IBM" for symbolParameter (as required for providers of 
kind PriceBySymbol) but also specifies the following 
predicate: 

/provider/streamProperties/property 
      [@name="symbolProperty"] eq "IBM" 

In the case of general stock-quote services, the value 
symbolParameter is used to obtain the price of the 
desired stock. The predicate filters out the undesired data 
providers by testing the value of symbolProperty.  

Some existing descriptive naming schemes test attrib-
utes only for equality with specific values. With such 
schemes, there is no need to distinguish between parame-
ters and properties: The string “symbol=IBM” can be un-
derstood both as a specification of the value that is to be 
used for symbol (when activating a data provider requir-
ing a specific value) and as a test to be performed on the 
value of the property symbol (when filtering provider 
descriptors that contain a symbol property). However, by 
restricting a query to be, in essence, a conjunction of 
equalities, such a scheme precludes queries for, say, a 
stock-price provider with a ticker delay less than 20 min-
utes, or a location lying within any of a set of polygons. 

3.3.2. Semantics of a provider query. We define the 
semantics of a provider query operationally: A provider 
query specifying a provider kind pk, activation parame-
ters ap1,…,apn, predicate p, and selection mechanism sm 
is applied as if  by doing each of the following in turn:  

• attempting to activate every data provider registered 
as belonging to some subkind of pk, using the acti-
vation-parameter values ap1,…,apn; 

• for each successfully activated provider, construct-
ing a provider descriptor appropriate for kind pk 
with the properties and current value of that pro-
vider; 

• applying the predicate p to each provider descriptor 
and including all those for which the result is true in 
a set of candidates; and 

• applying the selection mechanism sm to select a re-
sult set from the set of candidates. 

In practice, this effect can often be achieved more effi-

ciently: If the predicate does not refer to dynamic proper-
ties of a data provider, or to its value, the predicate can be 
applied to an approximate descriptor, containing only 
static properties, created without actually activating the 
provider it describes. (This approach is reminiscent of the 
approximate caches of [14].) If the predicate refers to 
dynamic properties, but not to the value, it is necessary to 
activate the provider, but not to retrieve its current value. 
If the selection mechanism establishes an upper bound b 
on the number of provider descriptors to be returned, but 
allows those b descriptors to be chosen arbitrarily from 
among those descriptors satisfying the predicate, the 
query processing can be stopped after b descriptors have 
been obtained. Traditional indexing and query-
optimization techniques can be applied to static properties 
to avoid the retrieval of provider descriptors that cannot 
possibly satisfy the predicate in a query. 

Allowing a predicate to refer to a data provider’s value 
is potentially costly: In the general case, resolving a query 
entails activating every provider that has a suitable pro-
vider kind, and requesting its current value. However, this 
feature is also very powerful. For example, we can write a 
query that is matched by all vehicles whose current 
telematics data indicate that they are located in a specified 
geographic area, or by all temperature sensors currently 
sensing temperatures in a dangerous range. Fortunately, a 
provider-query resolver can be implemented so that the 
cost of value-based queries is borne only by those queries 
whose predicates explicitly refer to a provider’s value. 
Rather than guessing whether the cost is worth the bene-
fit, our approach is to allow value-based queries while 
alerting application developers to the potential cost, and 
allowing developers to make their own choices. 

4. Synthesis of data providers 

In Section 3, we made no attempt to formalize the se-
mantics of a provider kind. However, by identifying cer-
tain specifiable aspects of a provider kind’s semantics, 
such as units of measurement or the use of a sliding aver-
age, we enable Context Weaver to analyze relationships 
among various provider kinds, and to satisfy a provider 
query by synthesizing a new data provider. 

Consider two provider kinds that take a VIN as an ac-
tivation parameter and provide the velocity of the corre-
sponding vehicle, one in miles per hour and the other in 
kilometers per hour. Neither of these provider kinds can 
be a subkind of the other, because their semantics are 
incompatible. Nonetheless, their semantics are closely 
related: A query for the velocity of vehicle v in miles per 
hour can be satisfied by discovering a data provider for 
the velocity of vehicle v in kilometers per hour, and syn-
thesizing a new data provider whose current value is ob-
tained by multiplying the result of the discovered data 
provider by 0.62. More generally, it is possible to satisfy 
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any query of the form x in miles, given y, by discovering 
a data provider for x in kilometers, given y, and synthesiz-
ing a new data provider that multiplies the result of the 
discovered data provider by 0.62. 

Two difficulties arise. First, there are too many pairs 
of provider kinds—distance of a vehicle from Chicago in 
miles given its VIN versus distance of vehicle from Chi-
cago in kilometers given its VIN, altitude of an aircraft in 
miles given its tail number versus altitude of an aircraft in 
kilometers given its tail number, ad infinitum—to exploit 
relationships on an ad hoc basis. Second, the scheme we 
have presented so far has no entity whose role is to multi-
ply arbitrary values by 0.62. A data provider is character-
ized, in part, by the semantics of the value it provides; the 
semantics of a component that takes an input and multi-
plies it by 0.62 depends on the semantics of the input. 

To address these difficulties, we enhance our approach 
as follows: 

• We introduce the notion of a stream transformer, 
whose role is to transform a stream of input-data 
values in a methodical way to produce a stream of 
output-data values. 

• We specify certain aspects of data-provider seman-
tics, such as units of measurement, in provider-kind 
definitions and provider queries. 

• We introduce synthesis rules asserting that queries 
matching particular patterns can be satisfied by ap-
plying particular stream transformations to appro-
priate input streams.  

The net effect of these enhancements is to enable a pro-
vider of the kind requested by a provider query to be syn-
thesized by applying an appropriate stream transformer to 
another, closely related, data provider, based on a catalog 
of synthesis rules. The closely related data provider may 
be discovered, or it may itself be synthesized. The follow-
ing subsections elaborate on this approach. 

4.1. Stream transformers 

A stream transformer is a mechanism that reads one or 
more streams of input values and generates a stream of 
output values determined by the input streams. Stream 
transformers can be classified as value-based or stream-
based. A value-based stream transformer generates one 
output value for each input value (or each set of contem-
poraneous input values, one from each of several input 
streams); the output value is determined by the input 
value (or values). An example is a stream transformer that 

emits the value 0.62v every time a value v arrives. A 
stream-based stream transformer generates output values 
based on the history of input values up to a certain point 
and the passage of time; it might not generate an output 
value for each input value, and might generate output 
values that do not correspond to any input value. An ex-
ample is a stream transformer that emits a value every 
second, equal to the average of the values that arrived in 
the past minute. 

4.2. Specifiable aspects of semantics 

We stated in Section 3.1 that because a human’s view 
of the world cannot be formalized, we cannot define the 
semantics of a provider kind completely. We can, how-
ever, specify certain important aspects of provider-kind 
semantics. Our approach is to decompose the semantics 
of a provider kind into specifiable parts and an unspecifi-
able part. The specifiable parts are specified in provider-
kind definitions using a small, closed, precisely defined 
vocabulary. The unspecifiable part corresponds to a token 
whose meaning, like the provider-kind name in Section 3, 
is understood by humans. 

One specifiable aspect of provider-kind semantics is 
the dimension of the provided data. (We use the term di-
mension in the sense in which it is used in physics: Mass, 
length, and time, among others, are dimensions; and cen-
timeters, inches, and light years are some of the units ap-
propriate for the dimension of length.) In the case of a 
provider kind for vehicle location, given a VIN, the fact 
that the provided data has the dimension location is speci-
fiable; the fact that the provided location is that of the 
vehicle with the given VIN, rather than that of the vehi-
cle’s owner, is not. 

A second specifiable aspect is representation. For any 
given dimension, there is a small number of well-known 
representations. In the case of physical dimensions, the 
representation has two components: the unit of measure-
ment and the numeric format. Thus, for the dimension of 
length, representations include a number of centimeters 
represented in IEEE 754 single-precision floating-point 
format and a number of inches represented in decimal 
format. For the dimension of time (a point on a timeline), 
representation would encompass various date/time for-
mats (such as “1985-05-15 1:30 pm” and “15 May 1985 
13:30”) and the binary 64-bit representation of the num-
ber of milliseconds elapsed since the start of the year 
1970. 
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Additional specifiable aspects of semantics concern the 
relationship of values in a stream to each other, and to the 
passage of time. Such aspects are used in describing the 
streams that result from applying stream-based stream 
transformers. Examples are a specification that a stream is 
a time series of smoothed averages, or a specification that 
values satisfying a specified condition have been filtered 
out of the stream. Figure 8 shows what a provider-kind 
definition with specifiable semantics might look like; the 
token VehicleDistanceFromChicago captures the un-
specified semantics. In place of the type of the provided 
values we saw in the provider-kind definitions of Section 
3, we now specify the dimension, unit, and format of the 
provided values. 

(a one-element list of activation-parameter declarations), 
match variable sem to the token VehicleDistanceFrom-
Chicago, match variable propList to 

     radiusOfErrorInMeters: float 
     freshnessInSeconds: int 

(a two-element list of property declarations), match vari-
able paramVals to a list containing one VIN, and match 
variable pred to a predicate potentially testing radius-
OfErrorInMeters and freshnessInSeconds. An input 
query pattern SomethingInKilometers could be defined 
identically, except that the units would be specified as 
kilometers rather than miles. One synthesis rule would 
assert that, for all appropriatedly typed match-variable 
values u, v, w, x, y, and z, a query SomethingInMiles<u,v, 
w,x,y,z> (i.e., an instance of the output provider-query 
pattern SomethingInMiles using the values u, v, w, x, y, 
and z for the match variables) can be synthesized by ob-
taining a provider satisfying the query SomethingIn-
Kilometers<u,v,w,x,y,z> and applying to its output a 
stream transformation that multiplies each value in the 
stream by 0.62.  

4.3. Synthesis rules 

The application of stream transformers is driven by 
synthesis rules. A synthesis rule consists of an output 
provider-query pattern, the name of a stream transformer, 
and one or more input provider-query patterns. A 
provider-query pattern is a provider query in which the 
name of a provider kind is replaced by a provider-kind 
definition, and then certain entities within the query are 
replaced by match variables. Only match variables 
appearing in the output provider-query pattern may 
appear in an input provider-query pattern. A synthesis 
rule asserts that, if a query Q is an instance of the output 
provider-query pattern, then a data provider satisfying Q 
can be synthesized by applying the named stream 
transformer to input sources that satisfy corresponding 
instances of the input provider-query patterns (i.e., 
instances in which the same values are substituted for the 
match variables). 

5. Related work 

Two limitations characterize previous approaches to 
descriptive naming. Some approaches lack the expres-
siveness of our XQuery-based approach, effectively re-
stricting the conditions that can be tested to a conjunction 
of equalities. Some approaches do not support a hier-
archical classification of the descriptively named entities 
akin to our provider-kind hierarchy. Some approaches 
suffer from both of these limitations. 

Schemes in which queries are equivalent to a conjunc-
tion of equalities are deficient in two respects. First, they 
are incapable of expressing constraints based on ordering 
comparisons (e.g., that a printer’s speed should be at least 
10 pages per minute). Second, they are incapable of ex-
pressing disjunctions (e.g., that a mobile device’s location 
should be in either polygon A or polygon B). 

A query for a provider of the provider kind VINTo-
DistanceFromChicago of Figure 8 is an instance of the 
provider-query pattern of Figure 9, in which match vari-
able fmt corresponds to float, match variable param-
Decls to 

   vehicleID: VINType 

Provider kind VINToDistanceFromChicago:  
     Dimension of provided values: distance 
     Representation of provided values: 
          Unit: miles 
          Format: float 
     Activation parameters: 
          vehicleID: VINType 
     Semantics: VehicleDistanceFromChicago 
     Properties:  
          radiusOfErrorInMeters: float 
          freshnessInSeconds: int 

Figure 8. Definition of provider kind 
VINToDistanceFromChicago 
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Nonhierarchical classifications of descriptively named 
entities do not evolve gracefully as new kinds of entities 
are introduced. A new entity distinct in any small way 
from previously categorized entities must be placed in its 
own new category; there is no way to express the com-
mon features among categories, such as the generalization 
mechanism described in Section 3.1.2. Since there is no 
way to specify a category consisting of a set of closely 
related subcategories, a query meant to cover such a cate-
gory must be split up into a number of narrower queries. 

The Lightweight Directory Access Protocol (LDAPv3) 
[15] allows attributes of a directory entry to be tested us-
ing an arbitrary boolean search filter. However, the hier-
archy of an LDAP directory does not reflect superkind-
subkind relationships: There is no straightforward way to 
cause a query for an entry of type t to be satisfied by an 
entry whose type is any subtype of t.  

In the Service Location Protocol (SLPv2) [9], queries 
include an LDAPv3 search filter. Every SLP service be-
longs to some concrete service type, and concrete service 
types may be grouped into abstract service types. How-
ever, only a two-level hierarchy is supported. 

In the Ninja project’s Service Discovery Service 
(SDS) [7], a service has an XML service description, 
analogous to our provider descriptors. However, there is 
no unifying framework for the various forms of service 
description. A query takes the form of a service descrip-
tion with some subset of the elements removed, and is 
equivalent to a conjunction of equalities between the val-
ues in the query and the corresponding values in the ser-
vice description. 

The Intentional Naming System [1] and its follow-on 
Twine [2] take an approach similar to that of SDS: Both 
queries and resource descriptions take the form of 
attribute-value trees. A query matches a resource descrip-

tion if and only if each path from the root of the query 
tree has a corresponding path in the resource description, 
so a query is, in essence, a conjunction of equality tests. 
While [1] contemplates the addition of ordering compari-
sons to queries, [2] exploits the fact that a path in a query 
matches a path in a resource description only if a hashing 
function would map both paths to the same hash code. 

In the directed diffusion paradigm [11][10], queries are 
called interests. In [11], an interest is expressed as a set of 
attribute-value pairs, interpreted as a conjunction of 
equality tests. Every interest includes a type attribute 
whose value is an event code naming the subject of the 
query. Event codes roughly correspond to provider-kind 
names, but with no inherent relationships among the no-
tions they denote. A variant on this scheme, using attrib-
ute-comparator-value triples instead of attribute-value 
pairs, is presented in [10]; an interest is still equivalent to 
a conjunction of simple tests, but the simple tests may 
include ordering comparisons as well as equalities. 

The Jini [15] Lookup Service discovers Java objects 
representing services. A service object is described by a 
service item that includes a unique service identifier and 
zero or more attribute sets. A query takes the form of a 
service template consisting of an optional service identifi-
er, zero or more Java types, and zero or more attribute-set 
templates. A service template matches a service item if 
the service identifier in the service template is absent or 
identical to the service identifier in the service item, the 
service object in the service item is an instance of each of 
the Java types in the service template, and each attribute-
set template in the service template matches an attribute 
set in the service item. The hierarchy of Java service-ob-
ject subclasses can play a role analogous to our hierarchy 
of subkinds, but the attribute-set template specifies a 
conjunction of exact matches with specified values. 

Universal Description, Discovery, and Integration 
(UDDI) [3] is a framework for issuing queries to discover 
web services. The UDDI registry was originally con-
ceived of as a “yellow pages” directory, in which services 
are looked up by first locating a business in a given in-
dustry and then examining the services offered by that 
business. Businesses are categorized by industry accord-
ing to a hierarchical scheme, but this scheme has no se-
mantic significance in the processing of queries. There is 
no mechanism for looking up services based on their se-
mantic properties. 

Query pattern 
   SomethingInMiles 
      <fmt, paramDecls, sem, propList, 
       paramVals, pred>: 

     Provider kind: 
          Dimension of provided values: distance 
          Representation of provided values: 
               Unit: miles 
               Format: fmt 
          Activation parameters: 
               [paramDecls] 
          Semantics: sem In contrast to these approaches that are less flexible 

than ours, ontology-based systems aspire to provide 
greater flexibility. The OWL Web Ontology Language 
[13], an enhancement of the Resource Description Frame-
work (RDF) [12], is an example of a notation for defining 
ontologies and annotating web pages to relate them to 
concepts defined in these ontologies. The goal of typical 
ontology-based systems is to support unstructured que-
ries, in particular natural-language queries, and to apply 

          Properties:  
               [propList]  
     Activation parameter values: [paramVals] 
     Predicate: pred 
     Selection mechanism: ANY_ONE 

Figure 9. A query pattern 
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common-sense reasoning to deduce facts that are not ex-
plicitly represented. In addition, by defining relationships 
between terms in different vocabularies, an ontology pro-
vides a bridge between the vocabulary of a query and the 
vocabulary of a provider descriptor, allowing providers of 
“thermometer reading” to be discovered in response to a 
query for “temperature.” The goals of ontology-based 
systems are ambitious, but their promises are yet un-
proven. Development of ontologies is labor-intensive, so 
few exist yet, and it is not clear that resources will exist in 
the long run to maintain them. Our hierarchy of provider 
kinds can be viewed as a kind of primordial ontology, 
with less ambitious and therefore more attainable goals. 
We seek to classify only data providers rather than arbi-
trary knowledge, and we do so in a highly constrained 
manner.  

6. Summary 

Context Weaver discovers data providers that generate 
value streams satisfying application-specified queries. 
These queries describe the desired properties of value 
streams rather than identifying particular data providers. 
Descriptive naming of resources allows a system such as 
Context Weaver to select the best available resource dy-
namically, isolates client applications from dependence 
on one particular resource, allows resources to be added 
to or removed from the system without modifying client 
applications, and makes an application portable to other 
environments with different sets of resources. 

Context Weaver provider queries are open-ended 
enough to be generally applicable to arbitrary domains, 
and to sorts of data providers not yet conceived of. At the 
same time, provider queries are precise and unambiguous. 
The structure of the query is amenable to consistency 
checks to ensure that a query refers to only those attrib-
utes that are meaningful for the kind of data provider it 
describes. It is possible to perform general tests on these 
attributes, including range tests and disjunctions. 

Data providers registered with Context Weaver are 
classified according to a multiple-inheritance hierarchy of 
provider kinds. New provider kinds can be inserted in this 
hierarchy not only below, but also above specified exist-
ing provider kinds, facilitating the introduction of a new 
provider kind that generalizes previously existing pro-
vider kinds. The current state of a registered data provider 
is described by an XML provider descriptor with content 
that depends on its provider kind. A provider query speci-
fies the name of a provider kind, a set of activation-
parameter values meaningful for that provider kind, an 
XQuery predicate applicable to descriptors for providers 
of that kind, and a selection mechanism specifying how 
data providers are to be selected from among those that 
are eligible. The descriptor includes the current value of a 
data provider, enabling queries for all data providers cur-

rently providing values that satisfy a particular condition. 
Successful discovery of data providers can be facili-

tated by dynamically synthesizing data providers of the 
kind specified in a query. Such synthesis applies generic 
stream transformations to other, closely related data pro-
viders. To write synthesis rules specifying that the appli-
cation of a given stream transformation to the output of a 
provider of one given kind yields a provider of another 
given kind, we must formalize certain aspects of a pro-
vider kind’s semantics, such as the dimension and repre-
sentation of the provided data. 

Most of Context Weaver’s requirements for descrip-
tive naming are shared by other systems that obtain ser-
vices from a variety of resources with fluctuating charac-
teristics, such as mobile resources.  Therefore, a naming 
system based on hierarchies of resource kinds, and arbi-
trary predicates over attributes meaningful for a given 
resource kind, would be appropriate for such systems. 
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