
RC23245 (W0406-079) June 15, 2004
Computer Science

IBM Research Report

What the Meaning of What Is:
Descriptive Naming of Data Providers in Context Weaver

Norman H. Cohen, Paul Castro, Archan Misra
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

What the Meaning of What Is:
Descriptive Naming of Data Providers in Context Weaver

Norman H. Cohen, Paul Castro, Archan Misra

IBM T. J. Watson Research Center, Hawthorne, New York, USA
{ncohen, castrop, archan}@us.ibm.com

Abstract

Systems that use mobile, transient, or unreliable re-
sources typically use descriptive names (also known as
intentional or data-centric names) to specify those re-
sources. Such names identify what data is needed rather
than where that data is to be found. The Context Weaver
middleware for collecting and composing data from per-
vasive networked data providers uses a descriptive nam-
ing system that is easily extended to handle the wide vari-
ety of data sources that exist today, as well as future data
sources still unimagined. The system is based on a hier-
archy of “provider kinds” and exploits emerging XML
standards so that arbitrarily complex constraints can be
specified.

1. Introduction

A number of systems are designed to obtain services
from network resources such as sensors, cameras, print-
ers, and web services. These resources may be mobile,
they may be ephemeral, and their quality of service may
fluctuate. It has become widely accepted that such sys-
tems should not require users to name a specific resource
from which they wish to obtain services, but rather, to
describe what the resource is expected to provide, so that
the system can discover an appropriate resource.

This approach, known as descriptive [5], data-centric
[11], or intentional [1] naming, has a number of advan-
tages. It allows the system to select the best available re-
source, based on current conditions (including processor
loads, network congestion, and other factors affecting
quality of service), and to select a new resource when
those conditions change. It makes an application robust
against the failure of any one device. It accommodates the
frequent addition of resources to, or removal of resources
from, the system, without modification of the application
that uses such resources. It allows an application written
for one environment to be ported easily to another envi-
ronment with a different set of resources.

Despite the consensus that has developed around que-
ries that describe what is to be retrieved rather than where
it is to be retrieved from, there is little consensus on what
the meaning of what is. In much of the literature describ-

ing systems that support descriptive queries, the actual
content of those queries is treated almost as an after-
thought. We believe that there are important issues that
must be addressed in defining a querying scheme that is
capable of describing detailed constraints on any kind of
existing resource, yet flexible enough to evolve gracefully
as new kinds of resources are invented.

This paper examines the nature of the descriptive que-
ries supported by the Context Weaver system, an evolu-
tion of iQueue [6]. Context Weaver data providers are
categorized as belonging to provider kinds. Provider
kinds are organized in a hierarchy of subkinds and su-
perkinds, so that a query for providers of a kind K can be
satisfied by providers belonging to any subkind of K. A
data provider has certain properties, depending on its
provider kind. A Context Weaver provider query names a
provider kind and specifies a test to be applied to the
properties meaningful for providers of that kind. This test
may be an arbitrary boolean combination of arbitrary
conditions. As new sources of data are devised, new pro-
vider kinds with their own sets of properties can be
added. A provider kind can be inserted above or below
specified already-existing provider kinds in the subkind-
superkind hierarchy, allowing the hierarchy to evolve
flexibly.

Our focus is on the query model, not the implementa-
tion, of Context Weaver. Section 2 gives a brief external
view of Context Weaver and its requirements for descrip-
tive-name queries. Section 3 explains the nature of these
queries and the underlying model. Section 4 presents an
enhancement to make these queries more expressive, and
more likely to be satisfied. Section 5 discusses related
work and Section 6 presents our conclusions.

2. Context Weaver

Context Weaver is designed to collect and combine
data from a wide variety of resources called data
providers. These include data providers external to the
system—such as fixed and mobile sensors, web services,
publish/subscribe services, and databases—as well as
programmed entities that reside inside the system and
generate values based on input data from other providers.
A data provider may be passive, reporting its current
value when asked; active, generating new values without
being asked; or both. A Context Weaver application

1

issues a provider query and Context Weaver replies with
a set of handles corresponding to data providers that have
been registered with the system and satisfy the query. The
application may query a handle for the current value of its
data provider, and it may issue a subscription to a handle
to be notified when the handle’s data provider generates a
new value. Thus, the subject of a provider query is not a
value, but the continuously evolving stream of values
associated with a data provider. A query may be
reprocessed periodically as the dynamic properties of data
providers fluctuate, possibly yielding different results. In
addition, the query itself can be modified dynamically,
based on previously received data. For example, as a
mobile entity moves from point a to point b, a query for
all data providers of a certain kind within a given radius
of point a may be reprocessed as a query for all data
providers of that kind within the given radius of point b.

Because Context Weaver is targeted to a wide variety
of applications, the scheme for writing a provider query
must be flexible enough to describe any data provider.
Different applications may need to query, for example,
for providers of Fahrenheit temperatures at a given lati-
tude and longitude, Celsius temperatures of the patient in
a given hospital bed, current prices of IBM stock in U.S.
dollars, the number of the room where a given active
badge was last sensed, and the identification numbers of
all vehicles in a specified zone with excessive engine
temperatures. Clearly, it is untenable to establish a fixed
vocabulary of concepts and data types to be used in que-
ries.

Neither can we rely on natural-language understand-
ing, because we want a query to be precise. A given data
provider should unambiguously satisfy, or fail to satisfy,
a given provider query: A query for “providers of identi-
fication numbers of nearby lawn mowers” is ambiguous
both because the notion of “nearby” is not well defined,
and because (as a too-clever knowledge-based system
would deduce) a “lawn mower” can be either a piece of
machinery or a person using such machinery to mow a
lawn.

So that our scheme is extensible to arbitrary domains,
we must recognize arbitrarily complex data types, such as
a location data type consisting of latitude and longitude
components, each in turn consisting of degree, minute,
and second components. We must also be able to test ar-
bitrary conditions, such as that one point is within a given
distance of another, that a given point lies within one of
three specified polygons, or that a given point lies within
one polygon but not within another, overlapping, poly-
gon.

To satisfy these requirements, we turn to two emerging
XML standards, XML Schema [8] and XQuery [4]. Every
data provider registered with Context Weaver is described
by an XML document called a provider descriptor. XML
schemas can define arbitrarily complex data structures

that can be contained in provider descriptors, and XQuery
expressions can specify arbitrarily complex computations
on the contents of these XML documents.

3. The nature of a provider query

We discuss underlying concepts related to provider
queries in Sections 3.1 and 3.2, and turn to provider que-
ries themselves in Section 3.3.

3.1. Provider kinds

Context Weaver provider queries are based on the no-
tion of provider kinds. Every data provider is registered
with Context Weaver as belonging to a particular pro-
vider kind. The definition of a provider kind specifies the
data type of the values returned by the provider, the
names and types of its activation parameters, and a set of
attributes describing properties of the provider. Activation
parameters provide the information needed to initialize a
data-provider handle. Activation parameters might in-
clude, for example, the unique identifier of a particular
real-world entity about which data is to be collected, or an
authentication token. As Section 3.3 will explain in
greater detail, a provider query names a provider kind; the
query must specify a value for each of that provider
kind’s activation parameters, and the predicate of the
query may refer to any of that provider kind’s properties.

Figure 1 defines a provider kind for providers of the
location of a vehicle with a specified vehicle identifica-
tion number (VIN). This definition indicates that a pro-
vider of kind VINToLocation provides values of type
LatLongType and is activated with a parameter vehicleID
of type VINType, but it says nothing about the semantic
relationship between the LatLongType value provided and
the VINType value used for activation—that is, that the
location provided is the location of the vehicle with the
specified VIN. The definition in Figure 1 could apply just
as easily to a kind for providers that give the location of
the registered owner of the vehicle with the specified
VIN. We expect a given provider kind to reflect a particu-
lar semantic relationship; providers with different seman-
tics belong to different provider kinds, say VINTo-

VehicleLocation and VINToOwnerLocation, that may

Provider kind VINToLocation:
 Type of provided values: LatLongType
 Activation parameters:
 vehicleID: VINType
 Properties:
 radiusOfErrorInMeters: float
 freshnessInSeconds: int

Figure 1. Definition of provider kind
VINToLocation

2

happen to have the same provided type, activation pa-
rameters, and properties.

Provider kind VINTo3DLocation:
 Type of provided values: LatLongElevType
 Activation parameters:
 vehicleID: VINType
 Properties:
 radiusOfErrorInMeters: float
 freshnessInSeconds: int

These semantic relationships reflect a human’s view of
the world. We do not attempt to formalize the semantics
of a provider kind. Rather, we rely on the humans who
(aided by search tools) name provider kinds in queries to
be familiar with the intended semantics of those provider
kinds, just as users of a relational database are expected to
be familiar with the semantics of the tables they name in
SQL queries.

Figure 2. Definition of provider kind
VINTo3DLocation

The definition of new provider kinds is an ongoing
administrative activity, as is the registration of new data
providers whose provider kinds have been defined. Our
work is largely shaped by the need to ensure that the
provider-kind hierarchy can evolve smoothly over the
course of weeks, months, and years. However, during the
instant that a provider query is processed, the set of
provider kinds and the set of registered providers can be
regarded as static.

3.1.1.Subkinds and superkinds. Provider kinds can be
organized into hierarchies of superkinds and subkinds,
such that a query for a provider of kind k can be satisfied
by a provider of any subkind of k. To formalize this hier-
archy, we assume that the types to which provided values
and activation-parameter values belong are themselves
organized in a supertype-subtype hierarchy. (This is true
of Context Weaver types, which are based on XML
Schema types.) A provider kind p can be the direct parent
of a child provider kind c only if each of the following
conditions holds:

• The type of value provided by c is a subtype of the
type of value provided by p.

• For each activation parameter of kind c, kind p has
an identically named activation parameter, and the
type of each parameter of c is a supertype of the
type of the corresponding parameter of p. (Thus the
set of parameter values that can be understood by a
provider of kind c includes at least every parameter
value that can be understood by a provider of kind
p; p may have “extra” parameters that have no coun-
terpart in c, which are ignored when activating a
data provider of kind c as if it were of kind p.)

• The set of properties of c is a superset of the set of
properties of p.

To these formal conditions, we add an informal one:
• The semantics of c (as understood informally by a

human) should be consistent with the semantics of
p.

(The formal conditions determine when it is legal to
declare p to be a direct parent of c, and the informal
condition determines when it is appropriate to do so.)

The superkinds of a provider kind k consist of k and the
superkinds of all direct parents of k; if x is a superkind of
y, then y is a subkind of x. (Every provider kind is a
subkind and a superkind of itself.)

For example, suppose the type LatLongType, giving a
two-dimensional location in terms of latitude and longi-
tude, has a subtype LatLongElevType, giving a three-
dimensional location that also includes elevation above
sea level. Figure 2 defines a kind for providers of three-
dimensional locations of vehicles with a given VIN. Be-
cause LatLongElevType is a subtype of LatLongType,
VINTo3DLocation is a subkind of VINToLocation. That is,
a query for a provider of kind VINToLocation could be
satisfied by provider of kind VINTo3DLocation; an appli-
cation would use the LatLongElevType values it receives
from the provider as if they were LatLongType values.

Some providers of vehicle-location information might
use GPS receivers on the vehicles, and for those providers
it is meaningful to define an additional property, the num-
ber of GPS satellites contributing to the reading. Figure 3
defines a provider kind for these GPS-based providers.

VINToGPSLocation is also a subkind of VINToLocation,
since its properties include all the VINToLocation proper-
ties. Any query for a provider of kind VINToLocation can
be satisfied by a provider registered as having kind VIN-
ToGPSLocation. (The query will not refer to the satel-
lites property, since that property is not defined for the
provider kind in the query, VINToLocation.)

Provider kind VINToGPSLocation:
 Type of provided values: LatLongType
 Activation parameters:
 vehicleID: VINType
 Properties:
 radiusOfErrorInMeters: float
 freshnessInSeconds: int
 satellites: int

Figure 3. Definition of provider kind
VINToGPSLocation

3

We can go one step further, and define a provider kind
for GPS-based providers of three-dimensional location, as
shown in Figure 4. VINToLocation, VINTo3DLocation,
and VINToGPSLocation all qualify to be direct parents of
VINToGPS3DLocation. Indeed, we allow a kind to have
more than one direct parent. If we define VINTo3D-
Location and VINToGPSLocation to be direct parents of
VINToGPS3Dlocation, we obtain the subkind hierarchy
shown in Figure 5. This hierarchy indicates that a query
for a provider of kind VINToLocation could be satisfied
by a provider registered as having kind VIN-

ToGPS3DLocation, VINTo3DLocation, VINToGPSLocation,
or VINToLocation; a query for a provider of kind VIN-
ToGPSLocation could be satisfied by a provider registered
as having kind VINToGPS3DLocation or VINToGPS-

Location; and a query for a provider of kind VIN-
ToGPS3DLocation can be satisfied only by a provider reg-
istered as having kind VINToGPS3DLocation.

3.1.2. Bottom-up definition of superkinds. Tradition-
ally, subtype hierarchies are built from the top down; that
is, the definition of a type names its direct parents, which
must have been defined earlier. In contrast, the definition
of a new provider kind in Context Weaver allows both a
set of direct parents and a set of direct children to be
named. Thus the new provider kind can be installed as a
superkind of some existing kind, as a subkind of some
existing kind, or wedged between two existing kinds as
the subtype of the first and the supertype of the second,
provided that no circularity results.

Just as top-down growth of a hierarchy allows for spe-
cialization, the bottom-up growth of a hierarchy allows
for generalization. Such generalization allows the vo-
cabulary of provider queries to evolve without disruption
as new provider kinds are devised. We give two exam-
ples.

First, suppose there is a standard type TelematicsData
that has been extended independently by company X to a
type XTelematicsData and by company Y to a type
YTelematicsData. Each company markets a device that
reports a value of its own extended telematics-data type,
given a VIN. These devices correspond to provider kinds

VINToXTelematicsData and VINToYTelematicsData de-
fined by the two companies. We are managing a fleet that
had been using company X’s device to obtain standard
TelematicsData values (by treating XTelematicsData
values as TelematicsData values, ignoring company X’s
extensions); however, we have now added vehicles with
company Y’s devices to the fleet. So that we can write a
query that will find all providers of TelematicsData val-
ues, regardless of which devices they use, we define a
new provider kind, VINToTelematicsData, as a superkind
of VINToXTelematicsData and VINToYTelematicsData.

A second use of bottom-up superkind definition in-
volves activation parameters rather than provided values.
Suppose we have some data providers, of kind VINTo-
Location, that provide the location of a vehicle given its
VIN, and other data providers, of kind PlateToLocation,
that provide the location of a vehicle given its license-
plate number. Suppose further that we have both the VIN
and license-plate number of all vehicles of interest.
Rather than issue one query for VINToLocation data pro-
viders and, if that fails, a second query for PlateToLoca-
tion data providers, we can define a new provider kind
VINAndPlateToLocation, which takes both a VIN and a
license-plate number as activation parameters. Since VIN-
AndPlateToLocation has activation parameters corre-
sponding to those of both VINToLocation and PlateTo-
Location, VINAndPlateToLocation can be defined as a
superkind of both those provider kinds. Then we can is-
sue a single query for VINAndPlateToLocation data pro-
viders, which will be satisfied by both VINToLocation
data providers and PlateToLocation data providers.

3.2. Provider descriptors

Every data provider has a provider descriptor that con-
veys the identity of the provider and some information
about its state. This information may include static infor-
mation about the nature and capabilities of the data pro-
vider as well as dynamic information; the dynamic infor-
mation may include provider’s current value, as well as
information about the quality of information and quality
of service currently being provided. A provider query is,
essentially, a test that a given provider descriptor either

VINToLocation

Provider kind VINToGPS3DLocation:
 Type of provided values: LatLongElevType
 Activation parameters:
 vehicleID: VINType
 Properties:
 radiusOfErrorInMeters: float
 freshnessInSeconds: int
 satellites: int

VINTo3DLocation VINToGPSLocation

Figure 5. A multiple-inheritance subkind
hierarchy showing VINTo3DLocation,

VINToGPS3DLocation, and VINToGPS-
Location as subkinds of VINToLocation

VINToGPS3DLocation

Figure 4. Definition of provider kind VIN-
ToGPS3DLocation

4

passes or fails. Sometimes, this test can be performed
without fully materializing the provider descriptor.

A provider descriptor includes:
• a unique identifier for the data provider
• the name of its provider kind
• values for the properties defined for providers of

that kind
• the provider’s current value

If a provider kind s is a subkind of a provider kind k, a
descriptor for a provider of kind s includes at least the
properties found in a descriptor for a provider of kind k.
In Context Weaver, a provider descriptor is represented in
XML, as illustrated in Figure 6.

3.3. Provider queries

A provider query has four elements:
• the name of a provider kind, indicating that a pro-

vider of that kind or one of its subkinds is desired
• values for the activation parameters associated with

that provider kind
• a predicate, possibly referring to the values of

stream properties associated with the provider kind,
to be applied to the property values in a given pro-
vider descriptor, yielding true if the descriptor
should be considered to satisfy the query, and false
otherwise

• a selection mechanism for determining which pro-
vider descriptors, among those determined to satisfy
the query, should be returned in the query result

Since Context Weaver provider descriptors are XML
documents, the predicates in Context Weaver provider
queries are boolean-valued XQuery [4] expressions ap-
plied to provider descriptors. For example, to test whether
a provider descriptor like that in Figure 6 represents a
provider with a radiusOfErrorInMeters property less
than 75 and a value with a latitude greater than 38, we

could write the following XQuery expression: <provider id="VTL003" kind="VINToLocation">
 <streamProperties>

/provider/streamProperties/property <property name="freshnessInSeconds">
 [@name="radiusOfErrorInMeters"] lt 75 and <data type="#long">60</data>
/provider/value/data/lat gt 38.0 </property>

 <property name="radiusOfErrorInMeters"> Presently, the selection mechanism is a two-valued
field: The value ALL indicates that a list should be re-
turned containing every provider descriptor satisfying the
query, and the value ANY_ONE indicates that at most one
provider descriptor, chosen arbitrarily by the query en-
gine from among those satisfying the query, should be
returned. We envision a more powerful selection mecha-
nism, consisting of two parts:

 <data type="#int">50</data>
 </property>
 </streamProperties>
 <value>
 <data type=
 "http://example.org/types#LatLongType">
 <lat>38.8976</lat>
 <long>-77.0366</long>
 </data>
 </value>
</provider> • an integer-valued expression, possibly referring to

the properties and current value of a particular
stream, to be applied to a given provider descriptor,
yielding a provider-descriptor score

Figure 6. A provider descriptor for a
VINToLocation data provider

• a criterion indicating how to select the descriptors to
be returned, such as returning the n top-scoring de-
scriptors, returning all descriptors with a score
greater than or equal to x, returning the first n de-
scriptors found, or returning all descriptors found
within a given timeout interval

(A similar mechanism has been proposed [17] as an ex-
tension to the Service Location Protocol.)

3.3.1. Predicates versus activation parameters. The
predicate and the activation parameters play distinct roles.
The predicate tests whether the properties and value of a
data provider satisfy certain conditions, but does not nec-
essarily constrain any property to hold one specific value.
The activation parameters supply specific values needed
to establish and initialize a connection to a data provider.

Sometimes, the same information must be supplied re-
dundantly as an activation parameter and in a predicate.
Consider, for example, a query for providers of IBM
stock prices. Some providers of this data might be general
stock-quote services, which require a stock symbol to be

Provider kind PriceBySymbol:
 Type of provided values: USDollars
 Activation parameters:
 symbolParameter: string
 Properties:
 symbolProperty: string
 tickerDelayInMinutes: int

Provider kind IBMPrice:
 Type of provided values: USDollars
 Activation parameters: (none)
 Properties:
 symbolProperty: string
 tickerDelayInMinutes: int

Figure 7. Definition of provider kind
PriceBySymbol and its subkind IBMPrice

5

passed as an activation parameter and supply a price for a
stock identified by that symbol; other providers might be
dedicated specifically to providing the price of IBM
stock. These two varieties of providers might belong,
respectively, to the provider kind PriceBySymbol and to
its subkind IBMPrice, defined in Figure 7. We write a
query for the provider kind PriceBySymbol, so that the
query can be satisfied by a provider of either kind. How-
ever, the provider kind PriceBySymbol would also be
matched by providers belonging to other subkinds of
PriceBySymbol, such as IntelPrice and Microsoft-
Price. To filter out data providers of these other sub-
kinds, we write a query that not only specifies a value of
"IBM" for symbolParameter (as required for providers of
kind PriceBySymbol) but also specifies the following
predicate:

/provider/streamProperties/property
 [@name="symbolProperty"] eq "IBM"

In the case of general stock-quote services, the value
symbolParameter is used to obtain the price of the
desired stock. The predicate filters out the undesired data
providers by testing the value of symbolProperty.

Some existing descriptive naming schemes test attrib-
utes only for equality with specific values. With such
schemes, there is no need to distinguish between parame-
ters and properties: The string “symbol=IBM” can be un-
derstood both as a specification of the value that is to be
used for symbol (when activating a data provider requir-
ing a specific value) and as a test to be performed on the
value of the property symbol (when filtering provider
descriptors that contain a symbol property). However, by
restricting a query to be, in essence, a conjunction of
equalities, such a scheme precludes queries for, say, a
stock-price provider with a ticker delay less than 20 min-
utes, or a location lying within any of a set of polygons.

3.3.2. Semantics of a provider query. We define the
semantics of a provider query operationally: A provider
query specifying a provider kind pk, activation parame-
ters ap1,…,apn, predicate p, and selection mechanism sm
is applied as if by doing each of the following in turn:

• attempting to activate every data provider registered
as belonging to some subkind of pk, using the acti-
vation-parameter values ap1,…,apn;

• for each successfully activated provider, construct-
ing a provider descriptor appropriate for kind pk
with the properties and current value of that pro-
vider;

• applying the predicate p to each provider descriptor
and including all those for which the result is true in
a set of candidates; and

• applying the selection mechanism sm to select a re-
sult set from the set of candidates.

In practice, this effect can often be achieved more effi-

ciently: If the predicate does not refer to dynamic proper-
ties of a data provider, or to its value, the predicate can be
applied to an approximate descriptor, containing only
static properties, created without actually activating the
provider it describes. (This approach is reminiscent of the
approximate caches of [14].) If the predicate refers to
dynamic properties, but not to the value, it is necessary to
activate the provider, but not to retrieve its current value.
If the selection mechanism establishes an upper bound b
on the number of provider descriptors to be returned, but
allows those b descriptors to be chosen arbitrarily from
among those descriptors satisfying the predicate, the
query processing can be stopped after b descriptors have
been obtained. Traditional indexing and query-
optimization techniques can be applied to static properties
to avoid the retrieval of provider descriptors that cannot
possibly satisfy the predicate in a query.

Allowing a predicate to refer to a data provider’s value
is potentially costly: In the general case, resolving a query
entails activating every provider that has a suitable pro-
vider kind, and requesting its current value. However, this
feature is also very powerful. For example, we can write a
query that is matched by all vehicles whose current
telematics data indicate that they are located in a specified
geographic area, or by all temperature sensors currently
sensing temperatures in a dangerous range. Fortunately, a
provider-query resolver can be implemented so that the
cost of value-based queries is borne only by those queries
whose predicates explicitly refer to a provider’s value.
Rather than guessing whether the cost is worth the bene-
fit, our approach is to allow value-based queries while
alerting application developers to the potential cost, and
allowing developers to make their own choices.

4. Synthesis of data providers

In Section 3, we made no attempt to formalize the se-
mantics of a provider kind. However, by identifying cer-
tain specifiable aspects of a provider kind’s semantics,
such as units of measurement or the use of a sliding aver-
age, we enable Context Weaver to analyze relationships
among various provider kinds, and to satisfy a provider
query by synthesizing a new data provider.

Consider two provider kinds that take a VIN as an ac-
tivation parameter and provide the velocity of the corre-
sponding vehicle, one in miles per hour and the other in
kilometers per hour. Neither of these provider kinds can
be a subkind of the other, because their semantics are
incompatible. Nonetheless, their semantics are closely
related: A query for the velocity of vehicle v in miles per
hour can be satisfied by discovering a data provider for
the velocity of vehicle v in kilometers per hour, and syn-
thesizing a new data provider whose current value is ob-
tained by multiplying the result of the discovered data
provider by 0.62. More generally, it is possible to satisfy

6

any query of the form x in miles, given y, by discovering
a data provider for x in kilometers, given y, and synthesiz-
ing a new data provider that multiplies the result of the
discovered data provider by 0.62.

Two difficulties arise. First, there are too many pairs
of provider kinds—distance of a vehicle from Chicago in
miles given its VIN versus distance of vehicle from Chi-
cago in kilometers given its VIN, altitude of an aircraft in
miles given its tail number versus altitude of an aircraft in
kilometers given its tail number, ad infinitum—to exploit
relationships on an ad hoc basis. Second, the scheme we
have presented so far has no entity whose role is to multi-
ply arbitrary values by 0.62. A data provider is character-
ized, in part, by the semantics of the value it provides; the
semantics of a component that takes an input and multi-
plies it by 0.62 depends on the semantics of the input.

To address these difficulties, we enhance our approach
as follows:

• We introduce the notion of a stream transformer,
whose role is to transform a stream of input-data
values in a methodical way to produce a stream of
output-data values.

• We specify certain aspects of data-provider seman-
tics, such as units of measurement, in provider-kind
definitions and provider queries.

• We introduce synthesis rules asserting that queries
matching particular patterns can be satisfied by ap-
plying particular stream transformations to appro-
priate input streams.

The net effect of these enhancements is to enable a pro-
vider of the kind requested by a provider query to be syn-
thesized by applying an appropriate stream transformer to
another, closely related, data provider, based on a catalog
of synthesis rules. The closely related data provider may
be discovered, or it may itself be synthesized. The follow-
ing subsections elaborate on this approach.

4.1. Stream transformers

A stream transformer is a mechanism that reads one or
more streams of input values and generates a stream of
output values determined by the input streams. Stream
transformers can be classified as value-based or stream-
based. A value-based stream transformer generates one
output value for each input value (or each set of contem-
poraneous input values, one from each of several input
streams); the output value is determined by the input
value (or values). An example is a stream transformer that

emits the value 0.62v every time a value v arrives. A
stream-based stream transformer generates output values
based on the history of input values up to a certain point
and the passage of time; it might not generate an output
value for each input value, and might generate output
values that do not correspond to any input value. An ex-
ample is a stream transformer that emits a value every
second, equal to the average of the values that arrived in
the past minute.

4.2. Specifiable aspects of semantics

We stated in Section 3.1 that because a human’s view
of the world cannot be formalized, we cannot define the
semantics of a provider kind completely. We can, how-
ever, specify certain important aspects of provider-kind
semantics. Our approach is to decompose the semantics
of a provider kind into specifiable parts and an unspecifi-
able part. The specifiable parts are specified in provider-
kind definitions using a small, closed, precisely defined
vocabulary. The unspecifiable part corresponds to a token
whose meaning, like the provider-kind name in Section 3,
is understood by humans.

One specifiable aspect of provider-kind semantics is
the dimension of the provided data. (We use the term di-
mension in the sense in which it is used in physics: Mass,
length, and time, among others, are dimensions; and cen-
timeters, inches, and light years are some of the units ap-
propriate for the dimension of length.) In the case of a
provider kind for vehicle location, given a VIN, the fact
that the provided data has the dimension location is speci-
fiable; the fact that the provided location is that of the
vehicle with the given VIN, rather than that of the vehi-
cle’s owner, is not.

A second specifiable aspect is representation. For any
given dimension, there is a small number of well-known
representations. In the case of physical dimensions, the
representation has two components: the unit of measure-
ment and the numeric format. Thus, for the dimension of
length, representations include a number of centimeters
represented in IEEE 754 single-precision floating-point
format and a number of inches represented in decimal
format. For the dimension of time (a point on a timeline),
representation would encompass various date/time for-
mats (such as “1985-05-15 1:30 pm” and “15 May 1985
13:30”) and the binary 64-bit representation of the num-
ber of milliseconds elapsed since the start of the year
1970.

7

Additional specifiable aspects of semantics concern the
relationship of values in a stream to each other, and to the
passage of time. Such aspects are used in describing the
streams that result from applying stream-based stream
transformers. Examples are a specification that a stream is
a time series of smoothed averages, or a specification that
values satisfying a specified condition have been filtered
out of the stream. Figure 8 shows what a provider-kind
definition with specifiable semantics might look like; the
token VehicleDistanceFromChicago captures the un-
specified semantics. In place of the type of the provided
values we saw in the provider-kind definitions of Section
3, we now specify the dimension, unit, and format of the
provided values.

(a one-element list of activation-parameter declarations),
match variable sem to the token VehicleDistanceFrom-
Chicago, match variable propList to

 radiusOfErrorInMeters: float
 freshnessInSeconds: int

(a two-element list of property declarations), match vari-
able paramVals to a list containing one VIN, and match
variable pred to a predicate potentially testing radius-
OfErrorInMeters and freshnessInSeconds. An input
query pattern SomethingInKilometers could be defined
identically, except that the units would be specified as
kilometers rather than miles. One synthesis rule would
assert that, for all appropriatedly typed match-variable
values u, v, w, x, y, and z, a query SomethingInMiles<u,v,
w,x,y,z> (i.e., an instance of the output provider-query
pattern SomethingInMiles using the values u, v, w, x, y,
and z for the match variables) can be synthesized by ob-
taining a provider satisfying the query SomethingIn-
Kilometers<u,v,w,x,y,z> and applying to its output a
stream transformation that multiplies each value in the
stream by 0.62.

4.3. Synthesis rules

The application of stream transformers is driven by
synthesis rules. A synthesis rule consists of an output
provider-query pattern, the name of a stream transformer,
and one or more input provider-query patterns. A
provider-query pattern is a provider query in which the
name of a provider kind is replaced by a provider-kind
definition, and then certain entities within the query are
replaced by match variables. Only match variables
appearing in the output provider-query pattern may
appear in an input provider-query pattern. A synthesis
rule asserts that, if a query Q is an instance of the output
provider-query pattern, then a data provider satisfying Q
can be synthesized by applying the named stream
transformer to input sources that satisfy corresponding
instances of the input provider-query patterns (i.e.,
instances in which the same values are substituted for the
match variables).

5. Related work

Two limitations characterize previous approaches to
descriptive naming. Some approaches lack the expres-
siveness of our XQuery-based approach, effectively re-
stricting the conditions that can be tested to a conjunction
of equalities. Some approaches do not support a hier-
archical classification of the descriptively named entities
akin to our provider-kind hierarchy. Some approaches
suffer from both of these limitations.

Schemes in which queries are equivalent to a conjunc-
tion of equalities are deficient in two respects. First, they
are incapable of expressing constraints based on ordering
comparisons (e.g., that a printer’s speed should be at least
10 pages per minute). Second, they are incapable of ex-
pressing disjunctions (e.g., that a mobile device’s location
should be in either polygon A or polygon B).

A query for a provider of the provider kind VINTo-
DistanceFromChicago of Figure 8 is an instance of the
provider-query pattern of Figure 9, in which match vari-
able fmt corresponds to float, match variable param-
Decls to

 vehicleID: VINType

Provider kind VINToDistanceFromChicago:
 Dimension of provided values: distance
 Representation of provided values:
 Unit: miles
 Format: float
 Activation parameters:
 vehicleID: VINType
 Semantics: VehicleDistanceFromChicago
 Properties:
 radiusOfErrorInMeters: float
 freshnessInSeconds: int

Figure 8. Definition of provider kind
VINToDistanceFromChicago

8

Nonhierarchical classifications of descriptively named
entities do not evolve gracefully as new kinds of entities
are introduced. A new entity distinct in any small way
from previously categorized entities must be placed in its
own new category; there is no way to express the com-
mon features among categories, such as the generalization
mechanism described in Section 3.1.2. Since there is no
way to specify a category consisting of a set of closely
related subcategories, a query meant to cover such a cate-
gory must be split up into a number of narrower queries.

The Lightweight Directory Access Protocol (LDAPv3)
[15] allows attributes of a directory entry to be tested us-
ing an arbitrary boolean search filter. However, the hier-
archy of an LDAP directory does not reflect superkind-
subkind relationships: There is no straightforward way to
cause a query for an entry of type t to be satisfied by an
entry whose type is any subtype of t.

In the Service Location Protocol (SLPv2) [9], queries
include an LDAPv3 search filter. Every SLP service be-
longs to some concrete service type, and concrete service
types may be grouped into abstract service types. How-
ever, only a two-level hierarchy is supported.

In the Ninja project’s Service Discovery Service
(SDS) [7], a service has an XML service description,
analogous to our provider descriptors. However, there is
no unifying framework for the various forms of service
description. A query takes the form of a service descrip-
tion with some subset of the elements removed, and is
equivalent to a conjunction of equalities between the val-
ues in the query and the corresponding values in the ser-
vice description.

The Intentional Naming System [1] and its follow-on
Twine [2] take an approach similar to that of SDS: Both
queries and resource descriptions take the form of
attribute-value trees. A query matches a resource descrip-

tion if and only if each path from the root of the query
tree has a corresponding path in the resource description,
so a query is, in essence, a conjunction of equality tests.
While [1] contemplates the addition of ordering compari-
sons to queries, [2] exploits the fact that a path in a query
matches a path in a resource description only if a hashing
function would map both paths to the same hash code.

In the directed diffusion paradigm [11][10], queries are
called interests. In [11], an interest is expressed as a set of
attribute-value pairs, interpreted as a conjunction of
equality tests. Every interest includes a type attribute
whose value is an event code naming the subject of the
query. Event codes roughly correspond to provider-kind
names, but with no inherent relationships among the no-
tions they denote. A variant on this scheme, using attrib-
ute-comparator-value triples instead of attribute-value
pairs, is presented in [10]; an interest is still equivalent to
a conjunction of simple tests, but the simple tests may
include ordering comparisons as well as equalities.

The Jini [15] Lookup Service discovers Java objects
representing services. A service object is described by a
service item that includes a unique service identifier and
zero or more attribute sets. A query takes the form of a
service template consisting of an optional service identifi-
er, zero or more Java types, and zero or more attribute-set
templates. A service template matches a service item if
the service identifier in the service template is absent or
identical to the service identifier in the service item, the
service object in the service item is an instance of each of
the Java types in the service template, and each attribute-
set template in the service template matches an attribute
set in the service item. The hierarchy of Java service-ob-
ject subclasses can play a role analogous to our hierarchy
of subkinds, but the attribute-set template specifies a
conjunction of exact matches with specified values.

Universal Description, Discovery, and Integration
(UDDI) [3] is a framework for issuing queries to discover
web services. The UDDI registry was originally con-
ceived of as a “yellow pages” directory, in which services
are looked up by first locating a business in a given in-
dustry and then examining the services offered by that
business. Businesses are categorized by industry accord-
ing to a hierarchical scheme, but this scheme has no se-
mantic significance in the processing of queries. There is
no mechanism for looking up services based on their se-
mantic properties.

Query pattern
 SomethingInMiles
 <fmt, paramDecls, sem, propList,
 paramVals, pred>:

 Provider kind:
 Dimension of provided values: distance
 Representation of provided values:
 Unit: miles
 Format: fmt
 Activation parameters:
 [paramDecls]
 Semantics: sem In contrast to these approaches that are less flexible

than ours, ontology-based systems aspire to provide
greater flexibility. The OWL Web Ontology Language
[13], an enhancement of the Resource Description Frame-
work (RDF) [12], is an example of a notation for defining
ontologies and annotating web pages to relate them to
concepts defined in these ontologies. The goal of typical
ontology-based systems is to support unstructured que-
ries, in particular natural-language queries, and to apply

 Properties:
 [propList]
 Activation parameter values: [paramVals]
 Predicate: pred
 Selection mechanism: ANY_ONE

Figure 9. A query pattern

9

common-sense reasoning to deduce facts that are not ex-
plicitly represented. In addition, by defining relationships
between terms in different vocabularies, an ontology pro-
vides a bridge between the vocabulary of a query and the
vocabulary of a provider descriptor, allowing providers of
“thermometer reading” to be discovered in response to a
query for “temperature.” The goals of ontology-based
systems are ambitious, but their promises are yet un-
proven. Development of ontologies is labor-intensive, so
few exist yet, and it is not clear that resources will exist in
the long run to maintain them. Our hierarchy of provider
kinds can be viewed as a kind of primordial ontology,
with less ambitious and therefore more attainable goals.
We seek to classify only data providers rather than arbi-
trary knowledge, and we do so in a highly constrained
manner.

6. Summary

Context Weaver discovers data providers that generate
value streams satisfying application-specified queries.
These queries describe the desired properties of value
streams rather than identifying particular data providers.
Descriptive naming of resources allows a system such as
Context Weaver to select the best available resource dy-
namically, isolates client applications from dependence
on one particular resource, allows resources to be added
to or removed from the system without modifying client
applications, and makes an application portable to other
environments with different sets of resources.

Context Weaver provider queries are open-ended
enough to be generally applicable to arbitrary domains,
and to sorts of data providers not yet conceived of. At the
same time, provider queries are precise and unambiguous.
The structure of the query is amenable to consistency
checks to ensure that a query refers to only those attrib-
utes that are meaningful for the kind of data provider it
describes. It is possible to perform general tests on these
attributes, including range tests and disjunctions.

Data providers registered with Context Weaver are
classified according to a multiple-inheritance hierarchy of
provider kinds. New provider kinds can be inserted in this
hierarchy not only below, but also above specified exist-
ing provider kinds, facilitating the introduction of a new
provider kind that generalizes previously existing pro-
vider kinds. The current state of a registered data provider
is described by an XML provider descriptor with content
that depends on its provider kind. A provider query speci-
fies the name of a provider kind, a set of activation-
parameter values meaningful for that provider kind, an
XQuery predicate applicable to descriptors for providers
of that kind, and a selection mechanism specifying how
data providers are to be selected from among those that
are eligible. The descriptor includes the current value of a
data provider, enabling queries for all data providers cur-

rently providing values that satisfy a particular condition.
Successful discovery of data providers can be facili-

tated by dynamically synthesizing data providers of the
kind specified in a query. Such synthesis applies generic
stream transformations to other, closely related data pro-
viders. To write synthesis rules specifying that the appli-
cation of a given stream transformation to the output of a
provider of one given kind yields a provider of another
given kind, we must formalize certain aspects of a pro-
vider kind’s semantics, such as the dimension and repre-
sentation of the provided data.

Most of Context Weaver’s requirements for descrip-
tive naming are shared by other systems that obtain ser-
vices from a variety of resources with fluctuating charac-
teristics, such as mobile resources. Therefore, a naming
system based on hierarchies of resource kinds, and arbi-
trary predicates over attributes meaningful for a given
resource kind, would be appropriate for such systems.

References

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan,
and Jeremy Lilley. The design and implementation of an inten-
tional naming system. Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP ’99), December
12-15, 1999, Kiawah Island Resort, South Carolina, published
as Operating Systems Review 33, No. 5 (December 1999), 186–
201

[2] Magdalena Balazinska, Hari Balakrishnan, and David Kar-
ger. INS/Twine: a scalable peer-to-peer architecture for inten-
tional resource discovery. International Conference on Perva-
sive Computing (Pervasive 2002), Zurich, Switzerland, August
26–28, 2002, 195–210

[3] Tom Bellwood, Luc Clément, Claus von Riegen, eds. UDDI
version 3.0.1. UDDI Spec Technical Committee Specification,
October 14, 2003 <URL: http://uddi.org/pubs/uddi_v3.htm>

[4] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela
Florescu, Jonathan Robie, Jérôme Siméon. XQuery 1.0: An
XML Query Language. W3C Working Draft, May 2, 2003
<URL: http://www.w3.org/TR/xquery/>

[5] Mic Bowman, Saumya K. Debray, and Larry L. Peterson.
Reasoning about naming systems. ACM Transactions on Pro-
gramming Languages and Systems 15, No. 5 (November 1993),
795–825

[6] Norman H. Cohen, Apratim Purakayastha, Luke Wong, and
Danny L. Yeh. iQueue: a pervasive data-composition frame-
work. 3rd International Conference on Mobile Data Manage-
ment, Singapore, January 8–11, 2002, 146–153

[7] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, An-
thony D. Joseph, and Randy H. Katz. An architecture for a se-
cure service discovery service. Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile Computing and

10

11

Networking (MobiCom '99), Seattle, Washington, August 15–
19, 1999, 24–35

[8] David C. Fallside, ed. XML Schema Part 0: Primer. W3C
Recommendation, May 2, 2001 <URL:
http://www.w3.org/TR/xmlschema-0/>

[9] E. Guttman, C. Perkins, J. Veizades, M. Day. Service Loca-
tion Protocol, Version 2. IETF RFC 2608, June 1999 <URL:
http://www.ietf.org/rfc/rfc2608.txt>

[10] John Heidemann, Fabio Silva, Chalermek Intanagonwi-
wat, Ramesh Govindan, Deborah Estrin, and Deepak Ganesan.
Building efficient wireless sensor networks with low-level nam-
ing. Proceedings of the Eighteenth ACM Symposium on Operat-
ing Systems Principles (SOSP 2001), Banff, Alberta, October
21–24, 2001, 146–159

[11] Chalermek Intanagonwiwat, Ramesh Govindan, and Deb-
orah Estrin. Directed diffusion: a scalable and robust communi-
cation paradigm for sensor networks. Proceedings of the Sixth
Annual International Conference on Mobile Computing and
Networking (MobiCom 2000), Boston, Massachusetts, August
6–11, 2000, 56–67

[12] Frank Manola and Eric Miller, eds. RDF Primer. W3C
Working Draft, October 10, 2003 <URL:
http://www.w3.org/TR/rdf-primer/>

[13] Deborah L. McGuinness and Frank van Harmelen, eds.
OWL Web Ontology Language overview. W3C Candidate
Recommendation, August 18, 2003
<URL: http://www.w3.org/TR/owl-features/ >

[14] Chris Olston, Boon Thau Loo, and Jennifer Widom.
Adaptive precision setting for cached approximate values. Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, Santa Barbara, California, May 21–24,
2001, 355–366

[15] Sun Microsystems. Jini Technology Core Platform Speci-
fication. Version 2.0, June 2003 <URL:
http://wwws.sun.com/software/jini/specs/>

[16] M. Wahl, T. Howes, and S. Kille. Lightweight Directory
Access Protocol (v3). IETF RFC 2251, December 1997 <URL:
http://www.ietf.org/rfc/rfc2251.txt >

[17] W. Zhao, H. Schulzrinne, E. Guttman, C. Bisdikian, and
W. Jerome. Select and sort extensions for the Service Location
Protocol (SLP). IETF Network Working Group RFC 3421, No-
vember 2002, <URL: http://www.ietf.org/rfc/rfc3421.txt>

	Abstract
	Introduction
	Context Weaver
	The nature of a provider query
	Provider kinds
	Subkinds and superkinds. Provider kinds can be organized into hierarchies of super˜kinds and subkinds, such that a query for a provider of kind k can be satisfied by a provider of any subkind of k. To formalize this hierarchy, we assume that the types to
	Bottom-up definition of superkinds. Traditionally, subtype hierarchies are built from the top down; that is, the definition of a type names its direct parents, which must have been defined earlier. In contrast, the definition of a new provider kind in Co

	Provider descriptors
	Provider queries
	Predicates versus activation parameters. The predicate and the activation parameters play distinct roles. The predicate tests whether the properties and value of a data provider satisfy certain conditions, but does not necessarily constrain any property
	Semantics of a provider query. We define the sema

	Synthesis of data providers
	Stream transformers
	Specifiable aspects of semantics
	Synthesis rules

	Related work
	Summary
	References

