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Abstract. A large number of continual range queries could be issued against
numerical data streams, such as stock prices, sensor readings, temperatures,
and others. To efficiently process these long-running queries, only the po-
tentially relevant queries should be evaluated against the data. We develop
a virtual construct-based query indexing approach to efficiently identifying
the range queries that match each data object in the streams. A set of virtual
constructs, e.g., intervals in 1D space or rectangular regions in 2D space, are
predefined such that it is efficient to find all the virtual constructs containing
any given data object. Each virtual construct has a unique ID and an asso-
ciated query ID list. The query index is built as follows. Each range query is
first decomposed into one or more virtual constructs. The query ID is then
inserted into the query ID lists associated with those decomposed virtual
constructs. Search becomes extremely efficient. For a given data object, we
first find all virtual constructs covering it. Then, we report the matched
queries from the ID lists associated with the covering virtual constructs.

1 Introduction

A large number of continual range queries can be issued against a numerical data
stream. Many stream applications can be modeled as continual range queries against
a data stream, such as financial applications monitoring stock prices or interest
rates, and security control applications monitoring sensor readings. In a stream
model, individual data items can be relational tuples with well-defined attributes,
such as network measurements, call records, meta data records, sensor readings
and so on. These data items arrive in the form of streams continually and perhaps
rapidly. Conceptually, every query must be continually evaluated against every data
item in the stream.

As data items are streamed at an increasingly rapid rate, the processing of con-
tinual range queries against the stream becomes difficult, if not impossible, because
CPU quickly becomes limited. Data items may have to be dropped without pro-
cessing [18], or the system cannot handle so many continual queries. However, it is
desirable for a system to process as many continual queries as possible against a
stream that is as rapid as possible. Hence, it is important that only the potentially
relevant queries are evaluated against a data item in the incoming stream.

One approach to quickly evaluating the relevant continual range queries is to
use a query index. Each data item in an incoming stream is used to search the



query index and identify the relevant queries. Though maybe conceptually simple,
it is quite challenging to design such a query index in a streaming environment,
especially if the stream is rapid. The range query index is preferably main memory-
based and it must have two important properties: low storage cost and excellent
search performance. Low storage cost is important so that the entire query index
can be loaded into main memory. Excellent search performance is critical so that
the query index can handle a rapid stream.

Range queries are generally difficult to index. Though existing spatial indexes,
such as R-trees [9, 8], can be used to index range queries [17], most of them are disk-
based approaches. A main memory-based query index is preferable for fast search
performance in a streaming environment, especially if the number of continual range
queries is large. In addition, R-trees degenerate quickly if range queries are highly
overlapped [8].

In this paper, we describe a virtual construct-based query indexing method for
efficient processing of continual range queries against a numerical data stream. The
key concept of a VC-based query index is indirect pre-computation of search results.
A set of virtual constructs, VCs, are predefined. Each VC has a unique ID and an
associated query ID list. The range query is decomposed into one or more VCs and
the query ID is inserted into the query ID lists associated with the decomposed VCs.
Search is conducted indirectly via these VCs by finding all the covering VCs for any
data point. The challenges of such a VC-based query index include the definition
and labeling of VCs, and the decomposition and search algorithms.

We present two VC-based query indexes that meet both objectives of low storage
cost and fast search performance: a VCI (virtual construct interval) index for 1D
range queries and a VCR (virtual construct rectangle) index for 2D range queries.
The VCI index was first developed for efficient 1D interval indexing for fast event
matching in content-based subscription e-commerce and e-service [20]. The VCR
index was first developed for efficient indexing of highly-overlapping multidimen-
sional range queries for fast event matching [19]. In this paper, we describe the
use of both indexes in a streaming environment. Research is continuing to explore
various alternative VCs such that the storage cost and the search performance can
be further improved.

The paper is organized as follows. Section 2 presents the VCI index for one
dimensional continual interval queries. Section 3 describes the VCR index for two
dimensional continual range queries. Section 4 discusses related work. Finally, Sec-
tion 5 summarizes our paper.

2 VCI indexing for 1D range queries

Before describing the details, we show an example of a VCI-based query index
in Fig. 1. There are 5 virtual construct intervals, v1, · · · , v5, which are used to
decompose query intervals, Q2, Q3 and Q4. Note that there are more VCIs, but
for simplicity we only show 5 of them. After decomposition, query IDs are inserted
into the associated ID lists. To perform a search on data value x, we first find the
covering VCs for x. In this case, they are v1 and v3. The search result is contained
in the ID lists associated with v1 and v3. From the VCI-based query index, we find
Q2, Q3 and Q4.
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Fig. 1. Example of a VCI-based index for 1D interval queries.

2.1 System model

For clarity, query intervals are user-defined intervals in 1D range queries. On the
other hand, virtual construct intervals (VCIs) are virtual intervals used to decom-
pose query intervals. We focus on simple 1D range queries, where each contains a
single interval predicate on an attribute. The result is applicable to complex queries,
where each contains a conjunction of more than one interval predicate. For exam-
ple, an efficient interval index can be maintained for each attribute in a two-phase
algorithm involving complex queries, such as the ones presented in [7, 21].

We assume that all query intervals are defined on an attribute A. A can be of
integer or non-integer data type. Query intervals include both endpoints, and the
endpoints are integers. However, if the endpoints are not integers, we can expand
them to the nearest integers. The expanded intervals are then decomposed and
indexed. VCI indexing is still effective in identifying candidate queries. However, a
final checking is needed to determine if the candidate queries indeed match the data
item. Namely, we deal with the case that a query interval is represented as q : [x, y],
where q is the query ID, x and y are integer endpoints and y > x. However, data
values can be non-integers. We assume that query intervals fall between a0 and
a0 + R − 1, i.e., the attribute range is R.

2.2 Defining VCIs

We describe two sets of VCIs: an SCI and an LCI. In SCI, we define L unique VCIs
that start at each integer value and have respective lengths of 1, 2, · · · , L. L is the
maximal length of a VCI. The IDs for the L VCIs that starts at attribute value
a0 + j are jL, jL + 1, · · · , (j + 1)L − 1, respectively. Fig. 2 shows an example of
simple construct intervals (SCIs) and their unique IDs when L = 4. The unique ID
for a VCI [a, b] in an SCI approach is computed as follows:

v = (a − a0)L + (b − a) − 1.
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Fig. 2. Example of simple construct intervals (SCIs) with L = 4.

In contrast, LCI defines log(L)+1 VCIs for each integer attribute value. Assume
L = 2k, where k is an integer, the lengths of virtual construct intervals in LCI are
20, 21, · · · , 2k. Fig. 3 shows an example of LCIs with L = 4 and k = 2. Compared
with SCI, LCI has in general fewer number of VCIs for the same L. The unique ID
of a VCI [a, b], where b − a = 2l, 0 ≤ l ≤ k, is computed as follows:

c = (a − a0)(k + 1) + l.
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Fig. 3. Example of logarithmic construct intervals (LCIs) with L = 4.
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2.3 Decomposition algorithm

The decomposition algorithms for SCI and LCI are rather simple and straightfor-
ward. Both are mostly similar except for the handling of a remnant interval with
length less than L. The decomposition algorithm works as follows. First, we initialize
a remainder interval to be the query interval [x, y]. If y − x < L, then no decompo-
sition is needed. The VCI [x, y] can be used to decompose the query. Otherwise, we
repeatedly use the maximal-sized VCI to decompose and cut the remainder interval
from the left endpoint. This process ends until the length of the remainder interval
is less than L. Hence, a query [x, y] is decomposed into m = � y−x−1

L � VCIs with
length L and a remnant. For the SCI approach, the remnant can be decomposed
with a single VCI. For the LCI approach, the remnant may need more than one
VCIs to decompose it. For example, if L = 16 and a remnant of size 7 needs three
VCIs with lengths of 1, 2 and 3, respectively.

After decomposition, the query ID is inserted into the query ID lists associated
with the decomposed VCIs. From Fig. 1, the storage cost depends on the query ID
lists and the array of pointers to the associated query ID lists. For the same L, the
SCI approaches defines more VCIs than the LCI approach. Hence, the pointer array
is larger for the SCI approach. On the other hand, a query ID is inserted into more
ID lists for the LCI approach. In general, LCI has a lower storage cost [20].

2.4 Search algorithm

To find the queries that cover a data value, we need to first find all the VCIs that
can potentially cover the data value. Fig. 4 shows the covering VCIs for any data
value a0 +j for the SCI approach; Fig. 5 shows covering VCIs for the LCI approach.
These VCIs can be efficiently enumerated.
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Let V min
j denote the minimal ID of the covering VCIs of a0 + j. From Fig. 4,

V min
j = (j − L)L + L − 1 for the SCI approach. On the other hand, V min

j =
(j −L)(k + 1) + k for the LCI approach (see Fig. 5). Let us also define a difference
table Dj for a data point a0 + j: Dj stores the differences between all the covering
VCIs of a0 + j and V min

j . There is an important property among the difference
tables for all the attribute values. Di = Dj even if i �= j for i, j ≥ L. This property
can be easily verified from Fig. 4 and Fig. 5. Essentially, we can move around as a
unit the entire drawings surrounding a0 + j of these two figures and they become
the covering VCIs of another attribute value. In other words, the relative distance
among the covering VCIs of an attribute value stay the same for all data points.
Because Di = Dj even if i �= j, we can pre-compute, store and use a single D to
enumerate all the IDs of the covering VCIs for any attribute value. We only need to
compute V min

j and the entire covering VCIs can be computed by simple additions
of V min

j to each element stored in D. After the covering VCIs are found, the search
results are contained in the query ID lists associated with these covering VCIs.
Hence, search can be very efficient with VCI-based query indexing.

2.5 Performance

Detailed simulations were conducted to evaluate the performance of VCIs under
various conditions [20]. Fig. 6 and Fig. 7 show the average search time and total
index storage cost, respectively, with R = 5000 for various alternative query index-
ing schemes. The IS-list approach [12] is the best prior art in main memory-based
interval index. However, it does not have a good search performance, nor a low
storage cost. The Dlist approach is a simple and direct listing method. It has the
best search performance, but has a rather high storage cost. Different optimization
techniques were applied to the LCI approach [20]. The best one (LCI-BV(DT)) has
a near-best search performance and the lowest storage cost. These two figures show
that indeed the VCI-based query index has a low storage cost and excellent search
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performance. Hence, it is suitable for indexing continual interval queries in a stream
environment.
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Fig. 6. Comparisons of various interval query indexing schemes in terms of average search
performance.

3 VCR indexing for 2D range queries

3.1 System model

Now we examine the case where queries are conjunctions of two intervals involving
attributes X and Y . For simplicity, assume that the attribute ranges are 0 ≤ X < Rx

and 0 ≤ Y < Ry, respectively. Query boundaries are assumed to be defined along
the integer lines of X and Y . However, data points can be any non-integer numbers.
For example, in a 2D space, the spatial ranges for specifying user queries are defined
with integers based on a virtual grid imposed upon a monitoring region, but object
positions can be any non-integer. Fig. 8 shows a scenario where two queries are
defined along the integer grid lines: q1 : (3, 3, 5, 6) and q2 : (6, 7, 5, 5). Query q1

has the bottom-left corner at (3, 3) and a width of 5 and a height of 6. Three data
items are specified with non-integer numbers: d1 : (9.3, 4.15), d2 : (3.6, 5.2) and
d3 : (7.5, 9.5).

3.2 Defining VCRs

For each integer grid point (a, b), where 0 ≤ a < Rx and 0 ≤ b < Ry, we define a
set of B virtual construct rectangles as basic building blocks. These B VCRs share
the common bottom-left corner at (a, b) but have different shapes and sizes. Fig. 9
shows an example of 9 VCRs whose bottom-left corners are at (0, 0). We assume
the maximum side lengths of a VCR are Lx = 2k and Ly = 2k, where k ≥ 0 and k
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Fig. 9. An example of 9 VCRs with bottom-left corners at (0, 0).

is an integer. If lx and ly are the side length of a VCR, then lx = 2i and ly = 2j,
where 0 ≤ i ≤ k, 0 ≤ j ≤ k, and i and j are integers.

Each VCR has a unique ID. The ID of a VCR (a, b, 2i, 2j) can be computed as
follows:

V (a, b, 2i, 2j) = Br(a + bRx) + j(k + 1) + i. (1)

The first term is derived by horizontally scanning the integer grid points from (0, 0)
to (Rx−1, 0), then from (0, 1) to (Rx−1, 1), · · · , until (a−1, b). There are (a+bRx)
such grid points (see Fig. 8 for scanning the grid points). For each grid point, there
are B VCRs defined. The second term is derived by the ID assignment shown in
Fig. 9. Note that these VCRs are virtual. A virtual VCR becomes activated when
it is used to cover the region of a continual range query.

3.3 Decomposition algorithm

A range query q : (a, b, w, h) is first decomposed into one or more VCRs. After
decomposition, the query ID q is inserted into each of the ID lists associated with
those decomposed VCRs. Here, we present two decomposition methods: simple de-
composition and overlapped decomposition.

Fig. 10(a) shows an example of using a simple decomposition (SD) to decompose
a query rectangle (3, 3, 11, 6). Assume that Lx = 4 and Ly = 4. First, it is decom-
posed into 2 strip rectangles: (3, 3, 11, 4) and (3, 7, 11, 2). Then each strip rectangle
is decomposed into 4 VCRs each. Hence, (3, 3, 11, 6) is decomposed into a total of 8
VCRs. These 8 VCRs have different sizes, 4× 4, 4× 2, 2× 4, 2× 2, 1× 4 and 1× 2.
The overlapping among them is minimal. It occurs only on the boundary lines.

In SD, many small-sized VCRs may be activated by query decompositions.
Hence, the average number of decomposed VCRs per query can be large. Since
a query ID is inserted into each of the ID lists associated with the decomposed
VCRs, storage requirement may become an issue.
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In contrast to SD, the overlapped decomposition (OD) uses the same-sized VCR
to decompose a given range query. Basically, OD is very similar to SD in creating
strip rectangles and using the largest VCR to decompose each strip rectangle. The
difference between OD and SD is in how they handle the remnants of a strip rect-
angle. Overlapping is allowed in OD. To achieve this, the left boundary of the last
VCR is allowed to shift backward so that the same sized VCR is used in the de-
composition. Similarly, the bottom of the last strip rectangle is allowed to shift
downward so that the last strip rectangle has the same height as those of the other
strip rectangles.

As an example, Fig. 10(b) show the result of using OD to decompose the same
query rectangle (3, 3, 11, 6). We only use a 4 × 4 VCR for the decomposition and
there are only 6 decomposed VCRs, instead of 8 as in SD. Compared with SD,
OD better facilitates the sharing and reuse of decomposed VCRs among queries.
It reduces the number of activated VCRs. Fewer activated VCRs make it more
effective to reduce the storage requirement.

3.4 Search algorithm

To search for all the queries that contain a data point, we only need to find all the
activated VCRs that contain that point. Assume that CQ(d) is the set of queries
that contain a data point d; CV (d) is the set of covering VCRs that contain d.
CQ(d) can be computed from CV (d) and the VCR-based query index. Because the
way VCRs are predefined, CV (d) can be efficiently enumerated.

CV (·)’s for all object positions share two common properties: constant size and
identical gap pattern. For ease of discussion, we focus on a data point (x, y) that is
not under the boundary regions. The boundary regions are defined by 0 ≤ x < L
or Rx − L ≤ x < Rx or 0 ≤ y < L or Ry − L ≤ y < Ry. However, we can also
efficiently compute CV ()’s for locations in these regions.

Property 1. The number of VCRs potentially containing a data point is the same
for all data points. Namely, |CV (di)| = |CV (dj)| even if di �= dj .

Property 2. If we sort, in an increasing order, the IDs of VCRs in each CV (·), then
vdi

m+1 − vdi
m = v

dj

m+1 − v
dj
m for 1 ≤ m < |CV (·)| and any two objects di and dj . Here,
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vdi
m is the m-th VCR in the sorted CV (di). In other words, the gap between any

two VCRs of matching positions is identical for any two data points.

These two properties can be easily verified via an example. Fig. 11 shows CV (d)
for a data point d which is expressed as (x, y), where a < x < a + 1, b < y < b + 1,
and a and b are integers. The bottom-left corners of these covering VCRs must reside
in the south-west shaded area of (x, y) and the upper-right corners must reside in
the north-east shaded area of (x, y). It can be easily verified that if a VCR whose
bottom-left and upper-right corners are positioned in the respective shaded areas,
it will indeed contain (x, y). These two properties can be proved by first grouping
all the drawings in Fig. 11 as a unit and then moving it around. When the center
is moved from (a, b) to another point (c, d), the relative positions of all the covering
VCRs stay the same.

X

Y

(a-L, b-L)

(a, b)

(0, 0)

(a+L+1, b+L+1)

pivot point
(a+1-L, b+1-L)

(a+1, b+1)

1and1where),( +<<+<< bybaxayx

Fig. 11. Covering VCRs that contain a data point.

With these two properties, we can design an efficient algorithm for computing
CV (d) at location (x, y). We first define a pivot point as P whose location is (�x�+
1 − L, �y� + 1 − L) and a pivot VCR as Vp which is defined as (�x� + 1 − L, �y� +
1 − L, 20, 20). Namely, the bottom-left corner of Vp is at the pivot point P and
Vp is a unit square. Then we use a pre-computed difference array D, which stores
the differences of the ID’s between two neighboring VCRs in a sorted CV (·), and
the pivot VCR Vp to enumerate CV (d). All the VCRs in CV (d) can be efficiently
computed at runtime by simple additions of the pivot VCR ID to each element
stored in D.

3.5 Performance

Detailed simulations were conducted to study the performance of VCR-based query
index under various conditions for event matching [19]. Here, we show a couple of
important results to illustrate that a VCR-based query index can be used for stream
processing.
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The maximal VCR size has important performance impacts, both on the average
search time and the total storage cost. Let the maximal size length of a VCR be
L. Namely, Lx = Ly = L. If L is too small, a large number of small VCRs will be
activated, increasing search time and storage cost. If L is too large, both the total
number of VCRs and the size of a covering VCR set will be large, also increasing the
search time and storage cost. The optimal L depends on the workload, especially
the distribution of query sizes.
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Fig. 12(a) and Fig. 12(b) show the impacts of the maximal VCR side length L
on the average search time and storage cost when Wx = Wy = W = 20 and 40,
respectively. Here, Wx and Wy are the maximal widths of a 2D range query in the
X and Y attributes, respectively. Query widths were uniformly distributed between
[1, Wx] and [1, Wy], respectively. For this experiment, a moderate RxRy of 60,000
was used. For both figures, the left y-axis was used for average search time and the
right y-axis was used for the index storage requirement. For the case of W = 20,
the optimal L is 8 in terms of storage cost. However, the optimal L is 16 in terms
of average search time. For the case of W = 40, the optimal L is 16 in terms of
storage and search time. In general, the larger the average size of query ranges is,
the larger the optimal VCR side length becomes. For the experiments in the rest
of the paper, we chose L = 8 for the case of W = 20 and L = 16 for the case of
W = 40.

3.6 Comparison of VCR with R-tree

In this section, we compare VCR with an R-tree under a moderate RxRy of 60,000.
Fig. 13(a) shows the average search times of VCR indexing and R-tree indexing
with different degrees of query overlapping. Queries overlap more for the 90%-10%
case and they overlap less for the uniform case. To model overlapping, the bottom-
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left corners of 90% of the range queries were randomly chosen from 10% of the
monitoring region. Simple decomposition was used for the VCR indexing schemes.
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Fig. 13. Comparison of an R-tree and VCR in terms of (a) average search time; (b) storage
requirement.

Fig. 13(a) shows that the search time of VCR is substantially better than R-
tree, especially when queries are highly overlapping. For instance, even for a small
n (32,000), the average search times are 1, 300µ and 304µ seconds for the 90%-10%
and uniform cases, respectively. In comparison, the search times of VCR indexing
are 280µ and 60µ seconds, respectively. For a large n, the performance difference
between VCR and an R-tree is more substantial. Fig. 13(a) clearly shows that an R-
tree is not effective for handling range queries that are highly overlapping. Note that,
with highly overlapped queries, the minimum bounding rectangles in the internal
nodes of an R-tree are highly overlapped. Thus, the search in an R-tree quickly
degenerates into almost a full-tree traversal.

The efficient search time of VCR indexing in Fig. 13(a) is achieved with an
increase in storage cost. However, such an increase is rather modest. Fig. 13(b)
shows the corresponding storage requirements of an R-tree and VCR. Note that the
storage requirement does not depend on the degree of query overlapping. Hence, we
only show one line for each indexing scheme.

4 Related work

Various interval indexing approaches have been proposed, including segment trees,
interval trees [17], R-trees [9], interval binary search trees (IBS-trees) [11] and inter-
val skip lists (IS-lists) [12]. Segment trees and interval trees generally work well in
a static environment, but are not adequate when it is necessary to dynamically add
or delete intervals. Originally designed to handle spatial data, such as rectangles,
R-trees can be used to index intervals. However, as indicated in [12], when there is
heavy overlap among the intervals, the search time can degenerate rapidly.
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Both IBS-trees and IS-lists were designed for main memory-based interval in-
dexing [11, 12]. They were the first dynamic approaches that can handle a large
number of overlapping query intervals. As with other dynamic search trees, IBS-
trees and IS-lists require O(log(n)) search time and O(n log(n)) storage cost, where
n is the total number of query intervals. Moreover, as pointed out in [12], in order to
achieve the O(log(n)) search time, a complex “adjustment” of the index structure
is needed after an insertion or deletion. The adjustment is needed to re-balance the
index structure. This adjustment increases the insertion/deletion time complexity.
For example, the insertion time complexity for IS-lists is O(log2(n)). More impor-
tantly, the adjustment makes it difficult to reliably implement the algorithms in
practice. Previous studies [12] indicated that IS-lists are easier to implement com-
pared with IBS-trees, even though dynamic adjustments of the interval skip lists
are still needed. In contrast, no dynamic adjustment is needed in VCI indexing.

There are strong interests in event matching schemes for content-based pub/sub
systems [1, 16, 7, 3, 21] and triggers [10]. There are roughly two kinds of pub/sub
algorithms. The first kind of schemes consists of a single phase. For example, the
Gryphon system builds a search tree with subscription predicate clauses [1]. How-
ever, no non-equality predicate clauses were considered in [1]. A second kind of
event matching algorithms involves two phases [16, 7, 21]. The predicate clauses are
tested in the first step, and then the matching subscriptions are computed using
the results from the first step.

Recently, there has been research work on selective dissemination system that
can handle subscriptions written in XPath for XML documents [2, 6, 4, 14]. XPath
queries were converted into various data structures which react to XML parsing
events. In contrast, the event matching problem discussed in this paper is for simpler
subscriptions that contain conjunction of predicate intervals.

Continual queries [5, 15, 10] have been developed to permit users to be notified
about changes that occur in the database. They evaluate conditions that combine
incoming event with predicates on a current database state. This makes it diffi-
cult for these systems to scale over hundreds of thousands of queries because they
must check hundreds of thousands of complex conditions each time a new event
modifies the database state. In contrast, we focus on fast event matching for highly
overlapping multidimensional range predicates.

Note that the VCRs defined in this paper are different from the space-filling
curves, such as the Hilbert curve and the Z-ordering [8], that are used to store
multidimensional point data. In a space-filling curve, the universe is first partitioned
into grid cells. Each of the grid cells is labeled with a unique number that defines
its position in the total order of the space-filling curve. The objective is to preserve
spatial proximity in the original point data. In contrast, a set of VCRs is defined for
each point. These VCRs are used to decompose queries, which are spatial objects
such as rectangles. Furthermore, VCRs are not designed to partition the universe.

The SR-tree presented in [13] is the most related to the VCR indexing in that
both are designed for multidimensional interval data. However, they are designed
to handle different specific workload issues. SR-tree is to tackle skew in interval
sizes while VCR indexing to tackle query overlapping. SR-tree is a modified R-tee.
The emphasis of the SR-tree is to improve the performance of an R-tree under the
workload where the interval sizes are skewed. There are large-sized intervals among
otherwise small-sized intervals. By mixing large-sized intervals with small-sized ones,
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the minimum bounding rectangles used in an R-tree are unduly enlarged by the
large-sized intervals. Enlarged bounding rectangles quickly degrade the performance
of an R-tree index. The SR-tree moves the large-sized intervals from the leaf-nodes
into the internal nodes of an R-tree. However, the SR-tree still does not solve the
issue of interval overlapping among the small-sized intervals.

5 Summary

We have described a virtual construct-based query indexing method for efficient
processing of numerous continual range queries in a streaming environment. The
objective is to design a main memory-based query index that has a low storage cost
and excellent search performance. These two properties are important in order to
handle a rapid stream. A set of virtual constructs are predefined. Each VC has a
unique ID and an associated query ID list. Each range query is first decomposed into
one or more VCs. The query ID is then inserted into the query ID lists associated
with the decomposed VCs. The VC-based query index provides an indirect and cost-
effective way of pre-computing the search results. Search is performed indirectly via
the VCs.

Two VC-based query indexing methods were described: a VCI-based index for
1D interval queries and a VCR-based index for 2D range queries. Various alterna-
tive VCs, and the decomposition and search algorithms were presented. Selective
performance results in terms of average search time and total index storage cost
were presented. These results demonstrate that indeed the VC-based query index
has the properties of low storage cost and good search performance.

We continue to conduct research studying the VC-based query indexing method
for data processing in a streaming environment. Specifically, we are looking for
VCs that can further reduce the total index storage cost and search time. We are
exploring various approaches to reducing the total number of VCs predefined and
the number of covering VCs that may contain any given data point.
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