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Bounds on Expansion in LZ’77-like coding

Vittorio Castelli and Luis Alfonso Lastras-Montaño

Abstract

We investigate the maximum increase in number of phrases that results from changing k

consecutive symbols in a string x having length n parsed using an LZ’77-like algorithm. We

consider a class of compression algorithms that partition a sequence into a collection y of non-

overlapping, variable-length phrases and encode them. Each phrase is either a singleton or

matches a substring that starts to its left.

We show that changing a single symbol of x in position i can yield an expansion that is of

order O(n− i)2/3 as (n− i) → ∞. Our lower bound requires an alphabet size of O(n− i)1/3. We

also show that changing k consecutive symbols starting from position i can yield a expansion

having a similar but somewhat more involved form. The paper contains both analytically-

derived upper and lower bounds, and algorithms for numerically computing tighter bounds.

While deriving the bounds, we provide a detailed analysis of how expansion can arise when

changing consecutive symbols.

This problem is motivated by management policies for computer systems, such as the IBM

Memory eXpansion Technology (MXT) or the IBM iSeries compressed disks, that use LZ’77-like

coding on small compression units, such as 1-4 KB, and store the compressed data in memory

or on disk tracks. Here, when a change of a portion of the compression unit occurs, for example,

a L2 cache line, or a 512-byte disk sector, the data is re-compressed and potentially stored in a

different location. Knowing the maximum expansion, rather than the average expansion, is an

important factor for designing policies for allocation and management of memory or disk space.

1 Introduction

We investigate the maximum increase in number of phrases that results from changing k consecutive

symbols in a string that has been parsed using an LZ’77-like algorithm.

We consider a class of compression algorithms that partition a sequence x = xn
1 into a collection

y of (non-overlapping) variable-length phrases, y1, . . . , yN(x), and encode them. Typically, one

visualizes the parsing by introducing commas to delimit the phrases. To be more precise, if yt =

x
a+|yt|−1
a , then x contains a substring x

b+|yt|−1
b , where b < a, satisfying x

a+|yt|−1
a = x

b+|yt|−1
b , and x

does not contain a match to a prefix of xn
a longer than yt, starting before position a. This parsing
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is consistent with the version of LZ’77 [1] described, for example, in [2], where the sliding window

is larger than the length of the string x.

We first consider the case k = 1. If two phrases x and x̂ differ in the symbol in position

i, in general will have parsings y and ŷ with a different number of phrases. Our interest is to

provide worst case bounds on the number of additional phrases ‖ŷ‖ − ‖y‖ that can result from

the singleton change, as a function of the string length and the position of the change. The

first main result of the paper, Theorem 2 in Section 3, shows that two strings of length n that

differ only in the ith position can yield parsings whose number of phrases differ by as much as

[3(n − i − (3n)1/3)]2/3/2. Because of the symmetry of the problem, the theorem provides bounds

to both maximum expansion and maximum contraction resulting from the change. Theorem 2

provides a constructive lower bound and an upper bound. This upper bound is further refined

in Theorem 3 of Section 4. The proposed lower bounds require a sufficiently large alphabet; the

required minimum size is specified in the theorem, but a rough upper bound is 2⌈[3(n − i + 1)]1/3⌉.
No specific alphabet size is required for the upper bound. These results are of practical importance:

in existing sliding-window implementations of LZ’77, where the alphabet size is 256, the bounds

are valid for window sizes of up to 5.7 million symbols, substantially larger than those actually

used.

We address the more general situation in which k consecutive symbols are modified in Section 5,

where Theorem 4 yields an upper bound and a lower bound. We provide an initial refinement to the

analytic result in Section 6, where we also discuss how the upper bound can be further tightened.

In Section 7 we discuss how to extend the results of the paper to the sliding-window LZ’77

algorithm and to the case where the k modified symbols are not necessarily consecutive, and how

to approach the question of the maximum expansion of a string of given compressibility.

We are not aware of any earlier work addressing the problem considered here. We point out that

Ziv’s proof of the convergence of LZ’77 [3], p. 410, employs the idea of approximating a sequence

with another sequence that differs from the former in at most a small fraction of the total positions.

In contrast, our work is a worst case analysis for finite strings. In addition, Lempel and Ziv [4] have

previously introduced the idea of studying packings of all phrases up to a certain length which has

some loose resemblance to many of our arguments, like those in Lemma 8 and Lemma 3. Further

discussion on Ziv’s results can be found in Shields [5], p. 134, including an interesting remark on

the author’s perception of the potential effect of changes in the Lempel-Ziv parsing of a string. In
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a sense, Shields is correct in thinking that changes in a string can dramatically affect the parsing

of a string; the possible extent of the effect of the changes is in fact the main topic in this paper.

From a basic research point of view, interesting open problems include that of determining features

of the probability distribution of the expansion statistic assuming say, a fixed or random number

of randomly selected modifications.

From a practical perspective, this problem was motivated by the task of devising management

policies for computer systems, such as the IBM Memory eXtension Technology (MXT) [6], that

use a shared-dictionary LZ’77-like coding [7], or the IBM iSeries compressed disks, that uses a

proprietary version of LZ’77. In these systems, compression is performed on small compression

units (1-4 KB) and the compressed data is stored in main memory or on disk tracks.

Ideally, the compression function in a compressed-memory system should be completely invisible

to the application running in the computer and, to the extent possible, to the operative system as

well. To accomplish this goal, in some designs the hardware assumes almost complete ownership of

the memory management problem. The computer system reports to the software that say, twice as

much memory is available in the system as physically installed, assuming that the compressibility

of the data stored in main memory will be 2:1 or better.

The commitment of available memory made by the hardware to the software is at risk of being

broken when the compressibility of the data fails to conform to the original expectations. To help

prevent this event from arising, when suitable risk thresholds are exceeded the software alters the

compressibility of the data by first storing suitably chosen memory pages in a swapping device

(making use of the standard paging mechanisms in virtual memory systems), and then filling with

zeros the memory pages thus freed [8].

The above mechanism could in principle ensure a correct system operation if it could be guaran-

teed that the system will not stop working before the above process is accomplished. The difficulty

lies in that compressibility could degrade during the execution of this process. The ensuing problem

is termed the Guaranteed Forward Progress problem (Franaszek and Poff, personal communication,

see also [9, 10, 11]). A discussion of the general characteristics of the solutions to this problem is

outside the scope and target of this paper.

Our work is both motivated by the general scenario described above and our desire to contribute

to the basic understanding of properties of compressed streams apparently neglected in the past.

Our initial concern with non-probabilistic results is related to the eventual necessity of providing
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formal correctness guarantees. Eventually we hope to develop general mathematical tools to answer

questions such as

• Can we provide a useful upper bound to the amount of expansion that the memory in a

machine can exhibit during in a given period of time?

• What statistics should be tracked to answer the above?

• Can we design compression algorithms with benign expansion properties, yet with little or

no compression performance loss?

2 Preliminaries

Let x
△
= xn

1
△
= [x1, . . . , xn] and x̂ = x̂n

1 be two strings, and let y and ŷ be the corresponding parsings.

Let yr denote the rth phrase of y, and ŷs denote the sth phrase of ŷ. The notation ‖y‖ refers

to the number of phrases produced by the parsing (or of commas, if we add a comma at the end

of each phrase,) while |yt| is the length of the phrase yt. If a phrase y corresponds to indexes v

through v + |y| − 1 in the string x then we say that I(y) = [v, . . . , v + |y| − 1]. If Y = {ya, . . . , yb},
then I(Y)

△
=
⋃

y∈Y I(y). We say that a phrase y overlaps an interval J if I(y)
⋂

J 6= ∅. We also

use the shorthand notation I(y) ≤ a (resp. I(y) ≥ a) if the rightmost (resp. leftmost) index of the

interval I(y) is at most a (resp. at least a).

For example, let x = ABABCABCAB, then y = A,B,AB,C,ABCAB, ‖y‖ = 5, y1 = [A],

y5 = [ABCAB], |y5| = 5, I(y5) = [6, . . . , 10]. Also I(y5) ≤ 10, I(y5) ≥ 5, but I(y5) is neither ≥ 8

nor ≤ 8.

For every phrase y with I(y) = [v, . . . , v + |y| − 1] let

Φ(y) = {ŷ ∈ ŷ : I(ŷ) = [v + p, . . . , v + |y| − 1 − q] with p ≥ 0, q > 0}

Note the asymmetric conditions on p and q. Thus Φ(y) contains all those phrases of the modified

parsing ŷ that start and end in I(y) with the added restriction that the rightmost symbol cannot

have an index equal to v + |y| − 1; graphically, Φ(y) contains every phrase of the modified parsing

of the form

y
ŷ



Castelli and Lastras 5

and

y

ŷ

As a shorthand for the cardinality of Φ(y) we will use φ(y) = |Φ(y)|.
We can easily bound the difference between ‖ŷ‖ and ‖y‖ using the definition of φ(·):

Theorem 1

‖ŷ‖ − ‖y‖ ≤
∑

y∈y

φ(y). (1)

Proof. Every phrase in ŷ−⋃y∈y
Φ(y) contains the rightmost symbol of some phrase of the original

parsing y; since phrases are non-overlapping
∣

∣

∣
ŷ −⋃y∈y

Φ(y)
∣

∣

∣
≤ ‖y‖. The theorem follows from

the observation that ‖ŷ‖ =
∑

y∈y
φ(y) +

∣

∣

∣
ŷ −⋃y∈y

Φ(y)
∣

∣

∣
. 2

In this paper, we obtain expansion results by exploiting a number of restrictions on the possible

values that the function φ(·) can take on. For example, we will show that if only the ith symbol

is changed and i ∈ I(y), it is always true that φ(y) ≤ 4, and that if y is such that i /∈ I(y) then

φ(y) ≤ 2. The following definitions, related to how LZ’77 parses a string, will be used throughout

the paper.

Definition 1 A previous occurrence (PO) of a phrase y with I(y) = [a, . . . , b] (or, more generally,

of a substring xb
a), is a substring xb−c

a−c with offset c strictly greater than 0, and satisfying xb−c
a−c = xb

a.

Definition 2 The rightmost previous occurrence (RPO) of a phrase y (or, more generally, of a

substring xb
a) is the previous occurrence having the smallest offset c > 0.

Definition 3 The interval of positions occupied by the RPO of a phrase y (or, more generally, of

a substring xb
a) is called the Rightmost Previous Occurrence Interval, or RPOI, of y. If a string y

does not have a RPO, its RPOI is the empty interval.

Definition 4 We say that a phrase y points to position i if its RPO contains position i. More

generally, we say that y points to the interval I if its RPOI intersects I.

For example, let x = ABABCABDAB, then y = A,B,AB,C,AB,D,AB. The phrase y7 =

[AB] has I(y7) = [9, 10], has three POs starting in positions 1, 3, and 6 respectively. Its RPO is

the substring x7
6, and its RPOI is [6, 7].



Castelli and Lastras 6

3 Changing one symbol

We now find bounds to the maximum expansion of a string when only the ith symbol is changed.

We use x and y to denote the string and its parsing before the ith symbol is changed, and x̂ and

ŷ to denote string and parsing after the change.

Theorem 2 Let x and x̂ be two strings of length n differing only in the ith symbol. Let L =

max
{

L |∑L

ℓ=2 (ℓmin(ℓ, i)) ≤ n − i − L + 1
}

, and let L = ⌈[3(n − i + 1)]1/3⌉. Then

max
y,ŷ[i]

(‖ŷ‖ − ‖y‖) ≤ L
(

L + 1
)

2
+ ⌊

√
n − i + 1⌋ + 4 (2)

and, if the alphabet size is at least [min (i, L) + L],

L
∑

ℓ=2

min (ℓ, i) ≤ max
y,ŷ[i]

(‖ŷ‖ − ‖y‖). (3)

The upper bound of the theorem is universal over all alphabet sizes. The theorem also provides

a lower bound that shows that, for large enough alphabet, the upper bound is indeed meaningful,

albeit not tight.

We now first provide the reader with an intuitive argument for why the theorem holds, we then

introduce the lemma supporting the upper bound, prove the upper bound, and finally prove the

lower bound.

Theorem 2 is a consequence of Theorem 1. The first question to be answered is what are

the characteristics of the phrases having non-zero φ(·) in the sum of Inequality (1). Clearly, the

(unique) phrase containing position i could have φ(·) > 0, as it is easy to see from simple examples.

Also, phrases to the left of position i are not affected by the change.

It turns out that, of the phrases to the right of position i, only those pointing to position i can

have φ(·) > 0 (this is established in Lemma 2). A lower bound to maxy,ŷ[i] (‖ŷ‖ − ‖y‖) can then

be obtained by bounding from below the maximum number of phrases that could point to position

i (as shown in Lemma 8), and by constructing a string with at least this number of phrases that

point to position i each of which has φ(·) = 1.

To prove the upper bound, the first step is to bound from above the number of non-zero terms

in the sum of Inequality (1) (for instance, by bounding from above the number of phrases pointing

to position i, as in Lemma 3). The individual non-zero terms in the sum of Inequality (1) could
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be, in principle, arbitrarily large. We show that this is not the case, and that these non-zero terms

are at most equal to 2 (Lemma 4).

Not all phrases pointing to position i can have φ(·) = 2. Lemma 5 shows conditions under which

φ(·) ≤ 1, and its most important consequence is that a phrase y with φ(y) = 2 cannot be preceded

by any phrase pointing to position i having length equal to |y| or (|y| − 1). This result yields a

bound on the maximum number of phrases not containing position i and with φ(·) = 2 detailed in

Lemma 7. The proof of the theorem follows from appropriately combining the mentioned results.

3.1 The Upper Bound of Theorem 2

3.1.1 Supporting Lemma

The following lemma shows that the only phrase overlapping position i can have φ(·) at most equal

to 4.

Lemma 1 If i ∈ I(y) then

φ(y) ≤ 4. (4)

Proof. Without any loss of generality, we re-index the positions of the symbols in the string x so

that y = x
|y|−1
0 and that i ∈ [0, . . . , |y| − 1]. Let p ≥ 1 be such that [−p, . . . ,−p + |y| − 1] is the

RPOI of y. If there is a phrase in ŷ that starts strictly after position i+p, then its rightmost border

is located at a position greater than or equal to |y| − 1 and therefore this phrase does not belong

to Φ(y). Therefore, all we need to do is to argue that at most four phrases of ŷ have starting point

in [0, . . . , i + p].

Since the change occurs at a position greater or equal to zero, the first phrase in Φ(y) starts at

0 and has a rightmost border greater than or equal to i − 1. Now, if a phrase starts somewhere in

[i + 1, . . . , i + p − 1] (this can only happen if p ≥ 2) then its rightmost border is greater than or

equal to i + p − 1. Only two other phrases are possible: a phrase that starts at position i and a

phrase that starts at position i + p. 2

From the proof of Lemma 1, it is clear that a necessary condition for φ(y) = 4 is that i ∈
RPOI(y), namely, if φ(y) = 4, the position of changed belongs to both the interval and to the

RPOI of the phrase y.

The following lemma shows that phrases not overlapping position i and for which φ(·) is greater

than zero must perforce point to position i. The significance of this result, summarized in its
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corollary, is that to bound from above the sum in Inequality (1) we need only restrict our attention

to phrases pointing to i.

Lemma 2 If i /∈ I(y) and φ(y) ≥ 1, then y points to i.

Proof. Suppose that i 6∈ RPOI(y), i /∈ I(y) and φ(y) ≥ 1. Let c and d be such that I(y) = [c, . . . , d].

By assumption, there is a phrase ŷ with I(ŷ) = [c + p, . . . , d − q], where p ≥ 0 and q > 0. Let

the RPOI of y be [c − r, . . . , d − r]. Since y does not point to i, we know that xd−r
c−r = x̂d−r

c−r . Also,

since i /∈ I(y), xd
c = x̂d

c . Therefore x̂d−r
c−r+p is a previous occurrence of x̂d

c+p which contradicts the

assumption that the LZ’77 parsing of x̂ yields ŷ with I(ŷ) = [c + p, . . . , d − q].

Corollary 1 Out of the phrases y ∈ y with i /∈ I(y), only those that point to position i can

contribute to an increase in the number of phrases of the parsing of x when the symbol in position

i is changed.

We now address the question of how many phrases could point to position i. The following lemma

provides us with an upper bound.

Lemma 3 (Packing Lemma A) Let L = ⌈[3(n − i + 1)]1/3⌉. The maximum number N1 of

phrases of y ∈ y such that i /∈ I(y) and y points to position i is bounded from above by

N1 <
L
(

L + 1
)

2
. (5)

Proof. Construct a pseudo parsing as follows. Add one comma between position i and position

i + 1, skip 2 symbols, and add a comma, repeat once, skip 3 symbols and add a comma, repeat

twice, etc. The resulting pseudo-parsing of x has, to the right of position i, 1 pseudo-phrase of

length 1, 2 pseudo-phrases of length 2, 3 pseudo-phrases of length 3, etc. Note that there are at

most ℓ phrases of length ℓ that can point to i. Therefore, for no string of length n the LZ’77 parsing

can produce more phrases that point to position i than the pseudo-parsing algorithm does, because

the pseudo-parsing fills the available space with all available short phrases.

The pseudo-phrases of length ≤ ℓ occupy
∑ℓ

j=1 j2 positions. Hence, the longest pseudo-

phrase contains at most k∗ = min {k |∑k
j=1 j2 ≥ (n − i)} symbols. To compute k∗, we note that

∑k
j=1 j2 = k(k + 1)(2k + 1)/6. We then solve the equation x(x + 1)(2x + 1)/6 = n − i, or

f(x) = x3 +
3

2
x2 +

1

2
x − 3(n − i) = 0, (6)
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which has a unique positive root for n − i > 0, because f
′

(x) > 0 for every x > 0, and f(0) <

01. For every x > 0, f(x) > g(x) = x3 +
√

3/2x2 + x/2 − 3(n − i), because f(x) − g(x) =
(

3/2 −
√

3/2
)

x2 > 0, ∀x > 0. Hence, the positive solution of f(x) = 0 is strictly smaller than

the positive solution of g(x) = 0. Because the square of the coefficient of the x2 term equals 3

times the coefficient of the x1 term, the equation g(x) = 0 has an easily computed unique real

solution, x∗ = −1
3

√

3
2 +

[

(

3
2

)3/2 1
27 + 3(n − i)

]1/3
= −

√

1
6 +

[

1
63/2

+ 3(n − i)
]1/3

, which is less than

[3 + 3(n − i)]1/3 and can be bounded from above as ⌈[3(n − i + 1)]1/3⌉ △
= L. The maximum number

of phrases that have length L or less is then
∑L

j=1 j = L(L + 1)/2. 2

Note: This proof can be shortened by noting that f(L) > 0 and therefore k∗ ≤ L. We have

chosen to present the longer proof in order to motivate our choice for the value of L.

The following lemma shows that the contribution of individual phrases pointing to and not

containing position i to the sum in Inequality (1) is at most 2.

Lemma 4 If y points to i and i /∈ I(y), then φ(y) ≤ 2.

Proof. The statement is trivial if |y| ≤ 3. Let m, a, and b be such that I(y) = [m − a, . . . ,m + b]

and RPOI(y) = [i − a, . . . , i + b], with a, b ≥ 0. Let ŷs, . . . , ŷs+t be all the phrases of ŷ starting in

the interval [m − a, . . . ,m + b − 1]. If one of these phrases, call it ŷr, starts after position m, say

I(ŷr) = [m + c, . . . ,m + d], d ≥ c > 0, then d ≥ b, because x̂m+b
m+c = xm+b

m+c, x̂i+b
i+c = xi+b

i+c, and x̂i+b
i+c is

a previous occurrence of x̂m+b
m+c. Hence, r = s + t and ŷr /∈ Φ(y).

We now show that there are at most 2 phrases, ŷs and ŷs+1, that start in the closed interval

[m− a, . . . ,m]. The phrase ŷs (if it exists) must have I(ŷs) = [m− a+ e, . . . ,m− 1 + f ] with e ≥ 0

(by definition) and f ≥ 0 because x̂m−1
m−a = xm−1

m−a, xi−1
i−a = x̂i−1

i−a, and x̂i−1
i−a is a previous occurrence

of x̂m−1
m−a. Therefore, ŷs+1 (if it exists) must start after or at position m. If the former is true, then

ŷs+1 = ŷr /∈ Φ(y) and therefore φ(y) = 1. If the latter is true, then φ(y) ≤ 2 since ŷs+1 may or may

not belong to Φ(y) and ŷs+2 /∈ Φ(y). 2

The following lemma shows conditions under which φ(y) ≤ 1. We use this Lemma in the proof

of both Theorems 2 and 4 and therefore we state it for the case where k ≥ 1 consecutive symbols

are changed. Let I denote the interval [i, . . . , i + k − 1] where the changes occur.

1A reviewer pointed out that the proof could be concluded here by noting that f(L) > 0. We provide a longer

proof to show how L arises, since we refer to it in the appendix.
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Lemma 5 Let yt be a phrase of y having length a + b + k with I(yt) = [m− a, . . . ,m + k − 1 + b],

I⋂ I(yt) = ∅, and RPOI(yt) = [i − a, . . . , i + k − 1 + b]. Then φ(yt) ≤ 1 if any of the following

conditions hold:

Condition 1. There exists p, q ≥ 0 and i < j < m such that I⋂[j − a − p, . . . , j + k − 1 + q] = ∅
and xj+k−1+q

j−a−p = xi+k−1+q
i−a−p .

Condition 2. There exists p, q ≥ 0 and i < j < m such that I⋂[j − p, . . . , j + k − 1 + b + q] = ∅
and xj+k−1+b+q

j−p = xi+k−1+b+q
i−p .

Hence, if the RPOIs of two phrases contain the changed interval and intersect in a way that neither

is contained in the other with padding at both ends, the rightmost of the two phrases cannot have

φ(·) ≥ 2.

Proof.

We first establish the following facts:

Fact 1. If Condition 1 holds, b must be greater than 0, x̂m+k−1
m−a has at least one previous occurrence

in x̂, and x̂m+k−1+b
m+k has at least one previous occurrence in x̂.

Fact 2. If Condition 2 holds, a must be greater than 0 x̂m−1
m−a has at least one previous occurrence

in x̂, and x̂m+k−1+b
m has at least one previous occurrence in x̂.

First, restrict the attention to Fact 1. We first note that b must clearly be greater than zero

otherwise xm+k−1
m−a would be copied from xj+k−1

j−a ; since xi+k−1
i−a = xj+k−1

j−a = xm+k−1
m−a , x and x̂ differ

only in the I positions, and I⋂ I(yt) = ∅, we conclude that xj+k−1
j−a = x̂j+k−1

j−a , xm+k−1
m−a = x̂m+k−1

m−a .

Therefore x̂j+k−1
j−a , is a PO (see Definition 1) of x̂m+k−1

m−a . Also, xi+k−1+b
i+k = x̂i+k−1+b

i+k , xi+k−1+b
i+k =

xm+k−1+b
m+k , and x̂m+k−1+b

m+k = xm+k−1+b
m+k , which shows that x̂i+k−1+b

i+k is a PO of x̂m+k−1+b
m+k .

Then, consider Fact 2. Clearly a must be > 0, otherwise xm+k−1+b
m would be copied from

xj+k−1+b
j ; The same arguments used in establishing Fact 1 show that x̂j+k−1+b

j is a PO of x̂m+k−1+b
m ;

Also x̂i−1
i−a is a PO of x̂m−1

m−a.

Suppose now that Condition 1 holds, and let ŷu ∈ Φ(yt). If ŷu has starting point at or after

position m + k, then by Fact 1 its rightmost border is at least m + k − 1 + b and by definition,

ŷu /∈ Φ(yt), a contradiction. Thus the index of the starting point of ŷu is at most m + k − 1, and

by Fact 1, the index of the rightmost border is at least m + k − 1. Since as discussed, any phrase

that starts after m + k − 1 cannot be in Φ(yt), φ(yt) ≤ 1 and the Lemma is proved for this case.

We can use an analogous argument to show that φ(yt) ≤ 1 when Condition 2 is true. 2
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Lemma 5 has a fundamental consequence:

Lemma 6 Let ys be a phrase of length |ys|, such that i ∈ RPOI(y) and i /∈ I(ys). Then, for every

phrase yt with t > s of length |yt| ≤ |ys| + 1, φ(yt) ≤ 1.

Proof. Let the RPOI of ys be [i − a, . . . , i + b] with a, b ≥ 0. Let RPOI of yt be [i − c, . . . , i + d],

with c, d ≥ 0. Note that a ≥ c or b ≥ d, because |ys| + 1 = (a + b + 1) + 1 ≥ (c + d + 1) = |yt|. If

a ≥ c, Condition 1 of Lemma 5 holds. If b ≥ d, Condition 2 of Lemma 5 holds. 2

Lemma 6 implies that not all phrases counted in Lemma 3 can have φ(·) = 2. A bound on the

number of phrases not containing position i and with φ(·) = 2 is provided by the following lemma.

Lemma 7 The number N2 of phrases y ∈ y with φ(y) = 2 and i /∈ I(y) is bounded from above by

N2 ≤ ⌊
√

n − i + 1⌋ (7)

Proof. We use a packing argument. Note that a phrase y with φ(y) = 2 and i 6∈ I(y) has length 3

or more. Lemma 6 shows that there can exist only one phrase of length 3 that points to position

i, does not contain position i, and has φ(·) = 2. If this phrase exists, then we can have at most

one phrase of length 5 that has φ(·) = 2. The same lemma also prevents any phrase of length

4 from having φ(·) > 1. The cumulative length of all phrases that point to position i, do not

contain position i, and have φ(·) = 2 cannot be more than n − i. The maximum number N2 of

such phrases is therefore bounded from above by min
{

k|∑k
j=1(2j + 1) ≥ (n − i)

}

. Recall that
∑k

j=1(2j + 1) = k2 + 2k. The solutions of the equation x2 + 2x− (n − i) = 0 are −1±
√

n − i + 1.

Therefore N2 ≤ ⌊
√

n − i + 1⌋. Any other packing would substitute a longer phrase for a shorter

phrase and cannot yield more phrases with φ(·) > 1. 2

Proof of the Upper Bound

Our starting point is Theorem 1. There is exactly one phrase y ∈ y for which i ∈ I(y), and this

phrases has φ(y) ≤ 4 by Lemma 1, Inequality (4).

We now consider phrases y such that i /∈ I(y). Corollary 1 ensures that, out of these phrases, the

only ones that can contribute to the expansion (in other words, contribute a positive value of φ(y) in

the summation in Theorem 1), must point to i. Lemma 3 bounds from above the maximum number

of phrases pointing to i by Inequality (5), namely, by
[

L
(

L + 1
)]

/2, where L = ⌈[3(n − i + 1)]1/3⌉.
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By Lemma 4, if i /∈ I(y) then φ(y) ≤ 2; the maximum number of phrases for which φ(·) = 2 is

bounded from above in Lemma 7 by ⌊
√

n − i + 1⌋ (Inequality 7).

The upper bound is then obtained by combining Inequalities (5), (4), and (7). 2

3.2 The Lower Bound of Theorem 2

The proof of the lower bound is constructive, and intimately relies on an additional packing lemma,

which we introduce first. This lemma bounds from below the maximum number of phrases that

can point to position i in the parsing y of a string x having length n.

Lemma 8 (Packing Lemma B) Let L = max
{

L |
(

∑

L

ℓ=2 ℓmin(ℓ, i)
)

≤ n − i − L + 1
}

If the

alphabet size is at least min (i, L)+L, the maximum number N0 of phrases of y pointing to position

i is bounded from below by

N0 ≥
L
∑

ℓ=2

min(ℓ, i). (8)

If i ≥ (3(n + 2))
1

3 , then L = ⌊3[n − i − (3(n + 2))
1

3 ]1/3⌋.

Proof. We construct a string x that satisfies Inequality 8, using the following packing algorithm.

Let the substring x
i+L−1
i−min (i,L)+1 consist of distinct symbols of the alphabet. There is at least one

unused alphabet symbol, which we denote by α̃, that we use to fill the positions to the left of

max {i − L + 1, 1}. We now consider only substrings containing position i. There are min (i, 2)

such substrings having length 2, min (i, 3) having length 3, etc. Starting from position i + L copy

first the substrings of length 2 from right to left into positions i + L, i + L + 1, . . ., then all the

substrings of length 3 from left to right, and so on, until all the substrings of length L containing

position i have been copied (note the alternating order of the copy). The definition of L ensures that

there is sufficient space in x to contain all these copies. If there is additional space at the beginning

or at the end of x, fill it with copies of α̃. Parse x into y. The first i−1 symbols are irrelevant, and

the symbols in the interval [i, . . . , i+L] parse into phrases of length 1. Note that the last symbol of

each copied substring and the first symbol of the next copied substring appear only once as a pair

in the entire x. Hence, when parsing x these symbols are always separated by a comma. Also, each

copied substring containing position i by construction has a unique previous occurrence, namely,

the substring from which it was copied. Hence, y contains exactly
∑L

ℓ=2 min (ℓ, i) phrases pointing

to position i. 2
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Note: if i > i∗, where i∗ is 2 plus the ceiling of the positive solution of the equation x3−3(n−x+1) =

0, then the technique used in the next lemma can simplify this lower bound to to K(K + 1)/2,

where K = [3(n − i − i∗ + 1)]1/3 + 2.

Proof of the Lower Bound

Lemma 8 constructively shows that the maximum number N1 of phrases pointing to position i is

bounded from below by
∑L

ℓ=2 min(ℓ, i), if the alphabet size is sufficiently large, say ≥ [min (i, L)+L]

(if the alphabet size is 256, and i > 127, n can be as large as 5.7 million, a substantial number

compared to the window sizes used in practical LZ’77 implementations). We use the string x and

the “unused symbol” α̃ defined in Lemma 8. We build x̂ by changing the ith symbol of x to α̃. The

string x is carefully crafted to ensure that each pair of symbols straddling commas in the parsing

(i.e., the last symbol of a phrase and the first symbol of the following phrase) appear only once in

both x and x̂. Hence, each comma of y has a corresponding comma in ŷ, and for each phrase y in

y there is a phrase ŷ(y) ∈ Φ(y) in ŷ starting at min I(y). Additionally, |y| > 1 implies |ŷ(y)| < |y|,
because y has a unique PO and i ∈ RPOI(y). The uniqueness of the PO follows from the following

considerations: if i−L+1 > 0, the symbol used to fill the positions to the left of i−L+1 does not

appear in phrases pointing to position i. The phrase y has a unique PO intersecting the interval

[i−L+1, . . . , i+L− 1] because the symbols in this interval are different. No phrase to the right of

[i−L+1, . . . , i+L−1] and to the left of y is equal to y by construction. It remains to be shown that

y cannot be copied from any substring of x starting to the to the right of [i−L+1, . . . , i+L−1] and

to the left of y, and perforce intersecting at least two adjacent phrases having a PO that contains

i (where the rightmost of such phrases could be y itself). But this is not possible, because for each

pair of adjacent phrases each having a PO that contains i, the last symbol of the first phrase and

the first symbol of the second phrase appear as a pair only once in the entire string x, as discussed

in the proof of Lemma 8. Hence, each phrase y ∈ y with i ∈ RPOI(y) has φ(y) ≥ 1. Lemma 6

ensures that φ(y) ≤ 1 because each phrase y ∈ y with i ∈ RPOI(y) and |y| > 2 is preceded by a

phrase y
′

(y) ∈ y satisfying
∣

∣

∣
y
′

(y)
∣

∣

∣
= |y|− 1 and i ∈ RPOI(y

′

). We conclude that each phrase y ∈ y

with |y| ≥ 2 has φ(y) = 1.
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4 Result Refinement

The upper bound of Theorem 2 was obtained by bounding the maximum number of phrases with

φ(·) = 1, bounding the maximum number of phrases with φ(·) = 2, and adding the bounds to the

maximum contribution of the phrase overlapping position i. Clearly, the bound can be refined, as

the following theorem shows.

Theorem 3 Under the conditions of Theorem 2,

max
y,ŷ[i]

(‖ŷ‖ − ‖y‖) ≤ M (M + 1)

2
+ 4, (9)

where M =
⌈ [

3
(

(n +
⌊√

n − i + 1
⌋

) − i + 1
)]1/3 ⌉

.

We know from Lemma 1 how to bound the contribution of a phrase y with i ∈ I(y) to the

sum in Inequality (1). For the refined upper bound we construct, like in the proof of Lemma 3,

a fictitious string, this time of an appropriate length m ≥ n, and a pseudo-parsing z containing

all pseudo-phrases of length 2 up to M that have distinct RPOIs containing position i. We show

that this pseudo-parsing contains a number of phrases that is larger than
∑

y:I(y)>i φ(y) for any

pair of strings x and x̂ of length n and differing only in the symbol in position i. We consider any

string x, its parsing y, change the ith symbol, and look at the parsing ŷ of the resulting string

x̂. We divide the phrases pointing to and not overlapping position i into Y1
△
= {y | φ(y) ≤ 1} and

Y2
△
= {y | φ(y) = 2}. We further divide these sets into Y S

1 and Y S
2 , containing “short” phrases with

length ≤ M , and Y L
1 and Y L

2 containing “long” phrases with length > M . If m is sufficiently large,

then we can construct a correspondence between phrases of Y S
1 and phrases in the pseudo parsing

z that point to position i (call this set Z) and between phrases of Y S
2 and pairs of phrases in Z

that are not already paired with phrases in Y S
1 . Finally, we show that the number of phrases in Z

that have not yet been paired is larger than or equal to the size of Y L
1 plus twice the size of Y L

2 .

We briefly remark that Theorem 3 does not produce a bound that is uniformly better than that

of Theorem 2. More specifically, for n − i = 1, 7, 8, and n − i from 17 to 20, the approximations

introduced by the ceilings and floors in the equations cause Theorem 3 to produce a worse upper

bound than Theorem 2 and for n − i = 35 to 40 the two bounds are identical. For large values of

n − i, Theorem 3 yields a substantially tighter bound than Theorem 2.

We now state and prove two supporting lemmas, and subsequently provide a formal proof of

the theorem. First, we note that there is a trade off between the existence of phrases in Y S
2 and in
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Y S
1 . In particular, given a phrase yt in Y S

2 , we can look at its RPOI and determine that there are

two different intervals containing the changed position i, call them I1(yt) and I2(yt), that cannot

be RPOIs of phrases, in particular of phrases of Y S
1 .

Lemmas 9 and 10 identify these intervals for yt having odd and even length respectively, and

their structures show that I1(yt) and I2(yt) are different for different yt’s, as discussed later.

The sum of the lengths of I1(yt) and I2(yt) is at most |yt|+1. This implies that we can compare

the original parsing y to that of a pseudo-string having length at most |x| + 1, whose parsing z

contains exactly the same phrases as y except yt, and in addition contains two pseudo-phrases

∈ Y S
1 pointing to I1(yt) and I2(yt). Then,

∑

y φ(y) is the same for both pseudo-phrases.

Lemma 9 Let φ(yt) > 1, |yt| = 2ℓ + 1, ℓ ≥ 1, I(yt) = [m − a, . . . ,m − a + 2ℓ], 0 < a < 2ℓ, and

RPOI(yt) = [i − a, . . . , i − a + 2ℓ].

1. If a < ℓ, let I1(yt)
△
= [i − a, . . . , i − a + ℓ] and I2(yt)

△
= [i − a, . . . , i − a + ℓ − 1]. Then for

every j < m− a such that i 6∈ [j, . . . , j + ℓ], xj+ℓ
j 6= xi−a+ℓ

i−a , and for every j < m− a such that

i 6∈ [j, . . . , j + ℓ − 1], xj+ℓ−1
j 6= xi−a+ℓ−1

i−a .

i-a i-a+2ℓi

i-a i-a + ℓ
i-a + ℓ-1

2. If a > ℓ, let I1(yt)
△
= [i− a+ ℓ, . . . , i− a+ 2ℓ] and I2(yt)

△
= [i− a+ ℓ+ 1, . . . , i− a+ 2ℓ]. Then

for every j < m − a such that i 6∈ [j, . . . , j + ℓ], xj+ℓ
j 6= xi−a+2ℓ

i−a+ℓ and for every j < m − a − 1

such that i 6∈ [j + 1, . . . , j + ℓ], xj+ℓ
j+1 6= xi−a+2ℓ

i−a+ℓ+1.

3. If a = ℓ, let I1(yt)
△
= [i − a, . . . , i − a + ℓ], I2(yt)

△
= [i − a + ℓ, . . . , i − a + 2ℓ]. Then, for every

j < m − a such that i 6∈ [j, . . . , j + ℓ], xj+ℓ
j 6= xi−a+ℓ

i−a and for every j < m − a + ℓ such that

i 6∈ [j, . . . , j + ℓ], xj+ℓ
j 6= xi−a+2ℓ

i−a+ℓ .

Proof.

Let φ(yt) = b + 1 with b ≥ 1. We prove the three parts of the lemma by contradiction.

1. Let a < ℓ and assume that there exists j satisfying the conditions of part 1, namely, xj+ℓ
j =

xi−a+ℓ
i−a or xj+ℓ−1

j = xi−a+ℓ−1
i−a . Thus xj+ℓ−1

j = xi−a+ℓ−1
i−a = xi−a+m−1

i−m . Lemma 5 states that

xj−a+ℓ−1
j−a = xi−a+m−1

i−m ensures that φ(yt) = 1, which contradicts the assumption.
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2. Let a > ℓ and assume that there exists j satisfying the conditions of part 2, namely xj+ℓ
j =

xi−a+2ℓ
i−a+ℓ or xj+ℓ

j+1 = xi−a+2ℓ
i−a+ℓ+1. Thus, xj+ℓ

j+1 = xi−a+2ℓ
i−a+ℓ+1 = xi−a+2ℓ

m−a+ℓ+1. Again, Lemma 5 states

that xj−a+2ℓ
j−a+ℓ+1 = xi−a+2ℓ

m−a+ℓ+1 ensures that φ(yt) = 1, which contradicts the assumption.

3. The third part of the lemma is an immediate consequence of Lemma 5.

Lemma 10 is the equivalent of Lemma 9 for the case in which |yt| is even.

Lemma 10 Let φ(yt) > 1, |yt| = 2ℓ, ℓ ≥ 1, I(yt) = [m − a, . . . ,m − a + 2ℓ − 1] and RPOI(yt) =

[i − a, . . . , i − a + 2ℓ − 1]. Consider any j satisfying the following conditions:

Condition 1: j < m − a,

Condition 2: i 6∈ [j, . . . , j + ℓ].

The following statements hold:

1. If a ≤ ℓ, let I1(yt) = [i − a, . . . , i − a + ℓ], and I2(yt) = [i − a, . . . , i − a + ℓ − 1]. Then

xj+ℓ
j 6= xi−a+ℓ

i−a , and, trivially, xj+ℓ−1
j 6= xi−a+ℓ−1

i−a .

i-a i-a+2ℓ-1i

i-a+ℓ
i-a+ℓ-1

2. If a > ℓ, let I1(yt) = [i − a + ℓ, . . . , i − a + 2ℓ], and I2(yt) = [i − a + ℓ + 1, . . . , i − a + 2ℓ].

Then xj+ℓ
j 6= xi−a+2ℓ

i−a+ℓ and, trivially, xj+ℓ
j+1 6= xi−a+2ℓ

i−a+ℓ+1,

Proof. The proof is analogous to that of Lemma 9 and is left to the interested reader.

We remark that different phrases not containing position i and with φ(·) = 2 are associated

with different intervals I1(·) and I2(·). In particular, let ys and yt be two such phrases, with s < t.

Then RPOI(yt) contains RPOI(ys) with padding at both ends (this is an immediate consequence

of Lemma 5). But the intervals I1(ys) and I2(ys) are subintervals of RPOI(ys) aligned with one of

its end points, while the intervals I1(yt) and I2(yt) are subintervals of RPOI(yt) aligned with one

of its end points. Hence these intervals are distinct.

4.1 Proof Theorem 3

Let m = n +
⌊√

n − i + 1
⌋

, where
⌊√

n − i + 1
⌋

is the maximum number of phrases with φ(·) = 2

that do not overlap position i in a string x of length n, and let M
△
= ⌈[3(m − i + 1)]1/3⌉. Here M

is analogous to L in Theorem 2, but is computed for a string of length m rather than n.
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As in the proof of Lemma 3, construct a fictitious string, this time of length m, and a pseudo-

parsing z containing all pseudo-phrases of length 2 up to M that have distinct RPOIs containing

position i. Call Z the set of such pseudo-phrases. We show that this pseudo-parsing contains a

number of phrases pointing to position i that is larger than
∑

y:I(y)>i φ(y) for any pair of strings

x and x̂ of length n and differing only in the symbol in position i. The structure of z and Lemma

5 ensure that the pseudo-phrases in z have at most φ(·) = 1, and therefore we will be able to use

|Z| in the new upper bound.

To prove the statement, consider any string x, its parsing y, and change the ith symbol to

obtain x̂ parsed as ŷ. Consider all phrases of y pointing to position i and not containing position

i. Divide these phrases into Y1 = {y | φ(y) ≤ 1} and Y2 = {y | φ(y) = 2}. Divide Y1 into Y S
1 ,

containing “short” phrases having length ≤ M and Y L
1 , containing “long” phrases having length

> M . Similarly, divide Y2 into Y S
2 , containing phrases having length ≤ 2M −1, and Y L

2 , containing

phrases having length ≥ 2M .

We prove the theorem by showing that

‖Y S
1 ‖ + 2‖Y S

2 ‖ + ‖Y L
1 ‖ + 2‖Y L

2 ‖ ≤ ‖Z‖. (10)

To prove Equation 10 we construct a correspondence between phrases in Y S
1 and phrases in Z, and

between phrases in Y S
2 and pairs of phrases in Z not already paired with phrases in Y S

1 . Then we

show that the number of remaining phrases in Z is greater than or equal to ‖Y L
1 ‖ + 2‖Y L

2 ‖.
By construction, the phrases of Z have different (pseudo) RPOI, and the same holds for the

phrases of y. We then say that a phrase of Z corresponds to a phrase of Y S
1 if they have the same

RPOI. This is a 1:1 correspondence. For each phrase of Y S
2 , Lemmas 9 and 10 ensure that two

different intervals containing i exist that are not RPOIs of phrases of Y S
1 . Corollary 6 and Lemma

5 ensure that these intervals are different for different phrases of Y S
2 . We have therefore partitioned

the set of pseudo-phrases Z into ZP , the pseudo-phrases in correspondence with phrases in Y S
1 or

Y S
2 , and Z \ZP . From Lemmas 9 and 10 it follows that the length of a phrase of Y S

2 is not longer

than the sum of the lengths of the corresponding pseudo-phrases of Z minus 1, namely

∑

z∈ZP

|z| ≤
∑

y∈Y S
1

|y| +
∑

y∈Y S
2

(|y| + 1). (11)

We now deal with Y L
1 and Y L

2 . Note the following inequalities

∑

z∈Z

|z|
(a)

≥ m − i + 1
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(b)
= n − i + 1 + ⌊

√
n − i + 1⌋

(c)

≥
∑

y∈Y S
1

|y| +
∑

y∈Y S
2

(|y| + 1) +
∑

y∈Y L
1

|y| +
∑

y∈Y L
2

(|y| + 1), (12)

where Inequality (a) follows from the construction of the reference phrase, Equality (b) follows from

the definition of m, and Inequality (c) follows from the fact that the number of phrases in y with

φ(·) = 2 is bounded from above by ⌊
√

n − i + 1⌋ and from the fact that the sum of the lengths of

the phrases of y pointing to position i but not containing i is at most n − i + 1.

From Inequalities (11) and (12) it follows immediately that

∑

z∈Z\ZP

|z| ≥
∑

y∈Y L
1

|y| +
∑

y∈Y L
2

(|y| + 1). (13)

Note the following set of inequalities:

‖Z \ ZP ‖ · M =
∑

z∈Z\ZP

M

(a)

≥
∑

z∈Z\ZP

|z|

(b)

≥
∑

y∈Y L
1

|y| +
∑

y∈Y L
2

(|y| + 1)

(c)
>

∥

∥Y L
1

∥

∥M +
∥

∥Y L
2

∥

∥ · 2 · M, (14)

where Inequality (a) follows from the fact that z contains phrases of length at most M , Inequality

(b) is Inequality (13), and Inequality (c) follows from the definition of Y L
1 (which contains phrases

of length > M) and Y L
2 (which contains phrases of length > 2M − 1). From Inequality (14) we

conclude immediately that ‖Z \ ZP ‖ ≥
∥

∥Y L
1

∥

∥+ 2 ·
∥

∥Y L
2

∥

∥. 2

The only other possible contribution to expansion can come from a phrase y with i ∈ I(y), and

is bounded by Lemma 1. The sum of the two bounds gives the bound in the theorem.

5 Changing k consecutive symbols

We now capitalize on the results of the previous sections to compute the maximum expansion of

a string of length n when k consecutive symbols starting from position i are changed. As we did

for the previous results, we consider separately the phrases overlapping the k changed symbols and

the remaining phrases. Recall that I = [i, . . . , i + k − 1] denotes the interval where x and x̂ differ.
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We first note that Corollary 1 easily extends to k consecutive changes (the proof is left to the

interested reader).

Corollary 2 If y ∈ y is such that I⋂ I(y) = ∅ and φ(y) ≥ 1, then y points to I.

The following definitions are needed in the main result of this section.

Definition 5 A subset {yj1, . . . , yjm} of the parsing y covers I if no phrase yjh
intersects I, the

RPOI of each phrase yjh
intersects the interval, and the union of the RPOIs of the phrases contains

I. The set of RPOIs of the phrases yjh
is called a covering of the interval I.

A covering of an interval need not exist. However, we can always construct a generalized covering.

Definition 6 A set of intervals {[j1, . . . , j1 + ℓ1 − 1], . . . , [jm, . . . , jm + ℓm − 1]} having length

ℓ1, . . . , ℓm, is a generalized covering of the interval I if the following conditions hold:

• The intersection of every interval in the set with I is non-empty.

• Each interval in the set is either an interval of length 1 or the RPOI of a phrase y ∈ y for

which I(y) ∩ I = ∅.

• The union of the intervals in the set contains I.

The cardinality of {[j1, . . . , j1 + ℓ1 − 1], . . . , [jm, . . . , jm + ℓm − 1]} is m, the number of intervals.

From the definition it follows that every covering is also a generalized covering. Among all

generalized coverings of an interval, we are interested in the ones with the smallest cardinality.

Definition 7 A minimal generalized covering Ck
i (j) of the interval I at time j is a generalized

covering with smallest cardinality among those whose elements are intervals of length 1 or RPOIs

of phrases ending at or before position j.

In general the minimal generalized covering of I at time j is not unique. As we parse x from left

to right, we keep track of the minimal generalized coverings that can be obtained using already

parsed phrases.

Definition 8 The cardinality of a minimal generalized covering Ck
i (j) is denoted by N k

i (j).
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It is immediate from the definition that N k
i (l) ≤ k because the k intervals of length 1 starting at

i, i + 1, . . . , i + k − 1 form a covering of I. Also, trivially, N k
i (l) ≥ 1. The cardinality of the

minimal generalized coverings of I is a non-increasing function of the current position j. In the

following, we will be interested in the changes in the size of the minimal generalized coverings, and

therefore we introduce the following notation.

Definition 9 Let

∆N k
i (j)

△
= N k

i (j − 1) −N k
i (j) .

It is immediate to check the following statements.

Observation 1 The quantity ∆N k
i (j) is non-negative, has maximum value equal to k − 1, and

∑

j ∆N k
i (j) ≤ k − 1.

We are now ready to state the main result of this section.

Theorem 4 Let L = max
{

L |∑L

ℓ=2 ℓ
(

min (i, ℓ) + k − 1
)

≤ n − i − k − L + 2
}

and L = min
{

ℓ | ℓ3 + 3
2kℓ2 + 3k−2

2 ℓ ≥ 3(n − k − i − 1)
}

. The maximum expansion of a string when

the k consecutive symbols located in the interval I starting from position i are changed, satisfies

max
y,ŷ[i]

(‖ŷ‖ − ‖y‖) ≤

L
(

L + 1
)

2
+

⌈

(
√

(k + 1)2

4
+ (n − i − k + 1) − (k + 1)

2

)

⌉

+ k log2 k + 5k + 2 = ∆
k
i , (15)

and, if the alphabet size is at least min (i, L) + k + L,

∆k
i =

L
∑

ℓ=2

min (i, ℓ) + k − 1 ≤ max
y,ŷ[i]

(‖ŷ‖ − ‖y‖). (16)

As before, we first provide an overview of the proof, we state and prove the supporting lemmas for

the upper bound, we prove the upper bound, and finally prove the lower bound.

A simple extension of Lemma 2 to the case of k consecutive changes shows that we need not

concern ourselves with phrases of y and ŷ starting and ending before I.

Hence, we first consider phrases overlapping I and extend Lemma 1 to k ≥ 1. The extension

lemma, Lemma 11, states that the cumulative contribution of these phrases is at most 2k + 2 (e.g.,

at most 4 if k = 1, as expected).
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We then consider phrases pointing to but not overlapping I. When k > 1 consecutive symbols

are changed, the fundamental result of Lemma 4, which states that a phrase pointing to but does

not overlap the changed position i has φ(·) ≤ 2, is no longer valid. It is extended by Lemma 13

which states that only phrases that reduce the size of the minimal generalized covering(s) can have

φ(·) > 2, and that, for any such phrase y, the quantity (φ(y)− 2) is at most equal to the reduction

in size of the minimal generalized covering. This result, combined with Observation 1, allows us

to bound from above the contribution of phrases not pointing to I to the sum in Inequality 1 by

counting the number of phrases that could point to I, adding a bound to the number of phrases

that could have φ(·) > 1, and further adding (k − 1) to the result, to account for the cumulative

contribution of phrases with φ(·) > 2. To bound the maximum number of phrases that could point

to I we use an approach analogous to that used in proving Theorem 2. We need to exercise some

care in bounding the number of phrases with φ(·) ≥ 2. To this end, we divide these phrases into

three groups according to their RPOI, and analyze each group separately. More specifically, we

consider the phrases with RPOI entirely contained in I, the phrases with RPOI strictly containing

I, and the remaining phrases, whose RPOI is not contained in I and partially overlaps it.

The lower bound is again proved by bounding from below the maximum number of phrases

that point to I and constructing a string satisfying this bound, where each phrase has φ(·) exactly

equal to 1.

5.1 The Upper Bound of Theorem 4

We address the question of the maximum contribution to the sum in Inequality 1 due to phrases

that overlap the interval I. The following lemma provides the desired extension to Lemma 1 to

the case of k ≥ 1 consecutive changes.

Lemma 11 Let Y △
= {y ∈ y | I(y)

⋂ I 6= ∅} be the set of phrases overlapping the interval I. Then,

∑

y∈Y

φ(y) ≤ 2k + 2. (17)

Note that the bound is equal to 4 when k = 1, and therefore in this case Lemma 11 reduces to

Lemma 1.

Proof. We show that there are at most 2k + 3 phrases in ŷ contained in I(Y)
△
=
⋃

y∈Y I(y), that

if there are exactly 2k + 3 phrases the last phrase ends at the end of I(Y), that ‖Y‖ ≥ 1, and
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therefore
∑

y∈Y

φ(y) ≤ 2k + 3 − 1 = 2k + 2.

The “−1” term is due to the fact that if there are 2k + 3 phrases of ŷ contained in I(Y), the last

one ends at max {I(Y)}.
To simplify the notation, renumber the phrases of y so that Y = {y1, . . . , yp}. Phrases to the

left of I(Y) will therefore have index less than or equal to zero, say, from −q to 0. Since the

compression schemes we consider in this paper only allow pointers to the past (and not to the

future), clearly y−q = ŷ−q, . . . , y−1 = ŷ−1. Also, either y0 = ŷ0, or |y0| < |ŷ0|, because the symbols

in the RPOI of y0 are the same in both x and x̂.

First, there are at most k phrases of ŷ overlapping I. Among the phrases in Y there is at most

one, y1, that starts before position i, and at most one, yp, that ends after position i + k − 1. If

y1 starts before position i, say, at position i − a, then ŷ1 (if it exists) ends at or after position

i − 1, because xi−1
i−a = x̂i−1

i−a and RPO(xi−1
i−a) is the same in x and x̂. Then, let I(yp) = [b, . . . , c],

and consider phrases of ŷ starting at or after position i + k and ending before or at the end of yp.

The RPOI(yp) overlaps I in at most k positions, and therefore there are at most k phrases in ŷ

overlapping the interval containing the symbols of yp that were copied from anywhere within I.

Let these symbols be xe
d. If d > i + k, then there could be at most one phrase of ŷ starting at or

after position i + k and ending before position d, because xd−1
i+k = xi−1

2i−d+k = x̂i−1
2i−d+k = x̂d−1

i+k . If

c > e then there is at most one phrase of ŷ starting at or after position e+1 and ending at or after

c, because xc
e+1 = x̂c

e+1 = xi+k+c−e−1
i+k = x̂i+k+c−e−1

i+k . If such phrase exists, then it must end at or

after max {I(Y)}.
We conclude that there are at most 2k + 3 phrases of ŷ contained in I(Y), and if there are

exactly 2k + 3 such phrases, the last one ends at max {I(Y)}. 2

It is worth noting that for k greater than 1, there are always fewer than 2k + 3 phrases of ŷ

contained in I(Y), and that therefore the bound can be further tightened. We now bound from

above the maximum number of phrases that can point to I without overlapping it, and hence

extend Lemma 3 to the case of k consecutive changes.

Lemma 12 The maximum number N5 of phrases y ∈ y such that I(y)
⋂ I = ∅ and RPOI(y)

⋂ I 6=
∅ is bounded from above by

N5 ≤ L
(

L + 1
)

2
, (18)



Castelli and Lastras 23

where L = min
{

ℓ | ℓ3 + 3
2kℓ2 + ℓ

2(3k − 2) ≥ 3(n − i − k + 1)
}

.

Note that Inequality 18 is formally identical to Inequality 5 and that these results differ in the

definition of L.

Proof. There are at most k + ℓ− 1 phrases of length ℓ whose RPOI intersects the interval I. As in

the proof of Lemma 3, construct a pseudo-parsing by appending, to the right of I, k pseudo-phrases

of length one, k + 1 pseudo-phrases of length two and so on until the n− i− k + 1 positions to the

right of I are filled. For no string of length n the LZ’77 parsing can produce more phrases that

point to the interval I and start at or after position i + k than this pseudo-parsing, because the

pseudo-parsing uses all the available short pseudo-phrases.

The number of positions occupied by pseudo-phrases of length ≤ ℓ is

ℓ
∑

j=1

(k + j − 1) ∗ j = (k − 1)

ℓ
∑

j=1

j +

ℓ
∑

j=1

j2

= (k − 1)
ℓ(ℓ + 1)

2
+

ℓ(ℓ + 1)(2ℓ + 1)

6

=
1

3

(

ℓ3 +
3

2
kℓ2 +

3k − 2

2
.ℓ

)

Hence, the longest pseudo-phrase contains at most

L = min







ℓ |
ℓ
∑

j=1

j(k + j − 1) ≥ (n − i − k + 1)







symbols, or, equivalently,

L = min

{

ℓ | ℓ3 +
3

2
kℓ2 +

3k − 2

2
ℓ ≥ 3(n − i − k + 1)

}

.

2

We now analyze phrases that point to I without intersecting it, and with φ(·) > 1. We first

show that an upper bound to their cumulative contribution to the sum in Inequality 1 can be

obtained by adding k − 1 to an upper bound to the number of such phrases multiplied times 2.

To bound from above the number of phrases with φ(·) > 1, we divide them according to their

RPOI. First we consider phrases with RPOI completely contained in I (including a possible phrase

whose RPOI coincides with I). We then analyze phrases whose RPOI strictly contains I (i.e., with

padding at least at one end), and finally consider the remaining phrases.
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Lemma 13 Let y be a phrase of y pointing to but not overlapping the interval I, and ending at

position j. Then

φ(y) ≤ 2 + ∆N k
i (j) .

Proof. Consider first the case ∆N k
i (j) = 0. Then, there exists at least one minimal generalized

covering at time j − 1, say C∗k
i (j − 1) that is also a minimal generalized covering at time j,

since N k
i (j − 1) = N k

i (j). C∗k
i (j − 1) does not contain RPOI(y), which means that there is at

most one interval of C∗k
i (j − 1) completely contained in RPOI(y) (otherwise we could construct a

new minimal generalized covering, using RPOI(y) and the intervals of C∗k
i (j − 1) not completely

contained in RPOI(y), that has cardinality smaller than N k
i (j), which is a contradiction).

Consider now the case ∆N k
i (j) = δ > 0. Every minimal generalized covering at time j must

contain RPOI(y), because it is the only interval not available to construct generalized minimal

coverings at time j − 1. The interval RPOI(y) can contain at most δ + 1 intervals of any minimal

generalized covering at time j − 1. By contradiction: assume there exists a minimal generalized

covering at time j−i, say C∗k
i (j − 1), containing δ+1+m intervals (m > 0) that are subintervals of

RPOI(y). Then the union of RPOI(y) and of the intervals of C∗k
i (j − 1) not completely contained

in RPOI(y) form a generalized covering having cardinality smaller than N k
i (j).

Hence, RPOI(y) completely contains at most ∆N k
i (j) + 1 intervals of any minimal generalized

covering at time j − 1.

Parse the symbols of x̂ in I(y) from left to right. Our usual arguments show that φ(y) cannot

be larger than one plus the maximum number of intervals of any minimal generalized covering at

time j − 1 completely contained in RPOI(y), namely, φ(y) ≤ ∆N k
i (j) + 2. 2

Lemma 14 The number of phrases with RPOI contained in the interval I, that start after i+k−1

and with a value of φ greater than 1 is at most k log2 k.

Proof. We say that a phrase y is of interest if I(y) ≥ i + k, φ(y) > 1 and RPOI(y) ⊂ I. Let

J = [r, · · · , r + l − 1] be any interval with positive length l that is contained in the interval I =

[i, · · · , i+k−1]. Now assume that l ≥ 3. If l is odd, we define the pivot PJ to be the interval whose

only member is the integer r + (l− 1)/2 and, if l is even, the interval [r + l/2− 1, r + l/2]. Also, for

l odd (resp. l even), let J0 be the interval [r, . . . , r + (l− 3)/2] (resp. [r, . . . , r + l/2− 2]) and let J1

be the interval [r + (l + 1)/2, . . . , r + l − 1] (resp. [r + l/2 + 1, . . . , r + l − 1]). The procedure that

is described next can be carried out for any string and choice of potentially modified symbols in I.
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We assign every phrase of interest to one of three categories: phrases for which PJ
⋂

RPOI(y) is

nonempty (we say that the RPOIs of these phrases straddles the pivot), phrases with RPOI(y) ⊂ J0,

and phrases with RPOI(y) ⊂ J1. Note that the RPOI of phrases that straddle the pivot need not

contain the pivot itself: we require non-empty intersection in order to count all the phrases of

interest with RPOI included in J . If their length is at least three, each of J0 and J1 also possess

a pivot and can be partitioned similarly; here we will use the convention that sub-indexes can be

appended to the right of existing ones so that for example (J0)0 = J00 and (J1)0 = J10. This

notation extends obviously to finer partitioning.

The number of phrases of interest with RPOI contained in J will be denoted by #(J). The

number of phrases that in addition of satisfying these conditions also straddle the pivot of J will

be denoted by #P (J). Thus,

#(J) = #P (J) + #(J0) + #(J1). (19)

Note that all the quantities in this expression depend on a particular choice of string and associated

modifications. Nevertheless, we shall shortly prove that

#P (J) ≤ |J |. (20)

It can be verified that |J0| ≤ ⌊|J |/2⌋, an identical statement obviously being true for the cardinality

of J1. Substituting I for J in (19), repeating the same procedure for the intervals I0 and I1 and

using (20) we get

#(I) ≤ k + 2⌊k/2⌋ + #(I00) + #(I01) + #(I10) + #(I11) (21)

≤ 2k + #(I00) + #(I01) + #(I10) + #(I11) (22)

Repeating this procedure r times when possible (the above corresponding to r = 2), we obtain

#(I) ≤ rk +
∑

mask∈{0,1}r

#(Imask) (23)

By construction, each of the intervals Imask in the summation above has the same length for a

fixed value of r. This process cannot be repeated indefinitely for the length of said intervals strictly

decreases as r increases and pivots are defined only for intervals of length at least three. Let r∗

be the largest value of r for which we can write the associated Inequality (23); the length of every
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interval in the right hand side is 1 or 2. Since every phrase that has φ(·) > 1 must have length at

least three,

#(I) ≤ r∗k. (24)

On the other hand, it is easy to see that if mask ∈ {0, 1}r∗ , the strict inequality

1 ≤ |Imask| < k/2r∗

holds and therefore r∗ < log2 k. In combination with (24), this yields the conclusion of the lemma.

It remains to prove that the number of phrases of interest with RPOI completely contained in

an interval J that straddle J ’s pivot is at most |J | (Inequality (20)), irrespective of the choice of

string and associated modified symbols. For any i + k − 1 < j ≤ n + 1, let

S(j) =
{

y : y is of interest, PJ

⋂

RPOI(y) is nonempty, RPOI(y) ⊂ J , and i + k − 1 < I(y) < j
}

.

Rephrasing our goal using this notation, we want to demonstrate that |S(n + 1)| ≤ |J |. Let Γj
0

(resp. Γj
1) be the smallest (resp. largest) integer in the interval

⋃

y∈S(j)

RPOI(y).

Now suppose that in the original parsing, a phrase of interest y of length ℓ has been copied at

position j, and that y ∈ S(j + ℓ). We next show that if RPOI(y) ⊂ [Γj
0, . . . ,Γ

j
1] then necessarily

φ(y) ≤ 1, regardless of whether |J | is even or odd. The argument is as follows: as a basic conse-

quence of the definitions, there exists a set of phrases Π ⊂ S(j) with cardinality |Π| = 2 and with

the property that

⋃

π∈Π

RPOI(π) = [Γj
0, . . . ,Γ

j
1]. (25)

Note that it is not possible that |Π| = 1, as otherwise RPOI(y) ⊂ I(π), assuming π is the single

member of Π (recall that the parsing rule always selects the rightmost match for a given maximum

match length). It is easy to see that it is possible to segment the phrase y in at most two pieces,

each of which is a match to a subset of a phrase π ∈ Π. Since the symbols corresponding to phrases

in Π remain unchanged in the modified string, necessarily φ(y) ≤ 1.

Since we have deduced that strict containment RPOI(y) ⊂ [Γj
0, . . . ,Γ

j
1] is not possible, a fortiori,

Γj+ℓ
1 − Γj+ℓ

0 ≥ Γj
1 − Γj

0 + 1.
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Clearly, |S(i + k)| = 0 and it is always true that for any i, Γi
1 − Γi

0 ≤ |J |. Note that for any

j ≥ i + k, |S(j + 1)| − |S(j)| ∈ {0, 1} and, as per our earlier discussion, the number of indexes j

where |S(j + 1)| − |S(j)| = 1 cannot be greater than |J |. Therefore,

|S(n + 1)| =

n
∑

j=i+k

|S(j + 1)| − |S(j)| ≤ |J |

and the lemma is proved. 2

Lemma 15 The number of phrases not overlapping I, with RPOI containing I with padding at

both ends, and with φ(·) greater than 1 is bounded from above by

N4 = min
(

N
′

4, i − 1
)

,

where

N
′

4 = min

{

m |
m
∑

ℓ=1

k + 2ℓ ≥ n − i − k + 1

}

≤
⌈
√

(k + 1)2

4
+ (n − i − k + 1) − (k + 1)

2

⌉

Proof. Using Lemma 5, we see immediately that two phrases with RPOI containing the interval

I, not overlapping I, and with φ(·) > 1 must have lengths that differ at least by 2. These phrases

also must have length at least equal to k+2. If m phrases satisfy the conditions of the lemma, they

occupy at least mk + 2m(m + 1)/2 = m2 + m(k + 1) positions. There are n − i − k + 1 positions

after I, hence the maximum number N
′

4 of such phrases is bounded from above by the smallest

integer larger than or equal to the positive solution of m2 + m(k + 1) = n − i − k + 1.

The solution of this equation is m∗ =
(

√

(k + 1)2 + 4(n − i − k + 1) − (k + 1)
)

/2, which is

≤
⌈(

√

(k + 1)2 + 4(n − i − k + 1) − (k + 1)
)

/2
⌉

△
= N

′

4. Lemma 5 ensures that two phrases whose

RPOIs contain the interval [i, . . . , i + k − 1] and having both φ(·) > 1 are such that one contains

the other with padding at both ends. Hence, there can be at most i − 1 such phrases. 2

The following lemma bounds the number of phrases that do not intersect the interval I, with

RPOI that overlaps I with padding at one end only, and with φ(·) > 1.

Lemma 16 The number N1 of phrases y not intersecting the interval I, with RPOI starting before

position i and ending before or at position i + k − 1, and with φ(y) > 1 is at most equal to k.

The number N2 of phrases y not intersecting the interval I, with RPOI starting at or after position

i and ending after position i + k − 1, for which φ(y) > 1 is at most equal to k.
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Therefore the total number of phrases that do not overlap I, having RPOI that overlap I without

containing it and with padding at one end only, and having φ(·) greater than 1 is at most 2k.

Proof. We only prove the first part of the lemma, the second part being analogous. Let y1 be a

phrase with I(y1) = [p − a, . . . , p + b] and RPOI = [i − a, . . . , i + b], with a > 0 and 0 ≤ b ≤ k − 1.

Let y2 be a subsequent phrase with I(y2) = [q − c, . . . , q + d] and RPOI = [i − c, . . . , i + d], with

c > 0 and 0 ≤ d ≤ k− 1. The RPOIs of both phrases intersect I with padding at the left end only.

We claim that d ≤ b implies φ(y2) ≤ 1. To see this, note first that xq+d
q is equal to xi+d

i ,

which in turn is equal to xp+d
p by assumption. Since neither y1 nor y2 overlap the interval I, then

x̂q+d
q = x̂p+d

p . Change the symbols in positions I, parse x̂ to obtain ŷ, and restrict the attention

to the interval I(y2) = [q − c, . . . , q + d]. The parsing ŷ contains a phrase ŷ starting at position

e ≤ q − c and ending at position f ≥ q − c.

If f ≥ q + d, then I(y2) ⊆ I(ŷ), and φ(y2) = 0. Divide the case where f < q + d into two

sub-cases: f ≥ q − 1 and f < q − 1 (where perforce c > 1). If f ≥ q − 1, then the phrase following

ŷ in ŷ cannot end before position q + d, because x̂q+d
q−1 = x̂p+d

p−1 and p < q. Therefore φ(y2) ≤ 1. If

f < q − 1, then e < q − c (because x̂p−1
p−c = x̂q−1

q−c) and the phrase ŷ
′

of ŷ that follows ŷ must end at

or after position q− 1 because x̂q−1
q−c = x̂i−1

i−c ; the next phrase of ŷ, ŷ” starts at or after q and cannot

end before q + d because x̂q+d
q = x̂p+d

p . We conclude that φ(y2) ≤ 1 in this case too.

Hence, φ(y2) can be greater than 1 only if d > b. This can happen only k times for the set of

sequences satisfying the conditions of the lemma. 2

Proof of the Upper Bound

To prove the upper bound, we note that phrases with φ(·) ≥ 1 overlap or point to the interval I
where x and x̂ differ, as stated in Corollary 2. We consider separately the phrases that point to

and do not overlap I, and the phrases that overlap I.

As in the proof of Theorem 2, we count the maximum number of phrases that can point to I
without overlapping it: Lemma 12 provides the necessary bound. Then we bound the additional

contribution of phrases that point to and do not overlap I, and that have φ(·) > 1: Lemma 13

states that if y points to I and does not overlap I, φ(y) ≤ 2 + ∆N k
i (j), where j is the ending

position of y. By definition,
∑

∆N k
i (j) ≤ k − 1, where the sum is over all phrases pointing to I.

Hence, the additional contribution of phrases pointing to and not overlapping I and with φ(·) > 1

is bounded by the number of such phrases plus k−1. To compute a bound on the number of phrases
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not overlapping I, pointing to I, and having φ(·) > 1, we divide them into four sets: phrases with

RPOI starting before position i and ending before or at position i + k − 1, phrases with RPOI

starting at or after position i and ending at or after position i + k (whose number is bounded from

above in Lemma 16), phrases with RPOI contained in I (whose number is bounded from above

in Lemma 14), and phrases with RPOI containing I with padding at both ends (whose number is

bounded from above in Lemma 15).

Therefore, the upper bound (15) is obtained as the sum of the bound on the contribution of

phrases overlapping I (Equation (17) in Lemma 11) the bound on the number of phrases pointing to

and not overlapping I (Equation (18) in Lemma 12), and the bound on the additional contribution

of phrases pointing to and not overlapping I and having φ(·) > 1. 2

5.2 The Lower Bound of Theorem 4

The following lemma provides a lower bound to the maximum number of phrases that can point

to the interval I in the parsing y of a string x having length n, and is the equivalent of Lemma 8.

Lemma 17 Let

L = max

{

L |
L
∑

ℓ=2

ℓ
(

min (i, ℓ) + k − 1
)

≤ n − i − k − L + 2

}

.

If the alphabet size is at least min (i, L) + k + L, the maximum number N0 of phrases of y pointing

to I is bounded from below by

N0 ≥
L
∑

ℓ=2

min (i, ℓ) + k − 1. (26)

Proof. We construct a string x that satisfies Inequality 26, using the following packing algorithm.

Let x
i+k+L−2
i−min (i,L)+1 be distinct symbols of the alphabet. There is at least one unused alphabet symbol,

which we denote by α̃.

We now consider only intervals overlapping I with length not exceeding n − i − k + 2. It is

easy to see that there are min (i, ℓ) + k − 1 such intervals of length ℓ ≤ n − i − k + 2. Now order

all the intervals of length 2 so that the first interval in the list is the rightmost one and the last

interval is the leftmost one. Next, copy the substrings corresponding to these intervals as follows:

the first substring is copied into positions i+L+k−1 and i+L+k, the second substring is copied

immediately after that and so on until the last substring on the list is copied.
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Next the intervals of length 3 are ordered in the opposite direction, so that for example the first

interval in the list is now the leftmost one. The substrings corresponding to the intervals are now

copied following the order in the list as above. This process is repeated until all the substrings of

length L overlapping I have been copied, always reversing the direction in which the list is ordered

when increasing the substring length. The definition of L ensures that there is sufficient space in

x to contain all these copies. If there is additional space at the beginning or at the end of x, fill

it with copies of α̃. Parse x into y. The first i − 1 symbols are irrelevant, and the symbols in the

interval [i, . . . , i+k+L−2] parse into phrases of length 1. Note that the last symbol of each copied

substring and the first symbol of the next copied substring appear only once as a contiguous pair

in the entire x. Hence, when parsing x these symbols are always separated by a comma. Also,

each copied substring by construction has a non-empty RPOI that intersects I. Hence, y contains

exactly
∑L

ℓ=1 min (i, ℓ) + k − 1 phrases pointing to the interval I. 2

Proof of the Lower Bound

As for Theorem 2, the lower bound is constructive. Lemma 17 constructively shows that the

maximum number N0 of phrases pointing to I is bounded from below by
∑L

ℓ=2 min(ℓ, i) + k − 1, if

the alphabet size is sufficiently large, say ≥ min (i, L)+k+L. We use the string x and the “unused

symbol” α̃ defined in Lemma 17. We build x̂ by changing the symbols of x in I to α̃. The string x

is carefully crafted to ensure that each pair of symbols straddling commas in the parsing (i.e., the

last symbol of a phrase and the first symbol of the following phrase) appear only once in both x

and x̂. Hence, each comma of y has a corresponding comma in ŷ, and for each phrase y in y there

is a phrase ŷ(y) ∈ Φ(y) in ŷ starting at min I(y). Additionally, |y| > 1 implies |ŷ(y)| < |y|, because

y has a unique PO and I⋂RPOI(y) 6= ∅. We now show that PO(y) is unique. The symbol α̃

does not appear in phrases pointing to I. The phrase y has a unique PO intersecting the interval

[i − L + 1, . . . , i + k + L − 2] because the symbols in this interval are different. No phrase to the

right of position i + k + L − 2 and to the left of y is equal to y by construction. It remains to

be shown that y cannot be copied from any other substring of x starting to the to the right of

position i + k + L − 2 and to the left of y, and perforce intersecting at least two adjacent phrases

having a PO that contains I (where the rightmost of such phrases could be y itself). This is not

possible, because for each pair of adjacent phrases each having a PO that intersects I, the last

symbol of the first phrase and the first symbol of the second phrase appear as a pair only once
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in the entire string x, as discussed in the proof of Lemma 17. Hence, each phrase y ∈ y with

I⋂RPOI(y) 6= ∅ has φ(y) ≥ 1. But φ(y) ≤ 1 because each phrase y ∈ y with I⋂RPOI(y) 6= ∅
and |y| > 2 is preceded by a phrase y

′

(y) ∈ y satisfying
∣

∣

∣
y
′

(y)
∣

∣

∣
≥ |y| − 1, I⋂RPOI(y

′

) 6= ∅, and
∣

∣

∣
RPOI(y)

⋂

RPOI(y
′

)
∣

∣

∣
= |y|−1. We conclude that each phrase y ∈ y with |y| ≥ 2 has φ(y) exactly

equal to 1. 2

6 Result Refinements

We now refine the upper bound of Theorem 4 using arguments analogous to those of Theorem 3.

To this end, we first introduce a “substitution” lemma, namely, an extension of Lemma 9 to the

case of k consecutive changes, that will allow us to extend the pairing argument of Theorem 3 to

k > 1 consecutive changes.

Lemma 18 Consider a phrase y with I(y) = [m − a, . . . ,m + k + b − 1], φ(y) = d > 1, and

RPOI(y)= [i − a, . . . , i + k − 1 + b].

• If a > b, for every j < m − a such that [j, . . . , j + k + a − 1]
⋃ I = ∅, xj+k+a−1

j 6= xi+k−1
i−a ,

and, for every j < m − a such that [j, . . . , j + k + a]
⋃ I = ∅, xj+k+a

j 6= xi+k
i−a.

• If a < b, for every j < m such that [j, . . . , j + k + b − 1]
⋃ I = ∅, xj+k+b−1

j 6= xi+k+b−1
i−1 , and,

for every j < m − a such that [j, . . . , j + k + b]
⋃ I = ∅, xj+k+b

j 6= xi+k+b
i .

• If a = b, for every j < m− a such that [j, . . . , j + k + a− 1]
⋃ I = ∅, xj+k+a−1

j 6= xi+k−1
i−a and,

for every j < m such that [j, . . . , j + k + b − 1]
⋃ I = ∅, xj+k+b−1

j 6= xi+k+b−1
i .

The proof is analogous to that of Lemma 9 and is left to the interested reader.

Theorem 5 Under the conditions of Theorem 4,

max
y,ŷ[i]

(‖ŷ‖ − ‖y‖) ≤ M(M + 1)

2
+ k log2 k + 4k + 1, (27)

where

M = min

{

ℓ | ℓ3 +
3

2
kℓ2 +

ℓ

2
(3k − 2)

≥ 3

[

n − k − i + k

⌈
√

(k + 1)2

4
+ (n − i − k + 1) − (k + 1)

2

⌉]}

.
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Proof. First, we note that the term 5k in Theorem 4 can be immediately reduced to 4k, because

Lemmas 16 and 11 interact and over-count contributions to the sum of φ(·). Consider in fact the

last phrase yp in the proof of Lemma 11: this phrase ends after position i + k − 1. Consider the

portion of yp that does not overlap I, and count the number h ≤ k of symbols of this portion that

are copied from I in the parsing y of x. Consider then the phrases of y analyzed in Lemma 16:

they do not intersect I, and therefore start after yp and have RPOI that starts before position i

and ends before or at position i+ k− 1. Since h consecutive symbols of I also occur in I(yp) to the

right of I and to the left of the intervals of the phrases analyzed in Lemma 16, we claim that only

k−h such phrases can have φ(·) > 1. There are two cases: the h relevant symbols of yp that do not

overlap I are copied either from the beginning of I or from its end (the case h = k trivially falls

in both cases). If these symbols are copied from the beginning of I, the first h phrases considered

in the proof of Lemma 16 have φ(·) ≤ 1, because their symbols can be divided into two substrings,

the first of which can be copied from before I, and the second from the portion of yp following I.

If the symbols of yp are copied from the last h symbols of I, then the last h phrases considered in

the proof of Lemma 16 have φ(·) ≤ 1, because their symbols can be divided into two substrings,

the first of which can be copied from preceding phrases of the same nature, and the second from

the portion of yp following I.

Additionally, Lemma 11 produces a bound that is tight only for k = 1, and that can be further

tightened.

Next, like in the proof of Theorem 3, we substitute a new expression for the terms
L(L+1)

2

+

⌈

√

(k+1)2

4 + (n − i − k + 1)− (k+1)
2

⌉

, the sum of a bound to maximum number of phrases pointing

to the k changed symbols and a bound to the number of phrases whose RPOI contains the k changed

symbols with padding at both ends that can have φ(·) > 2.

The new expression is constructed using the same pairing argument used in Theorem 3: we

build the pseudo-parsing ỹ of x̃, an appropriately longer string than x, pair each phrase of y having

φ(·) = 1 with a phrase of ỹ, and each phrase of y not overlapping I, with RPOI containing I with

padding at both ends, and φ(·) > 1 with two phrases of ỹ. These two phrases of ỹ have cumulative

length equal to the length of the corresponding phrase of y plus k, as shown in Lemma 18. The

arguments of Theorem 3 show that the number of phrases in ỹ is larger than the number of phrases

of y having φ(·) = 1 plus twice the number of phrases of y not overlapping I, with RPOI containing

I with padding at both ends, and φ(·) > 1. Lemma 13, and the remark on Definition 6 add k − 1
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to the upper bound. Lemma 16 adds 2k. Lemma 14 further adds k log2 k. Finally, Lemma 11,

accounts for the remaining (k + 3) additive term. 2

7 Extensions

The techniques developed in the previous sections allow us to answer other questions related to the

maximum expansion of a string compressed with LZ’77.

For example, we can bound the maximum expansion of a string of known compressibility that

result from changing k consecutive symbols. As in the rest of the paper, we measure compressibility

in terms of the number of phrases produced by the parsing and their length. Let the parsing y

of a string x contain ‖y‖ phrases of length at least equal to 2, and assume that the symbols in

the interval [i, . . . , i + k − 1] are changed. Then a constructive lower bound on the expansion is

min ( ‖y‖ ,∆k
i ). To obtain an upper bound, one would need to modify the lemmas of Section 5, and

in particular the packing arguments, to account for the fact that the parsing of x contains exactly

‖y‖ of length equal to 2 or more.

We can also bound the maximum expansion of a string when k arbitrary symbols, non necessarily

consecutive, are changed. In this case, the bounds can be derived by counting the maximum number

of phrases that can point to any of the changed symbols, bounding the number of phrases with

φ(·) > 1, and extending Lemma 14.

We can easily extend the results to the sliding-window LZ’77 of fixed length w, by recalling that

a phrase can point only to previous occurrences that start within the window, and appropriately

dealing with the boundary conditions, when compressing the first w symbols.

This paper contains bounds on the differences between the number of phrases of two parsings.

Note that, although compressibility does not depend solely on the number of phrases in the parsing,

we have chosen the number of phrases as the central quantity of our investigation, because we believe

it provides a fundamental characterization that can be refined to individual specific schemes for

mapping phrases into codewords. For example, in the work of Ziv and Lempel [1, Section II]

assumes bounded delay decoding and yields a variable-to-fixed length encoding; our results can be

easily adapted to this encoding approach, for example by constraining L and L of Theorem 4 and

the length of phrases in Lemmas 16, 14, and 15 do not exceed the maximum encoding delay.

Finally, in Lemma 8 we assumed that the alphabet size was sufficiently large to ensure that
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we can seed the string with L + min (i, L) + 1 different symbols. An open problem is to relax the

requirement on the alphabet size.

8 Discussion and Conclusions

We have introduced the problem of bounding the maximum expansion of a finite-length string

parsed with LZ’77 that can result from changing k ≥ 1 consecutive symbols.

We have proved upper and lower bounds to this maximum expansion as a function of the

length n of the string, of the position i of the first changed symbol, and of the number k of changed

symbols, under the assumption that the alphabet is sufficiently large. Although the assumption on

the alphabet size limits the applicability of our (upper) bound in asymptotic analysis, it actually

shows the relevance of the results to practical LZ’77 implementations, where the alphabet size is

typically 256, and where the bounds in this paper are valid for sliding window sizes of up to 5.7

millions, well above those used in practice.

Further improvements to the upper bound for k > 1 may be possible via refinements of the

k log2 k term of Lemma 14, which is conjectured to be only linear in k.

The proofs of the lemmas suggest how the lower bound of Equation 8 and the upper bound

of Equation 5 can be tightened to yield easily computable but less elegant solutions, described in

Appendix A.

The results of this paper can be extended to cover the case in which x and x̂ differ in k non

consecutive symbols and for the sliding-window LZ’77 algorithm with window size n, as well as for

parallel, shared-dictionary LZ’77 algorithms: the necessary insights are provided by the lemmas

proved herein.

These bounds are important to designing management policies for computer systems with main

memory compression or compressed disk, where LZ’77-like algorithms are used to compress rela-

tively small blocks of data, and where the compressibility can dramatically vary when a few symbols

change.
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A Numerical refinements of the bounds

We point out that the bounds obtained in this paper are somewhat loose. However, the proofs

of the lemmas show immediately how to tighten the results to obtain easily computable tighter

bounds, albeit not in closed form. The base of our proofs are the packing lemmas: we pack as

many pseudo-phrases pointing to the symbols to be changed as we can. The results in this paper

are based on crude upper and lower bounds to this number of pseudo-phrases. However, the actual

number of pseudo-phrases can be easily obtained with a computer, and used to produce numerical

upper and lower bounds that are in general substantially closer to each other than those shown in

the theorem.

An example is given in Figure 1, which compares the upper and lower bounds derived in Theorem

2, the upper bound of Theorem 3, and numerically refined upper and lower bounds. The figure is

for a string of 1024 symbols, and shows the bounds as a function of the position of the changed

symbol.

The refined lower bound is obtained by noting that the right-hand side of Inequality (2) follows

by constructing a string that parses into phrases of length 2 to L pointing to position i. If necessary,

this string is padded with copies of α̃ to ensure that it has length n. If the padding is of length ℓp, it

can contain ⌊ℓp/(L+1)⌋ ≥ 0 phrases of length L+1 pointing to position i; the refined lower bound

is computed by counting these phrases that are not accounted for in Theorem 2. Note that the ℓp

can be equal to 0, in which case the refined bound coincides with the lower bound of Inequality

(2).

The starting point for the refined upper bound is Theorem 3, which, for most values of i,

tightens the upper bound of Theorem 2. Recall that in the proof of Theorem 3 we constructed a

pseudo-string having length m = n+⌊
√

n − i + 1⌋, packing to the right of position i in this pseudo-

string two pseudo-phrases of length 2, three of length 3, etc., up to M pseudo-phrases of length

M , where M is an approximate solution to Equation (6), and its value is precisely defined in the

proof of the Theorem. There are three main sources of approximations in Theorem 3. The first is
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Figure 1: From top to bottom: the upper bound of Theorem 2, the upper bound of Theorem 3,

the numerically refined upper bound, the numerically refined lower bound, and the lower bound

of Theorem 2. The bounds are plotted as a function of the position of the changed symbol for a

string of length 1024.

the value of M which is an approximation to the true solution of the cubic equation obtained using

the technique described in Lemma 3. The second is that we count all pseudo-phrases of length up

to M , even if the length of x is not sufficient to contain them all. The third is the edge effect for

small values of i (accounted for in the lower bounds, e.g., in the proof of Lemma 8.: if i is small,

there can be a phrase length ℓ∗ such that not all possible RPOIs of phrases of length ≥ ℓ∗ can fit

in the string x.

Unlike in the case of the lower bound, where occasionally the refinement coincides with the

original bound, for the refined upper bound of the figure the three refinements do not simultaneously

coincide with the original results, except at i = n = 1024, and therefore the refined upper bound

never coincides with the original one.



Castelli and Lastras 37

Further tightening of the bounds for the general k ≥ 1 case can be obtained by refining Lemma

14, by noting that Lemmas 13, 16, 14, and 15 collectively over-count phrases that can have φ(·) > 1.
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