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ABSTRACT
We are building a multimedia conversation system to

facilitate user information-seeking in large and complex
data spaces. To provide tailored responses to diverse user
queries introduced during a conversation, we automate the
generation of a system response. Here we focus on the prob-
lem of determining the data content of a response. Specifi-
cally, we develop an optimization-based approach to
content selection. Compared to existing rule-based or plan-
based approaches, our work offers three unique contribu-
tions. First, our approach provides a general framework that
effectively addresses content selection for various interac-
tion situations by balancing a comprehensive set of con-
straints (e.g., content quality and quantity constraints).
Second, our method is easily extensible, since it uses fea-
ture-based metrics to systematically model selection con-
straints. Third, our method improves selection results by
incorporating content organization and media allocation
effects, which otherwise are treated separately. Preliminary
studies show that our method can handle most of the user
situations identified in a Wizard-of-Oz study, and achieves
results similar to those produced by human designers. 
Keywords: intelligent multimedia interfaces, automated
generation of multimedia presentations, content selection.

1.  INTRODUCTION
To aid users in exploring large and complex data

spaces, we are building a framework, called Responsive
Information Architect (RIA), which engages users in a
dynamically generated multimodal, multimedia conversa-
tion. Currently, RIA is embodied in a real-estate application
testbed that is designed to assist potential buyers in finding
residential properties. RIA allows a user to express her
information requests using multiple modalities, including
text, speech, and gesture (e.g., Figure 1). Based on the
understanding of a user request [8], RIA creates a response
in two steps: formulating conversation acts and authoring a
multimedia response to realize these acts. 

Conversation acts are abstract directives, indicating the
desired types of RIA responses. For example, RIA formu-
lates a conversation act Describe <House> to respond to query
U1 (Figure 1). This act directs RIA to present the requested
houses but without specifying the exact content (e.g., house
attributes) or the form of the presentation. To realize such an
abstract act, RIA must first decide the data content of the
response. In this case, based on a user profile RIA chooses
to convey house size and cost information, such as the num-

ber of bedrooms and price (Figure 1a). Moreover, based on
the query expression RIA includes the location of the Phelps
Memorial hospital to provide the spatial context for the houses.
After determining the content, RIA decides the form of the
response using suitable media and presentation techniques.
In Figure 1, RIA uses speech to convey the number of
retrieved houses and graphics to depict spatial information,
such as house locations and city boundaries. Finally, a mul-
timedia response is synthesized and presented to the user. 

As demonstrated by this example, RIA must tailor a
response to a number of factors at run time, including user
interests and user queries. Since it is difficult to predict how
a conversation would unfold, it is impractical to plan all
possible responses, including their content and forms, in
advance. Thus, we automate the generation of RIA
responses. Here we focus on data content selection, a pro-
cess that dynamically chooses data content in response to
user queries. To handle diverse user queries and unantici-
pated information introduced in a conversation, we model
content selection as an optimization problem, whose objec-

U1 Speech: Show houses near Phelps Memorial Hospital

R1 Speech: I found 3 houses near Phelps Memorial Hospital
Graphics: Display (a)

U2 Speech: Tell me more about it 
Gesture: Point to the house on the right

R2 Speech: Here are the attributes of this 6-bedroom home. 
Graphics: Display (b)

Figure 1. A recorded user-RIA conversation fragment: U1 
and U2 are user queries, R1 and R2 are corresponding 

RIA-generated responses.

(a) (b)
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tive is to maximize the satisfaction of all relevant con-
straints (e.g., content quality and quantity constraints). To
the best of our knowledge, we believe that our work is the
first to address content selection under an optimization-
based framework. As a result, our approach offers three
unique contributions:

1)We present a general solution to content selection that
dynamically chooses the desired content for a wide vari-
ety of interaction situations.

2)We model selection constraints using extensible, fea-
ture-based metrics. This model enables us to easily adapt
our approach to new situations (e.g., a new user task).

3)We improve selection results by incorporating relevant
content organization (e.g., data grouping) and media
allocation effects (e.g., using suitable media).
We start with a brief discussion of related work and a

RIA overview. We then describe our optimization-based
approach to content selection, highlighting the aspects men-
tioned above. Finally, we present our evaluation results. 

2. RELATED WORK
Our work on content selection is closely related to con-

tent planning in automated multimedia presentation systems
[5, 12, 17, Section II in 18]. Since most of these systems
support limited user interaction (e.g., [14] uses a pre-
designed menu, and [12] handles one patient at a time), they
often use a rule-based or schema-based approach to select
content. In contrast, RIA is designed to support context-sen-
sitive user queries to large and complex data sets, where
developing an exhaustive set of selection rules or plans is
impractical. Hence, RIA selects content by dynamically bal-
ancing a number of factors (e.g., being informative vs. being
relevant to a query). 

Content selection has also been addressed extensively
in natural language generation [7, 25, 6, 26, 23]. These
approaches focus on selecting content by specific factors,
such as content importance [25], user knowledge [7], user
preferences [6], or user tasks [26, 23]. In contrast, our
approach weighs all these factors simultaneously to support
user data exploration in different interaction contexts.

Another piece of related work is using utterance history
to select data attributes for a spoken output [20]. Compared
to this work, RIA uses a more comprehensive set of factors
including the utterance history, to rank the desirability of
data attributes. As a result, RIA can effectively handle data
queries like U1 (Figure 1). Since this is the first query and it
does not mention any house attributes, it is unclear how [20]
would respond to U1.

Many information-seeking dialogue systems also
address response generation. Similar to formulating conver-
sation acts in RIA, they focus on dialogue strategies (e.g.,
making a clarification or a presentation) [9, 2]. They do not
address the content selection issues presented here, as
response content is already encoded in each strategy (e.g., in
a schema [2]). Our work also differs from interactive visual
information-seeking systems (e.g., [1, 13]), where either
users must explicitly define the data content to be viewed/
manipulated [13] or a template is used to present the
retrieved data [1]. 

3. RIA SYSTEM OVERVIEW
Figure 2 provides an overview of RIA core compo-

nents. RIA uses an array of recognizers (e.g., speech and
gesture recognizers) and a multimodal interpreter to under-
stand a user input. An interpretation result captures both the
intention and attention of the input. In Figure 1, the interpre-
tation of U1 is to seek (intention) a set of houses (attention).
Exploiting a rich context (e.g., data semantics and conversa-
tion history), our interpreter can also handle abbreviated and
imprecise inputs [8].

Given an interpretation result, the conversation facilita-
tor suggests a set of conversation acts by weighing various
factors, such as data properties (e.g., data volume) and com-
munication obligations. Assume that U1 (Figure 1) results in
a large data set. The facilitator may formulate two acts: Apol-
ogize (too much data to present) and Describe (e.g., showing
the first N houses). Depending on the context (e.g., dealing
with an experienced buyer), the facilitator may Ask the user
for additional constraints, such as her preferred style,
instead of showing any houses.

Since conversation acts often do not specify the exact
content (e.g., house attributes) or the form or a response,
they are passed to the presentation broker for refinement.
Our presentation broker handles content selection/organiza-
tion, media allocation, and media coordination, similar to
the functions of the content layer defined in [5]. Conse-
quently, it produces a response outline that precisely defines
the intended content and the media usage (e.g., speech to
express the number of retrieved houses and graphics to
depict house locations). Based on this outline, the visual
designer and speech designer work together to create a
coordinated multimedia response [21, 28].

RIA relies on an information server to supply and man-
age various types of information, including domain data
(e.g., houses in real-estate domain), conversation history
(exchanges between RIA and a user), user model (e.g., user
profile), and environment model (e.g., media capabilities). 

4. EXAMPLES
We use a set of examples to explain how different fac-

tors influence the choice of data content in response to a
user query. First, data volume (the size of the result set for a
user query) impacts content selection. Normally, data vol-
ume is inversely proportional to the amount of information
presented per instance due to resource limitations (e.g.,
screen real-estate). For example, Figure 3(a–b) reveal more

Figure 2. RIA core components.

InputInput OutputOutput
Interpreter

Visual Designer Speech Designer

Information
Server

ConversationConversation
ContextContext

DataData User modelUser model EnvironmentEnvironment
modelmodel

Find houses near 
here <point>

speech
gesture
. . .

speech
graphics
. . .

I found 1 house . . .

Content Selection

Media Allocation

Media Coordination

Presentation Broker
Conversation

Facilitator



3

house attributes for 2 retrieved houses than Figure 3(c) does
for 16 houses.

Data properties influence what to convey. In Figure 3,
RIA includes house locations due to their importance in the
real-estate domain, and selects house images for their ability
of conveying rich information. Data properties dictate con-
tent selection when other factors are not present. In Figure
3(c), no user preferences are specified, and RIA selects con-
tent mainly by data properties, such as importance and
informativeness (the amount of information being con-
tained). In addition to individual data properties, data rela-
tions impact content selection. For example, it is preferable
to present the number of bedrms and bathrms together (Fig-
ure 1). It is also desirable to convey house attributes (e.g.,
image) with a Multiple Listing Service (MLS) number to
facilitate data identification (e.g., users may refer to the
houses by their MLSs) [24]. However, it is undesirable to
present MLS numbers alone, as they carry little information. 

Response content should also be tailored to user inter-
ests [6, 26]. For example, for the same query RIA conveys
different data to suit different user interests (Figure 3a–b).
For one user who is interested in financial, exterior, and
interior aspects, RIA chooses data, such as tax, siding, and
wall (Figure 3a). For the other who cares for size and amen-
ities, RIA selects data, like lot size and heat (Figure 3b). 

User queries impact content selection, since they often
imply a user’s interests to which the responses should be tai-
lored to. In Figure 1, query U1 may imply that the user be
interested in the relationships between the houses and the
hospital. Accordingly, RIA responds by incorporating the
relevant hospital information (Figure 1a). 

Conversation history also influences content selection.
Query U2 follows up U1 (Figure 1). Based on the conversa-
tion history, in this case RIA introduces new content (e.g.,
year in Figure 1b), while keeping the important content to
maintain the response continuity (e.g., showing house loca-
tions and bedrms in Figure 1a–b).

In short, when determining data content for a user
query, RIA considers a number of factors, including data
properties and user interests. Generally, any subtle varia-
tions in these factors, such as changes in data volume or
query patterns, may require different content sets to be
selected, which in turn prompt different responses. 

5. DATA CONTENT SELECTION
To handle all the situations described above and all their

possible variations, it is impractical to use a rule-based or
plan-based approach, which would require an exhaustive set
of selection rules or plans. Alternatively, we develop an
optimization-based approach to dynamically decide content
based on an interaction context, such as the specific user
interests and given presentation resources. We explain our
approach in three steps. First, we describe our context repre-
sentation. Second, we define a set of feature-based metrics
to model various context-sensitive selection constraints.
Specifically, these metrics dynamically measure the presen-
tation desirability and cost of data content. Third, we
present a greedy algorithm that uses these metrics to select
content such that its overall desirability is maximized and
the total cost is within a given presentation budget.

5.1 Interaction Context Representation
Based on previous work on creating multimedia presen-

tations [22, 24, 17] and information-seeking dialog systems
[26, 20], we model an interaction context from five aspects:
domain data (e.g., houses and cities), environment (e.g.,
media capabilities), query, user, and conversation history. 

Data Model
Since RIA handles user queries to databases, we model

the properties of structured data. For each application, we
define a data space, which is made up of concept spaces.
For example, a real-estate data space includes concepts,
such as house, city, and school, while a travel application
space may contain concepts, such as flight, hotel, and rental
car. A concept space contains a set of data dimensions, each
of which describes a specific aspect of the concept. For
example, a house space contains data dimensions, such as
price and style, and a city space has dimensions, including
name and population. Each dimension is characterized by a
set of features that specify the dimension’s semantic proper-
ties (e.g., price is an attribute of house) and meta properties
(e.g., price is quantitative data). We use an ontology to rep-
resent a data space, consisting of concept spaces, dimen-
sions, and dimension features. Here we focus on features
that directly impact content selection (Table 1). In particu-
lar, these features characterize a data dimension from its
presentation desirability and cost perspective, and most of
them are dynamically evaluated in context. 

U3: Show houses under $1M in Chappaqua U4: Show houses under $2M in Chappaqua

RIA: I found 2 houses under $1M in Chappaqua RIA: I found 16 houses under $2M in Chappaqua

(a) Prefer financial, exterior, and interior (b) Prefer size and amenity (c) No preferences specified

Figure 3. Example queries and responses (Cropped screen shots focus on the houses retrieved).
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Environment Model
To tailor a response to a particular application environ-

ment, we model two media-related properties: media avail-
ability and presentation budget. Normally, RIA uses visual
and spoken media, and adheres to space and time budgets.

Space budget sBudget counts the usable screen space in
pixels: sBudget = f×(H-h)×(V-v), where H and V are hori-
zontal and vertical pixels, h and v are used pixels (e.g., by
GUI trims), and f is a slack coefficient that adjusts the actual
usable space. We set f = 0.6 to prevent visual clutter. 

Time budget tBudget limits the maximal time (in sec-
onds) during which a RIA spoken output can last. Based on
the human attention studies [27] and our own experiments,
we set tBudget to 20secs to avoid overloading a user’s
working memory. 

User Query
We represent a user query in RIA using a 5-tuple: 
Query = <T, F, C, D, S>1.

Here T represents the user task; F indicates whether it is a
new query or a follow-up; C and D denote the data concept
and dimensions to be queried; and S is a set of constraints
that the retrieved data must satisfy. In Table 2, Q1 requests
houses that satisfy three constraints, and Q2 follows up Q1,
asking for taxes of the houses that meet an additional con-
straint (Constraint4). We represent a constraint in a 4-tuple: 

Constraint = <Dc, relOp, V, St>.
Here Dc is the constrained data dimension (e.g., style in
Q1), relOp is the relation operator (e.g., equality operator
==), V is the constrained value (e.g., COLONIAL), and St indi-
cates the status of the constraint: new (e.g., Constraint4 in
Q2), or inherited (e.g., Q2 inherits 3 constraints from Q1). 

Based on the user tasks (T), queries fall into three cate-
gories: data access, analysis, and lookup queries. Data
access queries ask for a specific set of data instances (e.g.,
Table 2a). On the other hand, data analysis queries look for

aggregate properties of desired data sets, such as count, min,
and max. In Table 2, Q3 seeks the count of the desired
school districts, and Q4 requests the price range of specific
houses. In addition, data lookup queries enable users to
examine known data entities (e.g., Table 2c). RIA now sup-
ports a wide variety of data access and lookup queries, but
limited data analysis queries. 

User Model
We model a user from two aspects: the user’s knowl-

edge and the user’s interests. In particular, we model both
aspects based on data factors. Here a data factor, containing
a sub-set of data dimensions, describes a collective aspect of
a concept. For example, the house financial factor includes
two dimensions: price and tax. A dimension may be related
to multiple factors, e.g., style belongs to both house exterior
and interior factors. The relations between dimensions and
data factors are defined in our ontology. 

Based on our notion of data factors, a user’s knowledge
of a domain is a union of all factors that she knows about.
For example, if a user indicates that she has owned a house
before, RIA then assumes that she knows about house exte-
riors and interiors. Similarly, a user’s interests are a union of
factors that she cares for, e.g., caring for house financial and
size factors. Currently, RIA uses a form-based questionnaire
to acquire a user’s knowledge and interests of a domain
when the user logs in.

Modeling a user’s knowledge and interests is a complex
task [11]. More sophisticated models are always desired to
gain a better understanding of a user. Nonetheless, our sim-
ple model helps to show how we can systematically incor-
porate a user model into a content selection process.
Moreover, we use data factors instead of data dimensions in
the user model to simplify the user profiling process. For
example, RIA asks users to indicate their interests from a
list of 6 house factors, instead of requesting them to choose
among 40 house dimensions.

Conversation History
Based on the conversation theory [16], we model a con-

versation history to record the detailed exchanges between a

1 Conjunctive queries, such as “show houses and cities”, can always be 
decomposed into queries concerning a single main concept at a time.

Feature Definition

Content quality

objectiveness degree of objectivity of the contained information

Content quantity

informativeness the amount of information contained

availability* how well the dimension is populated in a database

Content relevance

importance natural importance to the domain

I-relevance* relation to a user’s interests

K-relevance* relation to a user’s knowledge

Q-relevance* relation to the current query

H-relevance* relation to the interaction history

dependency relations to any other dimensions

media-suitability* relation to the fitness of a medium

media-capability* relation to the capability of a medium

Cost

space-cost* number of pixels needed to display the data

time-cost* number of words needed to speak the data

Table 1. Dimension features (*dynamically computed).

(a) Task = Data access queries

Q1: Show colonials under $300K in cities with over 5000 people

Concept = House; Dimension = null, Followup = false
Constraint1: style == COLONIAL, Constraint2: price < $300K
Constraint3: located-in ?C== [ City, Constraint: population>=5K ]

Q2: Just show taxes of those with brick siding

Concept = House; Dimension = {Tax}, Followup= true
Constraint4: siding = BRICK; Constraints1–3: from Q1

(b) Task = Data analysis queries

Q3: How many school districts have students over 2000

Concept = SchoolDistrict; Dimension = {Count}

Q4: What is the price range for ranches in Armonk

Concept = House; Dimension = {MinPrice, MaxPrice}

(c) Task = Data lookup queries

Q5: What is the population here <pointing to a location>

Concept = City; Dimension = {Population}

Q6: Show Phelps Memorial Hospital

Concept = Hospital; Dimension = null

Table 2. Data queries and their representations.
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user and RIA. Abstractly, each exchange consists of a user
act (e.g., a query or a reply) and the corresponding RIA act
(e.g., a direct reply or a follow-on question). Since we have
described our conversation history model in [8], we do not
elaborate it here. 

5.2 Feature-based Desirability and Cost Metrics 
As described in Section 3, the presentation broker takes

a set of conversation acts as its inputs. Based on their con-
tent, we roughly divide these acts into two categories: acts
that convey social messages and acts that present data. RIA
uses a template-based approach to select social messages
and an optimization-based approach to dynamically decide
data content. Initially, the intended data content is defined
by the current user query. However this information is often
insufficient for RIA to create a response, since the query
may not fully define the presentation content2. In Table 2,
Q1 does not explicitly specify the dimensions D to be
retrieved; in Figure 4, U5 defines D only partially, as addi-
tional dimensions, such as MLSs and house locations, are
needed to produce an effective response. It is undesirable
for RIA to convey all dimensions by default, since each data
entity may contain a large number of dimensions. To choose
proper data dimensions, RIA employs a set of selection con-
straints. Specifically, these constraints dynamically measure
the presentation desirability and cost of a data dimension. 

Presentation desirability metrics
We define a set of metrics to compute the presentation

desirability of a data dimension by three Gricean maxims
for effective information communication [15]: content qual-
ity, quantity, and relevance. We normalize all desirability
scores to lie between [0, 1], with 1 being the most desirable.

Measuring content quality. The quality maxim states that
we convey truthful information. For this purpose, we use
feature objectiveness to measure how objectively a dimen-
sion conveys information. Currently, we approximate data
objectiveness by a 3-level scale. If a dimension encodes a
fact (e.g., location), its objectiveness is 1. In contrast, if a
dimension conveys a subjective opinion (e.g., the house
seller’s remarks), its objectiveness is 0. The objectiveness is
0.5 for everything else falling in between (e.g., images taken
by the seller). Our current content quality metric is solely
based on information objectiveness:

Formula 1. F1(d) = objectiveness(d).
This states that the more objective the information is, the

better the content quality is.

Measuring content quantity. The quantity maxim asserts
that we make presentation as informative as needed. To
assess how much information a dimension conveys, we
compute feature informativeness. In particular, we define the
informativeness of a data dimension within a concept space.
Assume that the informativeness is 1.0 for a concept space
with N dimensions. Within this space, the informativeness
of a dimension is 1/N (e.g., price in the house space). How-
ever, the informativeness of a complex dimension, such as
image, is M/N, where M is the average number of dimen-
sions conveyed by the complex dimension, e.g., an image
may convey house shape and color. 

Measuring informativeness is meaningless if the value
of a dimension does not exist. For example, images are not
populated for all houses in our database. To accurately
assess content quantity, we use feature availability to compute
how well dimension d (e.g., price) is populated for a partic-
ular set of instances in a database. Specifically, we compute
availability by each query Q:

availability(d, Q) = K/N, where N is the total number of
instances requested by Q, and K is the number of instances
out of N that have dimension d populated.

Using both informativeness and availability metrics, we
calculate content quantity:

Formula 2. F2(d)=informativeness(d)×availability(d, Q).
Our metric states that the more information that a dimension
can convey, the higher its content quantity is.

Measuring content relevance. The relevance maxim states
that we convey relevant information. Based on previous
work on creating tailored data presentations [4, 7, 25, 6, 26,
20], we assess content relevance from 5 aspects: domain,
user, query, history, and media. We select content important
to a domain (domain relevance) and suitable for a user’s
knowledge and interests (user relevance). Moreover, we tai-
lor the content to answer a query (query relevance) in con-
text (history relevance), and ensure that the content be
presentable (media relevance).

Domain relevance. It is desirable to convey important
content [25]. Feature importance measures how important a
data dimension is in a concept space. We learn the impor-
tance of data dimensions offline by analyzing existing appli-
cations. For example, we analyze real-estate websites (e.g.,
www.realtor.com and www.century21.com) to study the
importance of various house dimensions (e.g., price and
style). In particular, at each site we assess the importance of
a dimension by its presentation prominence, including when
it is presented (e.g., at the first click), where it is presented
(e.g., at the top of a page), and how it is presented (e.g., in a
bold face font). The final importance of a dimension is the
average of its importance scores over many sites. We nor-
malize the importance to lie between [0, 1], with 0 being
unimportant, and 1 being the most important. Thus, we
define domain relevance, R(d, Domain) as:

Formula 3. R(d, Domain) = importance(d).
User relevance. A desired response must be tailored to

a user’s knowledge [7] and interests [6, 26]. To promote
dimensions that a user is familiar with or interested in, we2 In a database application, normally the developers pre-select the inter-

ested dimensions, if a query does not explicitly specify any.

U5: Show prices of houses under $1M in Chappaqua

RIA: I got 2 houses under $1M in Chappaqua. Here are their prices

Figure 4. A varied query pattern and its response.
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measure user relevance, R(d, U), how relevant dimension d
is to a user U. Based on our user model, we compute R(d, U)
using two features: K-relevance and I-relevance, which assess
how relevant dimension d is to the data factors that a user
knows about and cares for, respectively. Specifically, R(d,
U) is a weighted sum of the two measurements:

Formula 4. , where

K(d, U) denotes K-relevance, and I(d, U) denotes I-relevance.
Since I-relevance is a more comprehensive metric, we set
w1= 0.3 and w2= 0.7. 

We define a simple K-relevance metric to address two
cases. First, if dimension d does not belong to any data fac-
tors that a user knows about, then the user knows nothing
about d (K-relevance = 0). Otherwise, the user’s knowledge of
d is the same as her best knowledge of the data factor that d
belongs to. For example, style belongs to the house exterior
factor. If the user is familiar with exteriors, so is she with
style. Thus, we define K-relevance, K(d, U) as:

, where if d∈ fi, β = 1; oth-

erwise, β = 0; fi is the ith data factor that the user knows;
K(U, fi) is a binary value denoting the user’s familiarity of fi.

In contrast, we define a finer-grained I-relevance metric
to cover more complex cases. First, if dimension d does not
belong to any factors that a user cares for, then the user does
not care for d (I-relevance = 0). Second, if d belongs to multi-
ple factors that the user is interested in, d receives a higher I-
relevance value. Assume that a user is interested in house
exteriors and interiors. Dimension yearBuilt, related to both
factors, would gain a higher I-relevance than that of roof,
only related to exteriors. Moreover, if d belongs to a user-
interested factor that contains fewer dimensions, it acquires
a higher I-relevance. Suppose that a user cares for two fac-
tors: financial (containing just price and tax) and amenity
(with 8 dimensions like sewer and water). In this case, I-rele-
vance of price and tax would be higher than that of any
dimensions in amenity. The rationale is to increase the
chance for a dimension to be selected, if it belongs to a data
factor containing fewer members. Accordingly, RIA makes
a balanced decision whenever possible to cover every user-
interested factor. Thus, we define I-relevance, I(d, U) as:

, where fj is the jth factor

that the user is interested in; I(U, fj) is a discrete value
denoting the user’s interest in fj; β is the same binary value
as defined above; N is the total number of dimensions in fj.

Query relevance. A user query may imply what a user
cares for. In Figure 3, the user has specified a price con-
straint in U3, which may hint that she be interested in finan-
cial data, such as price and tax. To promote such content to
be included (e.g., price in Figure 3a–b), RIA computes
query relevance, how relevant dimension d is to a query.
Based on our query representation, dimension d may be
related to a query by three aspects: the user task (T), the
dimensions being asked (D), or the query constraints (S).
Here we make two assumptions to simplify our user rele-
vance metric. First, we consider all T similar, since RIA
mainly handles data access and lookup queries. Second, we
assume that D is already part of the response content, since
D is being explicitly asked for. Thus, Q-relevance, R(d, Q),

computes how relevant d is to query constraints S:
Formula 5. , where si ∈ S.

Here R(d, si) calculates how relevant d is to constraint si by
our constraint representation. If d is the constrained dimen-
sion in si (e.g., siding in constraint4 in Q2 Table 2), then R(d,
si) = t, t ∈ (0, 1]. We set t based on the constraint status: t=1,
if si is a new constraint (e.g., constraint4 in Q2), otherwise, t
is a time decay factor (e.g., constraint1 inherited by Q2). As a
result, we favor dimensions that are relevant to newly speci-
fied constraints.

If d is not the constrained dimension in si, we examine
how d may be related to the constrained dimension dk in si.
Assuming that everything else is equal, it may be more
desirable to convey tax data than roof data in the response to
U3 (Figure 3). In this case, tax is preferred because of the
price constraint, and both tax (d) and price (dk) belong to the
financial factor. To capture such semantic relevance, Sem(d,
dk), between d and dk, we define R(d, si) to be:

, where Pj(d,

di) is the probability of relating d to dk by the jth data factor
fj. Specifically, If d∈ fj and dk∈ fj, Pj(d, dk) = 1/M, M is the
number of dimensions in fj. Otherwise, Pj(d, dk) = 0.

History relevance. Discourse history influences what to
convey [25, 20]. Here we model how an interaction history
impacts content selection when a follow-up query is issued
(e.g., U2 follows up U1 in Figure 1). In such cases, RIA pro-
motes new information to address the follow-up query, sim-
ilar to ranking attributes by utterance history [20]. It also
tries to maintain a response continuity by slowing down the
decay of important dimensions (e.g., bedrms in Figure 1a–
b). In short, our history relevance metric, R(d, H) is:

Formula 6. .
Here β is a binary value, β = 1, if the current query is a fol-
low-up query, otherwise β = 0; K is the total number of
dimensions presented in the previous query; i is an integer
between [0, K]. If d was not presented before, i = 0. Other-
wise, we compute i based on d’s desirability. For example,
the rank of bedrms in Figure 1(a) is 1, as it obtains the high-
est desirability score in this case.

Media relevance. When selecting data dimensions, we
prefer those suitable for presentation in given media. Spe-
cifically, we use media relevance, R(d, M), to assess how
effectively dimension d can be conveyed in given media M: 

Formula 7. , where medium

mj∈ M, E(d, mj) computes the effectiveness of using mj to
convey d. Function Max() ensures that dimension d be con-
veyed by the most effective media. 

We further define media effectiveness using two fea-
tures, media suitability S(d, mj), and capability C(d, mj): 

E(d, mj) = S(d, mj) × C(d, mj).
Feature media-suitability assesses the degree of fitness of
using medium mj to express d. For example, text is the best
medium to convey numerical dimensions such as price and
size, speech is only fair (due to temporal transience), and
graphics (i.e., iconic encoding) is the least effective. We
model media-suitability based on media properties and data

R d U,( ) w1 K d U,( )× w2 I d U,( )×+=

K d U,( ) Max βK U fi,( ) i∀[ , ]=

I d U,( ) Avg βI U fj,( ) N⁄ j∀[ , ]=

R d Q,( ) Avg R d si,( ) i∀,[ ]=

R d si,( ) Sem d dk,( ) Avg Pj d dk,( ) j∀,[ ]= =

R d H,( ) β K i–( )2
K

2⁄[ ]=

R d M,( ) Max E d mj,( ) j∀,[ ]=
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semantic categories [4, 24] rather than by individual dimen-
sions. Feature media-capability specifies the implemented
capabilities of media-specific designers. For example, the
underlying visual designer may be incapable of expressing
spatial distances, although graphics may be the best medium
for depicting such information. Modeling media capability
allows RIA to easily support the evolution of media-specific
designers. Using the above example, if the visual designer
were improved, we only need to update the corresponding
graphics capability values. 

Using all the relevance metrics defined above, we
define the overall relevance metric for dimension d:

Formula 8. , where ui is the

weight, and R(d, xi) computes how relevant d is to one of
the factors xi by Formulas 3–7. Currently we assign heavier
weights to the query and user relevance metrics. 

Presentation cost metrics
There is always a cost associated with retrieving and

presenting data. Here we consider only the presentation
cost, assuming that the retrieval cost is the same for query-
ing any dimension from a database. As RIA uses both spo-
ken and visual media, we measure time and space costs.

Unit time cost. First we measure the word cost, the aver-
age number of words used for conveying one instance (unit)
of data dimension d in speech. For example, the average
number of spoken words for describing the style of one
house is 3. We estimate the word cost of each dimension
based on the corpus developed for the speech designer [21].
Since our time budget is measured in seconds, we convert
the word cost into a time cost:

timeCost(d) = s×wordCost(d)/60, where s is the TTS
(Text-to-Speech) speed, at 160 words per minute. 

Unit space cost. Space cost computes the pixels needed
to convey one instance of dimension d in text or graphics.
For example, the minimal space cost for displaying one
house image is 100x100 pixels. We use expert-made presen-
tations to estimate the space cost required to depict a dimen-
sion (e.g., counting the minimal number of pixels needed to
make a text string or an icon recognizable on a desktop). 

So far we have used simple metrics to assess the presen-
tation desirability and cost of data content from a number of
aspects (Table 1). Although we have found these metrics
adequate for our user tasks, we can always use more sophis-
ticated models. For example, we may measure user rele-
vance using a probabilistic model that can dynamically
track user preferences [11]. The crux of our feature-based
model is its extensibility. If RIA were to support web-based
document retrieval, we could easily incorporate new fea-
tures, such as data reliability (accessing data quality) and
retrieval cost. 

5.3 Content Selection Algorithm 
As described earlier (Section 5.2), content selection is

to fully define the data content (stored in a structure called
attention) of a conversation act. Our content selection algo-
rithm handles one conversation act at a time (Figure 5). The
output of our algorithm is the fully defined data content,
including all relevant data dimensions (line 15). If no atten-

tion or concept is specified, our algorithm ends (lines 1–2).
Otherwise, it decides content in three steps. 

First, it selects data dimensions for the main concept
being queried (line 5). For example, the main concept in Q1,
Q5, Q6 (Table 1) is house, city, and hospital, respectively.
The dimensions being explicitly requested (e.g., price in U5
in Figure 4) are also passed along (line 5). Second, it
chooses data dimensions for summarization purpose if the
current query is a data access query. For example, RIA pro-
vides the count of retrieved houses (Figure 3). To handle
summary situations alike, we introduce a concept, COLLEC-
TION, which has dimensions, such as count and range. Third,
it selects dimensions for other concepts being queried, if the
current query is a complex query (lines 9–14). A complex
query is a query relating multiple concepts. In Figure 1, U1
links houses (main concept) to hospitals. To provide a
coherent presentation, RIA attempts to convey information
of all related concepts. For example, RIA provides the hos-
pital name and location in addition to houses (Figure 1a).
We address this situation last to ensure that there is suffi-
cient budget for conveying the main concept first. 

Dimension Selection
In all three steps, the same routine SelectDimension() is

called with different parameters. The objective of this pro-
cess is to find a subset of data dimensions such that their
overall desirability is maximized and the total cost is within
given space and time budgets. Since it is an optimization
problem, similar to the 0-1 knapsack problem [10], we use a
greedy algorithm3 to approximate the process in two steps
(Figure 6). First, our algorithm ranks all dimensions by their
total rewards (lines 3–9). Routine reward() (line 7) com-
putes r(d), a weighted sum of d’s desirability scores by its
content quality (F1), quantity (F2), and relevance (F3): 

Formula 9. .

Here w1–w3 are weights. We have tuned the weights through

F3 d( ) ui R d xi,( )×
i
∑=

3  A greedy algorithm works here, since most of our data dimensions have 
similar cost. Otherwise, we would use dynamic programming [10].

ContentSelection (ConversationAct act)

Interaction Context: Query Q, UserProfile U, Media M
SpaceBudget S, TimeBudget T

1
2
3
4

5

6
7
8

9
10
11
12
13
14
15

if act.attention == null || act.attention.concept == null 
then return endif
Concept concept ← act.attention.concept // a copy of Q.C
List requestedD ← act.attention.dimension // a copy of Q.D

1. Select data dimensions for the main concept
List list ← SelectDimension (concept, requestedD)

2. Select data dimensions for data access queries
if Q is data access query then 

list ← append list SelectDimension(COLLECTION, null)
endif

3. Select data dimensions for complex queries
if Q is complex then

List cList ← Q.getSecondaryConcepts()
for each concept c ∈  cList do

list ← append list SelectDimension (c, null)
endfor

endif
act.attention.dimensions ← list

Figure 5. Outline of content selection algorithm.

r d( ) w1 F1 d( )× w2 F2 d( )× w3 F3 d( )×+ +=
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a series of experiments to set: w1= .15, w2= .15, and w3= .7.
We place the user-requested dimensions (e.g., price in

Figure 4) on the top of the ranked list (line 8). To help users
focus on what they ask for and to provide them with a coher-
ent view, routine top() uses a clustering algorithm to return
only a cluster of most desirable dimensions. For example,
house locations and city names are chosen in addition to the
requested price information (Figure 4).

Based on the ranked list, our algorithm packs as many
dimensions as the budget allows. First, it checks whether
dimension d has already been selected (line 12). It also
checks whether the reward is below a certain threshold t (t =
0.35) to avoid selecting undesirable dimensions. If d is not
packed, our algorithm calculates the cost of d (lines 13).
Depending on which medium is the most effective for con-
veying d (Formula 7), we compute the corresponding space
or time cost. The total cost is the number of retrieved
instances multiplying the unit cost of d. 

Using the total cost computed above, routine packable()
tests whether there is sufficient budget to accommodate the
current candidate dimension (lines 14). If the budget allows,
routine pack() adds the dimension to the selectedList (lines
15). If one type of budget runs out, our algorithm would
examine whether a different medium could present the
dimension equally effectively. After a dimension is packed,
the available budget is reduced accordingly. The packing
stops when all dimensions have been considered. 

Handling inter-related dimensions
So far our algorithm assumes that data dimensions are

independent of each other. This is not always the case. For
example, dimensions bedrms and bathrms always appear
together based on our analysis of real-estate websites. To
handle cases like this, our algorithm must consider the rela-
tionships among dimensions. In particular, we model
dimension dependency, which states that if dimension A
depends on dimension B, and A is selected to be conveyed,
then B must be included. Currently, we define dimension
dependencies based on different data relationships. For
example, one type of dependency is to group co-related
dimensions (e.g., bedrms and bathrms), the other is to gather

complementary dimensions to form a coherent presentation
(e.g., locating a house using city name and boundary) [19].

Based on our notion of dimension dependency, we
introduce group dimension, which contains a set of dimen-
sions by following a dependency chain. For example, if A
depends on B, and B on C, then two group dimensions are
formed: group [A, B, C] starting from A and group [B, C]
starting from B. During content selection, a group dimen-
sion is used to replace the head of the chain. In above exam-
ple, [A, B, C] and [B, C] replace dimensions A and B,
respectively. As a result, a group dimension may appear in
content ranking and packing (line 3 and line 11). 

To consistently handle a group dimension g and an indi-
vidual dimension d alike, we define the reward (line 4) and
cost (line 13) of g. Replacing d with g in Formula 9, we com-
pute the reward of g. But we need to define each feature
value of g (e.g., objectiveness or informativeness). In particu-
lar, g’s value for feature fi is a function G over fi of all g’s
members. We use different G for different features. For
example, G is Max() for computing the importance of g,
while G is Avg() for measuring the objectiveness of g. Like-
wise, we define the cost of g to be the total cost of all its
members. To pack a group dimension, there must be enough
budget to accommodate all members of the group. Using
group dimensions, we ensure that all relevant dimensions be
selected to produce a coherent view of the requested data.

Handling parasite dimensions
To create meaningful responses, we model a special

dimension, called parasite dimension, which depends on at
least one of the other dimensions. In other words, a parasite
dimension cannot be presented alone, and it must be con-
veyed with at least one of the dimensions that it depends on.
For example, an identifier like house MLS4, is considered a
parasite dimension. Since MLS conveys little information, it
is undesirable for RIA to provide users with only MLSs of
requested houses. On the other hand, without MLSs users
cannot easily refer to the houses that they are interested in
(e.g., “tell me more about MLS234076”). To address these sit-
uations, our algorithm treats parasite dimensions specially
during the packing process (line 14 in Figure 6). For a para-
site dimension, routine packable() checks whether at least
one dimension that it depends on has been packed. If no
such dimension has been packed yet, the parasite dimension
is put aside and it will be checked again. Otherwise, the par-
asite dimension is selected.

Most previous systems handle content selection, organi-
zation (e.g., ordering or grouping content into presentable
units), and media allocation separately [22, 4]. Since all
three processes are interrelated, considering the interactions
among them enables us to produce more desirable selection
results. In particular, our method selects a cohesive set of
content by addressing content ordering (ordering dimen-
sions by their desirability) and grouping issues (e.g., group-
ing dimensions by their dependencies). In addition, our
method ensures that selected content be presentable in given
media and presentation budget, which is normally addressed

List SelectDimension(Concept concept, List specifiedD)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

17

1. Rank data dimensions
List dimensions ← concept.dimensions
List rankedList ← emptySet
for each dimension d ∈  dimensions do

r ← reward (d, Q, U, M)
insert d in rankedList by descending order of r

endfor
if specifiedD != null then

rankedList ← append specifiedD top(rankedList) endif

2. Pack data dimensions
List selectedList ← emptySet
boolean success ← false
for each dimension d ∈  rankedList do

if d ∈  selectedList || r(d) < t then continue endif
c ← cost (d)
success ← packable (d, c, S, T)
if success then pack(d, selectedList) endif

endfor

return selectedList

Figure 6. Outline of dimension selection algorithm.

4 We do not model proper name identifiers, such as city name and school 
name, as parasite dimensions, since they are considered to provide a short-
hand definite descriptions of data entities.
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during media allocation. 

6.  IMPLEMENTATION AND EVALUATION
We have implemented RIA as a multi-threaded, distrib-

uted system using both Java and C++. All core components
are implemented in Java running under Windows, while the
graphics rendering component is developed using OpenGL/
Open Inventor/C++ running on Linux. RIA also uses an
IBM DB2 server and an IBM ViaVoice/TTS engine.

We purchased the house listings from the Westchester
Board of Realtors, and extracted all GIS data, including the
cities, school districts, and landmarks, from the U.S. census
database. Our database contains 1800+ houses, 70+ cities
and towns, 300+ school districts and schools, and 100+ dif-
ferent landmarks (e.g., hospitals and golf courses). The cor-
responding data ontology contains more than 20 concepts,
and each concept is associated with a number of dimen-
sions, e.g., a house has 40 dimensions and a city has 25. 

6.1 Evaluation
Prior to developing RIA, we conducted a Wizard-of-Oz

(WOZ) study on house hunting. Based on this study, we
have informally tested RIA as a whole involving many users
and thousands of queries5. So far RIA has successfully han-
dled most of the user situations identified in our WOZ
study6. Moreover, we devised and conducted a set of exper-
iments to evaluate our content selection approach. In partic-
ular, we compared how our approach performs against
professional human designers. 

Pilot Study
To collect realistic RIA usage scenarios (user query pat-

terns and sequences), we first conducted a pilot study,
involving 8 users. We asked each user to use RIA to find
houses that meet 7 common criteria that were collected from
our WOZ study (e.g., price and location criteria). Before our
users started, they watched a 2-minute RIA tutorial without
receiving additional training. Due to RIA’s current interpre-
tation capability, we limited our users to specify up to 4 cri-
teria in a query. As a result, every user accomplished his/her
task by taking an average of 5.6 turns. Eight users produced
8 distinct query sequences, each of which contains a series
of queries7. After the study, we asked our users to evaluate
their overall experience with RIA via a questionnaire.
Although users expressed their initial frustrations of not
knowing how to express their requests to RIA [8], they all
favored how RIA responded to their queries. They com-
mented that they were able to quickly obtain the pertinent
information from the presentation without taking extra steps
(e.g., asking for more details).

Experiment
We recruited two professional multimedia interface

designers, one male and one female, both with house hunt-
ing experience. Due to the time and effort involved, we ran-
domly chose 3 out of the 8 recorded sequences for this
experiment. We asked each designer to sketch a multimedia

response on paper for each query in 2 sequences. We also
asked them to mark the data dimensions that were most
likely to be presented and rank them based on their desir-
ability. For comparison purposes, we assigned one common
sequence to both designers (sequence 1 in Table 3). To
avoid any content bias, we provided the designers with a list
of data dimensions in an alphabetical order by each concept.
Our designers were also informed about the user profiles
associated with tested sequences (some of our users entered
profile data in the pilot). We ran RIA on all three sequences
and logged the selected data content. 

Result Analysis
For each query, we computed the distance between two

sorted data content lists, one produced by RIA and the other
by a human designer. Our distance metric considered both
content and ranking similarities. The distance is normalized
to lie between [0, 1]: the distance is 0.0 if two sets of
selected content are identical, including their ranks; the dis-
tance is 1.0 if there is no overlap at all between the two lists.
The distance for a query sequence is the average of the dis-
tances for all queries in the sequence (rows 1–2 in Table 3).
For contrasting purposes, we also compared the results pro-
duced by the two designers (row 3 in Table 3). 

In general, RIA selected data content similar to that
chosen by both designers (Table 3). For sequence 1, RIA
and Designer 1 chose almost identical content ranked in a
similar order for every query. We also examined the causes
of the differences made between RIA and our designers. We
summarized two main reasons. First, it was difficult for our
designers to accurately estimate the available space budget.
For example, a query in sequence 2 resulted in 16 houses.
Although we informed Designer 1 about the data count and
the available space budget, the designer still selected more
dimensions than RIA did (RIA adhered to the budget con-
straint). This cause also contributed to the differences made
between RIA and Designer 2 in sequence 3. Second, differ-
ent presentation techniques caused differences in content
selection. While both RIA and Designer 1 mainly used map-
based presentations to convey information, Designer 2
sketched a list-based presentation. As a result, Designer 2
did not select spatial information (e.g., house location) as
both RIA and Designer 1 did. Designer 2 also tended to
select more content due to his scrollable list presentation.
This fact confirms a claim made by Andre and her col-
leagues [3]: content selection and presentation design
should interleave, as these two processes may influence
each other.

From a list of factors considered by RIA (Table 1), we
asked our designers to rate those that had influenced their
decisions the most. Both designers rated the query-rele-
vance and user-relevance the highest, consistent with the
current model used by RIA (expressed by weights in Formula
8). It is worth mentioning that both designers spent a consid-

5 We have installed RIA at the IBM Industrial Solution Lab, as part of its 
live demonstrations for daily customer visits.
6 Most failed situations are due to RIA’s interpretation capability.

7 Just for the house concept,7 criteria produce 27-1 possible query pat-
terns, not counting these query patterns can be given in any permuted order.

Sequence 1 Sequence 2 Sequence 3

RIA-Designer1 0.056 0.162 n/a

RIA-Designer2 0.161 n/a 0.135

Designers1-2 0.132 n/a n/a

Table 3. Evaluation results.
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erable amount of time (well over an hour) to finish their
tasks (about 10 queries for 2 sequences). We also observed
that it is difficult for them to rank and select content items
from a long list of candidates. In this experiment, they were
dealing with more than 100 dimensions over 5 concepts.
These observations help confirm the value of our work in
response automation, especially when dealing with large
and complex data sets.

7. CONCLUSIONS & ONGOING WORK
To help users to explore large and complex data spaces,

we have built RIA, an infrastructure that supports user
information seeking via an intelligent multimedia conversa-
tion. Given a user query, RIA automatically generates a
multimedia response that is tailored to a conversation con-
text, including the specific user interests and the query
expressions. In this paper, we focus on the problem of deter-
mining the data content of a response. Specifically, we have
presented an optimization-based approach to content selec-
tion in two main steps. First, we introduce feature-based
metrics to systematically model various context-sensitive
selection constraints. In particular, these metrics dynami-
cally evaluate the presentation desirability and the presenta-
tion cost of data content. Second, we describe a greedy
algorithm that selects content such that its overall desirabil-
ity is maximized and the total cost is within a given presen-
tation budget. We have also designed and conducted a set of
experiments to evaluate our approach. Our results show that
RIA can handle most of the user situations identified in a
Wizard-of-Oz study and selects content similar to that cho-
sen by human designers. 

We are working on several areas to improve content
selection. To support complex data analysis tasks, we are
exploring how to use data mining algorithms to choose con-
tent for creating tailored and meaningful responses [23]. For
example, we would like to handle queries such as “Tell me
about the real-estate market in this area”. Due to the computa-
tional cost involved in examining a large data set, our cur-
rent approach examines the retrieval results only at an
aggregate level (e.g., the total count) without inspecting the
content of each instance. For example, RIA knows little
about missing data or erroneous data within specific
instances. However, this information may help RIA to cre-
ate a better response, e.g., skipping the missing data or iden-
tifying the erroneous data. We are examining how to
determine these situations efficiently so that RIA can better
handle different retrieved instances.
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