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Abstract 

 

 We describe a method for supporting static branch prediction on a 

decoupled fetch-execute pipeline.  Using instruction buffers to decouple 

instruction fetch from the execute pipeline is an effective way to minimize 

instruction cache penalties by allowing instruction fetch and stall miss handling to 

proceed independent of the execution pipeline.  Dynamic branch prediction is 

typically used with such architectures, but it is not necessary to assume the cost of 

dynamic branch hardware when static prediction is sufficient.  Traditional static 

branch prediction approaches were designed for lock-step pipelines and do not 

adapt well to decoupled fetch-execute pipelines, so alternative means of support 

were required.  We describe the requirements for achieving efficient static branch 

prediction on a decoupled fetch-execute architecture, and presents the design and 

results for an implementation on an EPIC-style target architecture.  

Keywords:  decoupled fetch-execute, static branch prediction, prepare-to-branch, 

EPIC, VLIW 
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1. Introduction  

As architecture and compiler designers continue to strive for greater degrees of 

parallelism, the effect of pipeline stall penalties on parallelism becomes very significant.  For 

high levels of parallelism, the average number of cycles spent executing an instruction (CPI) 

must be much less than 1.  Such a small CPI is only possible by minimizing the CPI penalties 

from stalls, thereby reducing their impact upon pipeline throughput.  The problem of reducing 

stall penalties is aggravated by the potentially greater frequency of stalls due to higher instruction 

issue rates.  It becomes necessary to find more capable methods for decreasing these penalties.  

Two common methods for reducing stall penalties include decoupled architectures and branch 

prediction. 

Decoupled architectures use buffering and control mechanisms to dissociate memory 

accesses from the rest of the pipeline.  When a cache miss occurs, the decoupled architecture 

allows the rest of the pipeline to continue moving forward, only stalling those instructions 

dependent upon that cache access.  Decoupling of cache accesses from the pipeline can be used 

with either instruction or data caches.  Decoupled data caches are not as effective in Explicitly 

Parallel Instruction Computing (EPIC)1 or Very Long Instruction Word (VLIW) architectures, 

where a single instruction contains multiple operations, so any operation that is dependent upon a 

data cache miss stalls the entire instruction.  Decoupling of the instruction cache access from the 

execute pipeline, hereafter referred to as decoupled fetch-execute, is beneficial for both 

superscalar and EPIC/VLIW architectures. 

Decoupled fetch-execute architectures use instruction buffers and branch prediction for 

enabling instruction fetch to be independent from the rest of the pipeline.  The instruction buffers 

are organized as a queue that receives instructions as they are fetched from the instruction cache.  

As instructions enter the queue, a branch prediction mechanism checks for the existence of a 

branch instruction.  When a branch is found, the prediction determines the likely branch target 

and direction, and if necessary, redirects the instruction fetch to the predicted address.  Most 

general-purpose processors today use dynamic branch prediction mechanisms, which can include 

                                                        
1 In keeping with current usage, we use the term EPIC to refer to a variable-length VLIW architecture. 
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tables of prediction counters, history tables, and branch target buffers [1][2].  Many of these 

schemes add considerable hardware, and may affect the processor frequency. 

Static branch prediction provides an alternate prediction method.  It does not perform as 

well as dynamic branch prediction for most general-purpose applications, but does do well in 

some application markets, so architectures for these markets may be able to forego the cost of 

dynamic branch prediction.  Such markets include media processing [3] and binary translation in 

software [4], which performs run-time compilation using dynamic profile statistics, enabling 

accurate static branch prediction. 

Numerous static branch prediction schemes have been presented in the literature 

[5][6][7], but the majority have been designed for lock-step pipelines.  These designs do not 

adapt well to decoupled fetch-execute architectures, so a new method was necessary to enable 

their use of static branch prediction.  The remainder of this report examines the requirements for 

static branch prediction on decoupled fetch-execute architectures, and an implementation for an 

EPIC processor.  Section 2 examines traditional static branch prediction methods, explaining the 

difficulties adapting these methods to decoupled instruction fetch architectures.  Section 3 

proposes a new method for static branch prediction and delineates the requirements for 

implementing this scheme and enabling the predicted branch target to be available for execution 

immediately after the branch operation.  Section 4 describes implementation of the decoupled 

fetch-execute engine on an EPIC architecture.  The performance is examined in section 5, and 

section 6 finishes with the conclusions.   

2. Static Branch Prediction 

Static branch prediction is the process of selecting at compile time the direction a 

conditional branch is expected to take.  Conditional branches that are predicted as not taken, i.e. 

those expected to fall through to the sequential path, are easily supported since instruction fetch 

logic automatically continues sequentially. Unconditional branches and conditional branches that 

are predicted as taken, i.e. those expected to continue execution at a non-sequential target 

instruction, require support for redirecting the instruction fetch unit to begin prefetching the 

expected branch target prior to execution of the branch.  It is desired that this prefetching begin 

immediately after the fetch of the branch instruction to enable execution of the expected branch 

target right after the branch executes. 
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One method for accomplishing this uses a prediction bit in the branch operation.  After 

fetching the branch operation, the expected branch target address is sent to the instruction fetch 

unit if the prediction bit indicates taken.  A problem with this method is that determination of the 

prediction direction and target address requires access to the contents of the branch operation.  

The expected branch target can only be fetched once the branch operation is returned by the 

instruction cache, the direction set by the prediction bit is determined, and the expected branch 

target address has been computed.  As shown in Figure 1, in an instruction cache with f stages, 

the earliest the contents of the branch operation become available is f cycles after the fetch was 

initiated.  However, the desired time to begin fetch of the expected branch target is only 1 cycle 

after the branch begins being fetched.  Consequently, the use of a prediction bit for performing 

static branch prediction will usually not allow ideal timing for fetching the predicted branch 

target, but will insert at least f-1 delay cycles between the branch and predicted target. 

An alternative technique is to issue a fetch hint operation, a Prepare-to-Branch (PBR) 

operation, for the expected branch target.  The PBR operation typically has one main field that 

indicates the address or displacement of the predicted branch target.  Additional fields may 

include a register destination for the address of the expected branch target, or a predicate 

condition which indicates whether to execute the PBR operation.  Such a predicate is particularly 

useful for implementing more intelligent static branch prediction methods, such as branch 

correlation.  Performing static branch correlation without using predication can require 

substantial code duplication [8][9]. 

A critical aspect of the Prepare-to-Branch operation is timing.  The PBR operation should 

be scheduled to begin fetch of the expected branch target immediately after initiating fetch of the 

corresponding branch operation, as indicated by option 1 in Figure 1.  It cannot redirect fetch 

earlier as that will prevent the branch operation from being fetched, and it should not redirect 

fetch later to avoid extra delay between the branch and the predicted target.  Achieving this 

timing requires two mechanisms.  First, a means is necessary for associating the PBR operation 

with the branch it is predicting.  This association is hereafter referred to as pairing, and the 

corresponding branch is called the paired branch.   Second, there must exist a mechanism for 

recognizing that the paired branch fetch has started and that fetch of the expected branch target 

may begin. 
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Figure 1 – Predicted branch target fetch timing:  1) desired timing, right after beginning 

fetch of paired branch, 2) fetch timing requiring contents of branch operation 

There are two principal approaches for implementing the Prepare-to-Branch operation.  

One method, commonly used in in-order lock-step pipelines, is to schedule the PBR operation a 

fixed number of instructions before the branch [5].  The fixed-position of the branch with respect 

to the PBR operation serves both as the means for uniquely defining the paired branch as well as 

indicating when the fetch of the expected branch target begins.  The dependent nature of all 

pipeline stages in a lock-step pipeline ensures correct fetch timing in the fixed-position method.  

However, the fixed-position timing model is only effective on lock-step pipelines and cannot be 

used in decoupled fetch-execute architectures, which eliminate the dependency between the 

execution pipeline and instruction fetch pipeline. 

Another scheme for implementing the Prepare-to-Branch operation uses a register 

destination in the PBR operation for pairing with the branch operation [6].  The branch operation 

uses the same register destination to provide its target address.  The register name provides a 

means for pairing without necessitating a fixed position for the PBR operation, and allows 

greater scheduling freedom.  Implementing timing for this technique requires first determining if 

the branch operation is available before starting fetch of the predicted branch target.  Availability 

of the branch operation can be determined by searching the newly fetched instructions, the 

instruction buffers, and the pipeline, for a branch operation using the same register as the PBR 

operation.  Once the paired branch is found, fetch of the expected branch target may begin.  Like 

the prediction bit scheme, this scheme also requires access to the contents of the branch 



 6

operation before enabling fetch of the expected branch target, so it too forces a minimum delay 

of f-1 cycles between fetch of the branch and its predicted target. 

3.  Proposed Method 

The main problem with the existing static branch prediction methods is that the contents 

of the paired branch operation are needed prior to fetching the predicted branch target.  In one 

approach, the prediction bit is necessary to determine the predicted direction, while the second 

scheme requires the name of branch register source to determine if pairing exists with a pending 

PBR operation.  Instead, proposed is a Prepare-to-Branch prediction method that does not require 

the contents of the branch operation. 

The proposed solution uses a field in the PBR operation specifying the last few bits of the 

address of the branch operation.  The number of bits used determines the size of the scheduling 

window (preceding the paired branch) over which the PBR operation can be scheduled.  The 

only restriction upon scheduling PBR operations within this scheduling window is that PBR 

operations occur in the same order as their paired branches.  This ensures that each PBR 

operation looks in the appropriate scheduling window when searching for its paired branch. 

An alternative approach to pairing that does not require access to the branch contents is to 

indicate the number of instructions after the PBR operation that the paired branch occurs [7].  

However, this approach is expected to require greater complexity for decoupled fetch-execute 

pipelines, particularly for implementations in explicitly parallel architectures with compressed 

instruction formats, where the size of an instruction is unknown prior to decoding.  The 

remainder of this section discusses the requirements for the proposed static branch prediction 

scheme using the least significant bits of the branch operation address for pairing.  

3.1.  Prepare-to-Branch Operation 

The Prepare-to-Branch operation must meet two requirements.  First, it must contain a 

field containing the last few address bits of its paired branch.  This address may either be to the 

paired branch operation itself, or to a group of operations which contains only one branch.  

Typically, 3-5 bits will be sufficient for the size of this field. 

Secondly, the PBR operation needs to be scheduled a certain number of cycles prior to 

the paired branch to enable the proper timing for fetching the expected branch target.  This 

latency is defined by the processor implementation.  Assuming an implementation with e execute 
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stages for the PBR operation, a wire delay of w cycles, f instruction fetch stages, and d decode 

and register fetch stages, the necessary distance, in the absence of stalls, is e + w + f + d - 1 

cycles, as shown in Figure 2.  Current processors typically have 1-2 fetches stages, 1 PBR 

execute stage, 2-3 decode stages, and 0 cycles for wire delay, achieving a latency of 3-5 cycles.  

However, as clock frequencies continue to increase, wire delay becomes more prominent, and 

this latency is expected to increase to 5-7 cycles. 

Scheduling for this latency depends upon the type of architecture being used.  In 

explicitly parallel architectures, only one parallel instruction may be issued per cycle, so the 

latency can be achieved by scheduling the PBR operation the necessary number of parallel 

instructions before the paired branch.  In superscalar processors, instructions may be reordered at 

run-time so it can be difficult to predict the latency between the execution times of any two 

instructions.  The latency can only be assured by scheduling the PBR operation early enough 

such that the dependency chains and/or resource dependencies of all operations between the PBR 

and branch operation enforce the desired latency between the PBR operation and paired branch. 

 

Execute

Execute

ExecuteDecode  FetchDelay

n: PBR

n+x: paired BR

n+x+1: branch target

w f d

e

1

 

Figure 2 – Minimum latency between a PBR operation and its paired branch  

 is x = e + w + f + d – 1 cycles 

3.2.  Searching for Paired Branch 

When a Prepare-to-Branch operation occurs, it is necessary to determine whether the 

paired branch operation is available before redirecting instruction fetch to the expected branch 

target.  Depending upon when the paired branch was scheduled with respect to the PBR 

operation, and whether any stalls have occurred, the processing of the paired branch operation 

may be in a number of possible stages, including: 

• in the execution pipeline 
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• in the instruction buffers 

• being fetched by the instruction cache 

• not yet being fetched 

The process of determining the location of a paired branch therefore requires a means to search 

for the paired branch in each pipeline stage (prior to the PBR execute stage), instruction buffer, 

and instruction cache fetch stage.  Furthermore, since only a few of the least significant address 

bits of the paired branch are being used, enough information must be available to determine 

which instruction is the actual paired branch, in the event that multiple matches are found.  Once 

the location of the paired branch is determined, the appropriate actions must be taken. 

If the paired branch is in any of the first three locations, then the paired branch operation 

is available and the fetch of the expected branch target may begin.  However, additional 

sequential operations following the paired branch may also be available in the pipeline, 

instruction buffers, and instruction cache.  As instruction fetch is being redirected by the PBR 

operation, all sequential operations after the paired branch in the pipeline, instruction buffers, 

and instruction cache must be squashed.  In the case of the instruction cache, this requires some 

mechanism to invalidate the offending sequential operations after they have been fetched. 

 If the paired branch is not yet being fetched, then the paired branch is not available and 

the PBR operation must wait until the fetch request for the paired branch has been issued.  Only 

after the instruction cache begins fetching at the address of the paired branch may the PBR 

operation redirect the fetch unit to fetch the expected branch target.  While waiting, the PBR 

operation and all information associated with it must be held in a state register. 

3.3.  Mispredicted Branches 

Support for mispredicted branches is similar though less complicated than the Prepare-to-

Branch support.  Like the Prepare-to-Branch operation, occurrence of a mispredicted branch 

must also redirect instruction fetch and invalidate all operations in the pipeline.  However, there 

is no need to search or wait for a paired branch.  A misprediction simply invalidates all 

instruction buffers, all instruction cache accesses, and all sequential operations after the 

mispredicted branch in the execution pipeline, and immediately redirects fetch to the correct 

branch target.  Again, in the case of the instruction cache, it will be necessary to invalidate the 

fetched instructions after they have been fetched. 
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For mispredicted branches, two types of misprediction can occur.  The first is a branch 

that was predicted not taken, but was actually taken.  In this case, the address of the actual 

branch target is specified in the branch operation, so it can be provided to the fetch unit for 

fetching the correct branch target.  The other type of mispredicted branch is a branch that was 

predicted taken, but was actually not taken.  In this case, the address of the actual branch target is 

not specified in the branch operation, but is the address of the operation sequentially following 

the branch.  Obtaining the address for fetching the correct branch target in this case requires 

either:  a) generating the sequential address of the correct branch target from the mispredicted 

branch address, or b) storing the sequential branch target address in a state register after the 

branch operation is decoded earlier in the pipeline.  While the former option seems like the better 

method, the latter approach may be more efficient for explicitly parallel architectures that use a 

compressed instruction format, as will be seen in section 4. 

3.4.  Fetch Control 

 The fetch control unit directs the instruction cache when to perform an instruction fetch 

and from what location.  Essentially, the fetch unit arbitrates between the various events which 

request instruction fetches and then issues the appropriate fetch requests to the instruction cache 

when it is not busy.  There are five events that can request an instruction.  Listed in order of 

increasing priority, they are: 

• instruction buffers request sequential instruction fetch 

• prepare-to-branch operation requests expected branch target 

• branch predicted not taken is mispredicted and requests non-sequential branch target 

• branch predicted taken is mispredicted and requests sequential branch target 

• exception or reset requests exception handler 

The most common and lowest priority event is the request for a sequential instruction fetch.  In 

this case, the instruction buffers have emptied to the point that they can accept more instruction 

data and so request the next group of sequential instructions. 

 When implementing fetch control, if the instruction cache is busy when a fetch request 

occurs, the fetch request must be stored in a state register which indicates the instruction address 

for the next fetch.  If multiple fetch requests are logged to this register before the instruction 

cache becomes available, only the highest priority fetch request needs to be saved. 
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3.5.  Instruction Buffers 

 The purpose of the queue of instruction buffers is to decouple instruction fetch from the 

execution pipeline.  The number of instruction buffers necessary for accomplishing this is 

dependent upon the architecture.  Any implementation of the queue should support standard 

queue attributes, advancing the queue whenever the head of the queue empties, and writing 

instruction cache data only to the first empty instruction buffer at the tail of the queue. 

With respect to the static branch prediction method described herein, the instruction buffer 

queue’s only responsibility is to issue a fetch request for the next sequential group of instructions 

when a sufficient number of entries becomes available.  The amount of room necessary before a 

fetch request is made must also account for the space required for any currently outstanding fetch 

requests.  For example, in a 2-cycle instruction cache, up to two instruction fetches may currently 

be outstanding in the cache, so a request should only be made if at least three buffers are empty. 

4. Implementation 

The proposed static branch prediction method for decoupled fetch-execute architectures 

was implemented on an EPIC architecture.  The architecture explicitly describes the instructions 

that are to be issued in parallel as a single long instruction word.  The parallel instructions are 

defined by a compressed instruction format, which uses stop bits after every operation to 

delineate the parallel operations.  A stop bit asserted by an operation indicates that all the 

instructions between it and the previous operation with an asserted stop bit are to execute in 

parallel.  To allow additional space in the operation format both for the stop bit, and predication 

as well, three operations are packed into a bundle of 128 bits, instead of only 32 bits per 

operation.   

Our implementation assumes an EPIC architecture capable of issuing a long instruction 

of up to six operations per cycle.  Each group of explicitly parallel instructions is called a 

package, and each package may contain between zero and six operations, where the case of zero 

instructions is defined as a null operation (NOP) followed by a stop bit. 

For simplicity in the initial implementation, a limitation was placed upon which 

operations could be used as branch targets.  Defining a pair of bundles aligned on a 32-byte 

boundary as a double-bundle, branching to non-sequential targets is only allowed to the 

beginning of a double-bundle.  This restriction is not a necessary condition for the static branch 
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prediction method, or even this implementation.  Branching to the beginning of every bundle 

could easily be allowed with only minor logic changes. 

One interesting aspect of the target instruction format with respect to this implementation 

is that not all operations are directly addressable by memory addresses.  Instead the address of an 

operation is characterized by the address of its bundle and its position (either position 0, 1, or 2) 

within the bundle.  Therefore, correlating the PBR operation and the branch operation via the last 

few bits of the branch operation will not work.  Instead, only the address of the double-bundle 

containing the paired branch is used for this correlation, with the restriction that only one branch 

operation be placed in a double-bundle containing a paired branch.  Again, this restriction could 

be relaxed to restrict the number of branches to one per in bundles containing a paired branch 

bundle (instead of one per double-bundle), with a minimum of extra logic. 

4.1.  Decoupled Fetch-Execute Engine 

Figure 3 gives an overview of the decoupled fetch-execute architecture..  This 

architecture embodies a typical instruction buffer architecture with a few additions to guarantee 

proper support and fetch timing for the Prepare-to-Branch operation.  As seen in the diagram, the 

design assumes a queue of six instruction buffers, each containing a double-bundle of six 

operations.  The fetch control logic uses a Fetch Address Table and Next Fetch Register to keep 

track of all outstanding instruction fetches and the next fetch request, respectively.  The Branch 

Sequential Table stores the addresses of the next sequential package after every paired branch.  

The PBR Pending Table maintains a listing of pending PBR operations, and the Paired Branch 

Found? circuit is used to search for the paired branch operation and invalidate all sequential 

operations following the branch.  It works in conjunction with the Pipeline Address Table, Fetch 

Address Table, and instruction buffer addresses to search in the execution pipeline, instruction 

cache, and instruction buffers, respectively.  Finally, the Shift Amount Control and Package 

Selection logic are circuits specific to the target architecture for extracting the next package from 

the first two instruction buffers.  The Decoding Paired Branch? circuit is required for checking 

for the existence of the paired branch in the package currently being decoded, and determining 

whether to store the next sequential package address in the Branch Sequential Table register.  

Each of these units will be discussed in more detail below. 
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Figure 3 - Decoupled fetch-execute architecture with static branch prediction support 

4.2.  Instruction Buffer 

Each instruction buffer contains four fields, as shown in Figure 4:  the contents of a 

double-bundle, the address of that double-bundle, a valid bit, and an on-path bit.  To maintain 

proper queue implementation, the instruction buffer is organized as a FIFO.  The Instruction 

Buffer Contains Paired Branch? circuit compares the last few double-bundle address bits against 

the address of the paired branch for a pending PBR operation.  The valid bit indicates if the 

current contents are valid. 

The on-path bit indicates that a previous pending PBR operation checked this double-

bundle for a paired branch and found its paired branch later in the instruction buffer or 

instruction cache, so this double-bundle lies on the correct path of execution.  Consequently, 

when the on-path bit is set (it is initially reset when fetch is initiated in the instruction cache), the 
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search for a paired branch will always return negative.  This ensures that multiple matches will 

not be found for the paired branch operation. 

Instr Cache
Addr/Data

Prev Instr Buf
Addr/Data

Data   (6 instrs)Addr Valid On-path

Instr Buffer
Contains

Paired BR ?

Paired BR Found in Instr Buf

(to Paired BR Found? logic)

PBR Pending

Paired BR Addr

Valid / On-Path

Control Prev Instr Buffer Valid

Invalidate

I-Cache Valid

 

Figure 4 – Instruction Buffer 

4.2.  PBR Pending Table 

The PBR Pending Table implements a queue that maintains the status of all pending 

Prepare-to-Branch operations.  As seen in Figure 5, the two primary fields in the PBR Pending 

Table contain the address of the expected branch target and the last few bits of the address of the 

double-bundle containing the paired branch.  In addition, there are two bits which indicate the 

status of the pending PBRs.  The first status bit, pending is set when a PBR operation executes 

and is added to the PBR Pending Table, and remains set until the paired branch leaves the 

instruction buffers.  As the paired branch leaves the buffers via the Package Selection logic, it is 

recognized by the Decoding Paired Branch? circuit, which clears the pending bit, advances the 

PBR Pending Table, and writes the next sequential package address to the Branch Sequential 

Table. 

As mentioned in section 3.4, a pending PBR operation may be in one of two states.  It is 

either searching for its paired branch operation, or has found the paired branch.  This is indicated 

by the found bit.  The found bit is reset when a new PBR operation executes and is added to the 

PBR Pending Table.  While the found bit is deasserted, the pending PBR sends the address of its 

paired branch to the Paired Branch Found? circuit, which searches the pipeline, instruction 

buffers, and instruction cache each cycle until the paired branch is found.  Once found, the found 

bit is asserted, and the Paired Branch Found? circuit invalidates any sequential operations 

following the paired branch, sets the on-path bit in the remaining valid operations prior to and 
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including the paired branch, and a fetch request for the expected branch target to the Fetch 

Control unit. 

The PBR Pending Table is organized as a queue to avoid incorrectly searching for paired 

branch operations.  The predicted direction of the branches defines a predicted path of execution.  

PBR operations must be occur in the same order as their paired branches so that each PBR 

operation will only search for its paired branch in the appropriate section of the predicted path.  

The queue arrangement accommodates this requirement, handling PBR operations one at a time 

so paired branches are searched for in order, ignoring operations already recognized as on-path.  

Pending Found Paired BR Address Predicted BR Target Addr

Tail Ptr

Advance

(after decoding
paired BR)

 

Figure 5 – PBR Pending Table (implemented as a queue) 

4.3.  Fetch Control 

The Fetch Control unit, as shown in Figure 6, arbitrates among the various fetch requests, 

keeps track of the addresses and validity for all outstanding fetches and stores the sequential 

address after a paired branch.  The Fetch Address Table serves the dual purpose of indicating 

whether the instruction cache is available to receive another fetch request, as well as providing a 

history of all outstanding instruction fetches.  The Fetch Address Table also has a valid bit and 

an on-path bit for each entry which indicates whether the fetched data will be valid, and whether 

its operations may be searched for paired branches.  This valid bit determines the validity of data 

arriving from the instruction cache.  It is initially set, but may be deasserted by a mispredicted 

branch or by a pending PBR operation after a paired branch is found.  The on-path bit is initially 

reset, and is only set if it contains operations along the path prior to a paired branch. 

The fetch control unit also contains a Next Fetch Register, which holds the address and 

priority of the next instruction to be fetched when the instruction cache becomes available.  The 

Next Fetch Register contains three bits which indicate the priority level of the fetch request, as 

described in section 3.4.  One bit is used for each request type:  PBR operation requests, 

mispredicted branch requests, and exception/reset requests.  When no bits are set, a sequential 

fetch request is indicated. 
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The fetch control unit also contains the Branch Sequential Table, which is a queue that 

stores the addresses (double-bundle address and Shift Amount) of the next sequential package 

after each paired branch.  If a paired branch is mispredicted, it must return to its sequential 

branch target, which is available here.  Because a sequential branch target is need not be at the 

beginning of a double-bundle, the Shift Amount (described in section 4.5), indicating the 

beginning of the package in the double-bundle, is also contained in the Branch Sequential Table.  

The number of entries in the Branch Sequential Table must equal the number of possible pending 

PBR operations (the size of the PBR Pending Table). 

Valid On-PathFetch Address

Tail Ptr

Fetch BR
Target Addr ?

Fetch BR
Target Addr ?

Paired BR Addr

Paired BR Found
In Instr Cache

Paired BR Found
In Instr Cache

Instruction Fetch Address Table:

Shift AmountSequential Address

Tail Ptr

Branch Sequential Table:

Next Fetch Register:

Fetch Address

Next Shift AmountNext Sequential Addr
(write after decoding

paired BR)

Fetch Req Priority (3 bits)

PBR Table
Target Addr

+ 1

Exc/Reset Addr

 

Figure 6 – Fetch Control Unit 

4.4.  Paired Branch Found? 

It is necessary to search the instruction cache, instruction buffers, and pipeline for the 

paired branch corresponding to a pending PBR operation.  For instruction cache, the Fetch 

Address Table keeps an ordered listing of the outstanding fetches currently being performed.  For 

the instruction buffers, each instruction buffer has its own address field.  And in the pipeline, the 

Pipeline Address Table (or similar hardware that provides the addresses and validity of packages 
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in the pipeline) maintains the addresses for packages in the pipeline2.  The last few address bits 

of the paired branch corresponding to the first pending PBR operation (whose found bit is not 

set) is compared against each of these addresses.  If the addresses match, and the on-path bit for 

that operation or package is not set, then the paired branch is found.  The Paired Branch Found? 

circuit communicates this to the fetch unit, instruction buffers, and pipeline, invalidating all 

sequential operations after the branch and setting the on-path bit for all operations prior to and 

including the paired branch.  Additionally, a request is sent for fetching the expected branch 

target address, whose address is provided by the PBR Pending Table. 

4.5.  Package Selection 

Because the target architecture does not provide unique addresses for each operation, it is 

necessary to maintain a pointer for extracting packages from the double-bundles.  The pointer, 

referred to as Shift Amount, points to the first operation in the package currently being extracted.  

The Shift Amount pointer is sent to six multiplexers which select the next six operations in the 

first two double-bundles.  The stop bits of these six instructions are then evaluated to determine 

which instructions actually belong to the package.  All instructions up to and including the 

instruction with the first asserted stop bit belong to the package.  The Shift Amount pointer is 

then adjusted to point to the next operation after the last instruction in this package.  In the event 

that the first operation of the next package is in the second instruction buffer, not the first, an 

Advance signal is asserted which advances the entire instruction buffer queue. 

                                                        
2 In in-order processors, Pipeline Address Table is unnecessary if scheduling ensures the paired branch is not in the execution 
pipeline when the PBR operation executes. 
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Figure 7 – Package Selection 

4.6.  Summary of PBR Execution 

To summarize, when a PBR operation executes, the PBR operation is written into the first 

empty spot in the PBR Pending Table, setting the pending bit and resetting the found bit.  Then it 

sends the (last few bits of the) address of its paired branch to the Paired Branch Found? circuit, 

which searches the pipeline (via the Pipeline Address Table), instruction buffers (via the 

Instruction Buffer Contains Paired Branch? circuit in each buffer), and instruction cache (via the 

Fetch Address Table).  Once the paired branch is found, all sequential operations following the 

branch are invalidated, all operations prior to and including the branch have their on-path bits 

set, and a fetch request for the expected branch target is sent to the fetch control unit.  The fetch 

control unit writes the address of the expected branch target into the Next Fetch Register, and the 

instruction cache begins fetching it, assuming no higher priority fetch requests are pending.  

When the instruction data is returned by the cache, the paired branch and expected branch target 

flow through the instruction buffers until the paired branch is decoded during Package Selection 

and clears the pending PBR operation from the PBR Pending Table. 

For mispredicted branches, the process is similar, though all entries in the instruction 

cache, instruction buffers, and pipeline are invalidated.  The Next Fetch Register is then set with 

the actual branch target.  For branches that were initially predicted not taken, the correct branch 
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target address is provided in the branch operation.  Otherwise, for branches that were initially 

predicted taken, the sequential branch target address is provided by the Branch Sequential Table. 

5.  Results 

 To determine correctness and feasibility of this design in high performance processors, 

the implementation of the decoupled fetch-execute engine described in section 4 was modeled in 

VHDL.  The VHDL code was simulated for correctness and verified that the proposed method 

efficiently supports static branch prediction for architectures with decoupled fetch and execute 

pipelines.  While the initial implementation only allowed for one pending PBR operation, the 

additional logic for multiple pending PBR operations should be minimal. 

  Synthesis of the VHDL model was used to examine the relative feasibility of this method 

in existing and future processors.  The target process for synthesis was IBM’s SA-12 CMOS 

standard cell ASIC technology.  This technology features a 0.25µm lithography with a 0.18µm 

effective channel length, 2.5V supply voltage, and 5 levels of metal wiring.  Performance for a 2-

way NAND gate with fanout of 2 and 0.5mm wire is nominally 67ps. 

 Preliminary synthesis results give a total of less than 13,000 logic gates, including 1830 

registers.  Static timing analysis reveals a maximum path length of 3.85ns (260 MHz).  With 

further tuning and logic optimization, the timing can be expected to improve significantly.  

Furthermore, it should be noted that full custom design, as would be employed in an actual 

implementation of a processor incorporating this design, is typically capable of factors of 2 to 3 

times greater speed than an ASIC implementation.  It is therefore expected that operation in the 

gigahertz range is feasible with the current technology.  The National Semiconductor Roadmap 

[10] forecasts clock frequencies for high performance processors, currently up to 1.25 GHz, as 

reaching 2.1 GHz by 2003.  The implementation described here is consistent with such 

performance levels. 

6.  Conclusions 

 We have presented a method for supporting static branch prediction on architectures that 

decouple the instruction fetch from the execution pipeline.  Use of decoupled fetch-execute 

architectures represents an effective way to minimize the penalties due to instruction cache 

misses.  However, existing static branch prediction techniques do not work well with such 

architectures.  A new method is proposed for static branch prediction using the Prepare-to-
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Branch (PBR) method, which adds a field in the PBR operation specifying the last few address 

bits of the corresponding branch operation.  Use of the branch operation’s address defines a 

method for pairing the two operations without requiring access to the contents of the branch 

operation.  It is therefore possible to determine whether the paired branch operation is in the 

process of being fetched before the branch is even available.  This enables the architecture to 

start fetching the predicted branch target immediately after fetch begins for the paired branch. 

 Using this PBR prediction scheme, the report describes the requirements for 

implementation on a decoupled fetch-execute architecture and enabling proper timing between 

the branch operation and its predicted target.  An implementation for an EPIC architecture is 

presented, simulated for correctness, and synthesized to a 0.25µm ASIC standard cell 

technology.  Initial cycle time estimations indicate a 3.85 ns clock cycle, corresponding to a 260 

MHz design.  These early results indicate excellent performance.  As the technology for this new 

method matures, operating frequencies in full custom processor implementations are expected to 

reach well into the GigaHertz range. 
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