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Abstract

We describe our experiences with DAISY
(Dynamically Architected Instruction Set from
Yorktown). DAISY dynamically translates code
for a RISC processor into code for an underlying
VLIW processor. This translation is done piecewise
— when a fragment of code is first encountered for
execution, it is translated into code for the under-
lying VLIW machine and saved. This translation
process begins with firmware executed by the RISC
processor at boot time, continues through a full
operating system boot, user login, and X-Windows,
under which a variety of applications are run. The
translated code is executed under simulation thus
guaranteeing the correctness of the whole process.

In executing this translated code, numerous “diffi-
cult” situations emerge:

� Support of precise exceptions for the RISC pro-
cessor in VLIW code that is drastically re-
ordered. Such exceptions include page faults,
alignment exceptions, and protection viola-
tions.

� Support for virtual address translation.

� Ability to deal with raw I/O devices such as net-
works, keyboards, and graphics adapters. These
devices impose not only a semi-realtime re-
quirement, but care must also be taken that

reads and writes to I/O locations are not cached.
Speculative accesses to I/O locations must be
quashed.

This paper describes the novel ways in which
DAISY deals with these and other difficulties, and
presents some preliminary statistics measuring the
effectiveness of full system binary translation.

1 Introduction

VLIW processors have traditionally suffered from
compatibility problems — both with existing proces-
sors and between generations of VLIW processors.
Dynamic binary translation as exemplified by our
DAISY [8, 9, 10, 12] and Transmeta’s Crusoe [15]
provide a way around these problems by using code
for an existing processor (PowerPC or x86) as a
distribution format, and dynamically translating the
code into the native VLIW form used by the under-
lying machine. In contrast to binary translation ap-
proaches such as IBM’s Mimic [14], HP’s HP3000
Emulator [4], Compaq’s FX!32 [5] and HP’s Dy-
namo [2], both DAISY and Crusoe make binary trans-
lation invisible to the user by emulating the entire
processor including “hard” system and privileged
operations, exceptions, address translation, etc.. Tan-
dem [1] and Apple [17] also perform full system
translation like DAISY and Crusoe albeit with two
significant differences: (1) Tandem/Apple binary
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translation was used to move from CISC to RISC
platforms instead of from RISC/CISC to VLIW, and
(2) both Tandem and Apple controlled the operating
system run on their machines and used this fact to
aid translation.

DAISY dynamically translates from PowerPC
code to an underlying VLIW machine. We do not
currently have hardware for DAISY. In order to test
the full system capabilities of DAISY we simulate
it on the bare hardware of an existing RISC ma-
chine, thus demonstrating that DAISY properly han-
dles exceptions, virtual address translation, I/O with
its semi-realtime requirements, and is not dependent
on any operating system function. In doing so, we
have also gained valuable experience and statistics
on quantities important to dynamic binary translation
such as code reuse, the amount of static code exe-
cuted, how often certain architectural features such
as Little Endian Mode are used (and hence how effi-
ciently they must be supported), and the frequency at
which code is overwritten. Overwriting code can sig-
nify self-modifying code. It can also occur when the
operating system overwrites an existing code page
with a new code page.

In this environment DAISY successfully boots
and runs an unmodified RISC workstation. DAISY
starts translating and firmware at the RESET location
0xFFF00100. As each fragment of code is trans-
lated, it is saved for later use and executed. DAISY
continues this process through the loading of the op-
erating system (AIX), user login, the initiation of X-
Windows, the execution of a variety of applications
under X-Windows including emacs, latex, the dbx de-
bugger, and a user mode version of the DAISY sim-
ulator.

In the remainder of this paper, we describe the
DAISY VLIW, the challenges to such full-system
binary translation, and the novel ways in which we
have solved them. We also present some preliminary
statistics on the effectiveness of binary translation.

2 DAISY VLIW

Our DAISY VLIW architecture is parameterizable.
Its issue width could range from 4 to 16, with 64
integer registers, 64 floating point registers, and 64
condition register bits (16 condition register fields).
The first 32 integer registers contain PowerPC val-
ues, while the upper 32 registers are used for specu-
lative computation or are reserved for translator use.
For example, r3 always contains the value that r3
would contain in a “normal” PowerPC program. The
condition bits are similar with the first 32 corre-
sponding to the PowerPC condition bits, and the sec-
ond 32 being available for speculative and scratch
computation.

Each DAISY instruction can have up to 4-16 op-
erations depending on the machine width, of which
half can be loads/stores. Given that DAISY is de-
signed as a target for PowerPC instruction, its prim-
itive operations are similar to PowerPC operations,
with the exception that complex PowerPC operations
such as update instructions and string operations are
cracked into simpler DAISY primitives.

Each primitive ALU and memory operation in a
DAISY instruction can be predicated on up to 3
condition bits, although predicate bits are associ-
ated with an VLIW instruction, not each operation.
Hence there are not independent predicates for each
operation.

Each DAISY VLIW instruction can branch to
multiple targets. There are some restrictions on the
location of targets, e.g., all in the same L1 ICache
line. Such restrictions can be dealt with by an assem-
bler which tries to find an instruction layout obeying
these branching restrictions, and which duplicates
instructions if necessary in order to accommodate
them. This style of VLIW instruction was pioneered
by Ebcioğlu [7].

Figure 1 shows the overall framework under which
DAISY operates. Of particular importance is the fact
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that DAISY runs directly on the hardware, with no
intervening operating system support. This provides
the benefit of portability — any operating system
from AIX to Linux to MacOSX should run without
changes to the DAISY system (or the operating sys-
tem), although to date, we have only tested DAISY

with AIX.

Figure 2 shows a DAISY system. The shaded
boxes differ from a traditional PowerPC system,
while the unshaded boxes do not. As can be seen
a traditional PowerPC processor is replaced by a
DAISY VLIW processor. The translator and sys-
tem software for DAISY are placed in the DAISY
Flash ROM. (This code could also be burned into a
ROM in the DAISY VLIW chip if a pin compatible
replacement were desired for an existing and unmod-
ified PowerPC system.)

The translator and system software are the only
code which are compiled or written natively for
DAISY. When the machine boots, DAISY begins
executing code from a preassigned address in the
DAISY Flash ROM. This boot code performs nor-
mal bootup tasks such as probing for the amount of
available RAM memory and testing it. It then par-
titions the memory into PowerPC and DAISY sec-
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tions, with the PowerPC section normally being by
far the larger of the two. Later during normal system
operation, the PowerPC memory will look exactly
like it would were a more traditional PowerPC pro-
cessor in use. And, as explained in Section 3, Pow-
erPC code will have no access to the DAISY code
portion of memory, and indeed has no way of know-
ing that it exists.

The DAISY Flash ROM code then copies itself
into the DAISY portion of memory, possibly uncom-
pressing portions, although compression is probably
not necessary, as the code size for the translator and
system software is currently only 363 kbytes. At this
point, translation of PowerPC code begins with the
PowerPC entry point, 0xFFF00100, which is con-
tained in the (unmodified) PowerPC Flash ROM.

Translated code is kept in the DAISY portion of
memory. Figure 3 depicts the DAISY memory map
in slightly more detail. As noted, the DAISY por-
tion also contains the DAISY system software and
translator and other required tables.

3 Data Address Translation

In its current incarnation, DAISY is based on 32-bit
PowerPC [13], under which 32-bit PowerPC effec-

tive addresses are normally mapped to 52-bit vir-
tual addresses via the PowerPC segment registers.
These 52-bit virtual addresses are in turn mapped to
32-bit real addresses via the page table or TLB. In
many PowerPC implementations, such as the 604e
this mapping is accomplished with hardware support
such as TLBs and hardware page-table walks. For
high performance, DAISY must also provide sup-
port for PowerPC address translation. Such sup-
port includes hardware implementation of TLBs, the
16 PowerPC segment registers, the 16 Pow-
erPC BAT registers, and the PowerPC SDR1 register
indicating the base address and size of the page table.

DAISY handles the bulk of address translation
through its Data TLB (DTLB), which is illustrated
in Figure 4.

There are particular wrinkles in dealing with data
TLBs (DTLBs):

� PowerPC address translation is complicated by
Block Address Translation, (BAT) which is con-
trolled by 8 instruction and 8 data BAT regis-
ters. These BAT registers directly map 32-bit
PowerPC effective addresses to 32-bit real ad-
dresses without need of a page-table or TLB
lookup. The range of addresses translated by
BAT registers is also much larger than the 4
Kbyte page used by the page table. Block sizes
are powers of 2 and range from 128 Kbytes to
256 Mbytes.

For simplicity of hardware and simulation, the
DAISY DTLB always uses a 4 Kbyte granu-
larity. Thus the 128 Kbyte region translated
by a single BAT register requires 32 entries
in the DAISY DTLB. (Accesses which use
BAT translation turn out to be relatively rare in
RS/6000 firmware and AIX 4.1.5, thus support-
ing BATs in the DTLB does not cause excessive
overhead.)
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� PowerPC has multiple forms of memory pro-
tection, with certain protections associated with
BATs, segment registers, and page table en-
tries. Many of these protections are based on
whether the privilege bit (MSR.PR) in
the PowerPC MSR is set. In other words, in su-
pervisormode certain pages may be read or
written that may not be in non-supervisor
mode. Even address translation may differ be-
tween supervisor and non-supervisor
mode. As noted in the PowerPC manual, “ �����
a supervisor program can use the block ad-
dress translation mechanism to share a portion
of the effective address space with a user pro-
gram (that uses page address translation for
this area).” [13]. Thus, it is essential to have
MSR.PR as an input to the DAISY DTLB.

Since pages (or BATs) can be further marked
as read-only or read-write, a read-
only bit is made an additional part of the valid
indicator for each DTLB entry. This bit is con-
sulted only on a store, and results in an ex-

ception if the page is marked read-only.

� Not only PowerPC addresses translated via
BATs or the page table need to be remapped in
DAISY. Even PowerPC real accesses need to
be translated, i.e., loads and stores in which the
DT (Data Translate) bit in the PowerPC
MSR is off, and the effective address produced
by a program is also the real address.

The primary reason that such real accesses must
be translated in DAISY is to prevent PowerPC
code from accessing DAISY memory. As was
illustrated in Figure 3, DAISY occupies the
high portion of main memory, while PowerPC
code occupies the low portion of main memory.
If no protection were provided, malicious or
buggy PowerPC code could corrupt DAISY’s
memory.

DAISY handles PowerPC real accesses by
performing translation differently based on
whether the PowerPC MSR.DT bit is set, as the
MSR.DT input to the DTLB in Figure 4 sug-
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gests.

In DAISY, all PowerPC data references go
through the DTLB. If PowerPC tries to access a
page in DAISY memory, DAISY instead places
an entry in the DTLB pointing to a special
guard page in DAISY memory containing all
0xFFFFFFFFs. Since all PowerPC references
outside the legal PowerPC memory space go to
this guard page, uncontrolled access to DAISY
memory by PowerPC code is prevented. This
guard page page is marked read-only in the
DTLB. The net result is that memory locations
beyond allowed PowerPC bounds appear not to
exist — they always read 0xFFFFFFFF, and
do not change value when written. Thus any
PowerPC functions probing for available mem-
ory find only that allotted to PowerPC.

This scheme does have the drawback that all of
real memory is allocated between PowerPC and
DAISY at the time a system is booted. If after
running for a period of time, DAISY discov-
ers it has more memory than needed for transla-
tions, it cannot give the extra back to PowerPC.
Likewise if DAISY discovers that its transla-
tion area is too small to hold the working set
of translations, it cannot regain memory con-
trolled by PowerPC. These are interesting areas
for future work, and it may be possible to make
DAISY work with the hot swapping capability
of many systems, in which new cards and re-
sources can be added to a running system.

� It is also necessary to keep DMA and periph-
eral devices from accessing DAISY memory. In
general this requires hardware support. How-
ever, we have found in our simulations of boot-
ing and running a DAISY machine that sim-
ply preventing PowerPC code from accessing
the DAISY area is sufficient — since the Pow-

erPC cannot tell that the DAISY memory ex-
ists, it does not tell DMA or peripheral devices
to write to that memory.

� Another aspect of PowerPC address translation
modeled by the DAISY DTLB are the Pow-
erPC WIMG bits: W = Write any stores
through the cache hierarchy, I = Inhibit any
caching, M = Memory must be kept coherent
for MP accesses, and G = Guarded memory,
i.e., no speculative accesses are allowed. This
WIMG information is kept in the DTLB with
each page and provided to the cache and mem-
ory system by the DTLB on each access, as il-
lustrated in Figure 4.

I/O locations typically have the I and G bits
set. For memory regions in which I or G is set,
speculative loads must be quashed. Although
DAISY does not currently do so, it may be
worthwhile to re-translate without load specu-
lation, portions of code which frequently access
I/O locations.

� The PowerPC page table associates with each
page a Referenced bit and a Changed bit.
As the names suggest PowerPC sets these bits
when a page is referenced or changed. These
bits are typically used by an operating system
to determine which pages to swap out, and
whether any dirty data needs to be swapped out
with them.

Thus whenever an entry is brought into the
DTLB, its Referenced bit is set in the Pow-
erPC page table. If an entry is brought into
the DTLB because of a load, then that entry
is marked read-only in the DTLB even if the
PowerPC protections indicate that the page is
read-write. Then if a store subsequently oc-
curs to that page, the result is a DTLB miss.
Upon this miss, DAISY sets the Changed bit
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in the page table, and changes the DTLB en-
try to be read-write, as suggested in Figure 4.
(These actions assume that the PowerPC pro-
tections allow them. If not, DAISY signals an
exception.)

4 Exceptions

PowerPC provides precise exceptions except in rare
cases such as certain types of machine check excep-
tions. Thus DAISY must also provide for precise
PowerPC exceptions (and probably also precise na-
tive VLIW exceptions as well). How precise excep-
tions can be realized under dynamic binary transla-
tion has been described elsewhere [9]. Two essen-
tial points of that approach were (1) that values are
placed in memory and in registers in the original pro-
gram order and (2) that the address of the excepting
instruction be readily computable based on a register
containing the effective address of the current Pow-
erPC page entry point and a side table containing the
offset within a page of the PowerPC operation corre-
sponding to the start of each VLIW instruction.

DAISY deals differently with synchronous and
asynchronous exceptions. Asynchronous exceptions
(such as external exceptions and decrementer excep-
tions in PowerPC) occur independently of current in-
struction execution. By contrast, synchronous excep-
tions (such as page faults, protection violations, ille-
gal instructions, and floating point exceptions) occur
as a result of executing particular instructions.

The subset of PowerPC instructions which can
cause synchronous exceptions is known to the trans-
lator. This subset includes all load and store
operations, all floating point operations, as well as
privileged operations like MTMSR. (Even float-
ing point loads and stores can trigger a floating
point unavailable exception.) If an exception occurs,

1. The appropriate registers (e.g., SRR0, SRR1,

DSISR, and DAR) are set. SRR0 contains the
effective address of the excepting PowerPC in-
struction. As outlined above, a register is kept
with the effective address of the PowerPC page
on which this exception occurred. The offset
within the page of each VLIW instruction is
saved in a side table. The DAISY system soft-
ware finds the offending operation and its Pow-
erPC address by interpreting PowerPC opera-
tions corresponding to the start of the VLIW in-
struction with the excepting operation and con-
tinues until the offending operation is reached.
The values for the other registers are copied
from known locations or computed based on
values available at exception time such as the
register values used in calculating the effective
address being accessed by a load or store.

2. The translation of the PowerPC exception han-
dler is jumped to if it exists. If it does not exist,
then its entry is translated, and then jumped to.

In order to minimize exception processing over-
head, we normally enable asynchronous exceptions
only at group boundaries. Groups are what we term
our units of translation. At the start and end of
a group, there are no speculative values, i.e., inte-
ger registers r32-r63, float registers fp32-fp63,
and condition register fields cr8-cr15 are dead.
Thus, if an exception occurs at a group boundary,
no copying of register values or interpretation of
PowerPC code is needed, as was the case for syn-
chronous exceptions. Enabling asynchronous excep-
tions only at group boundaries has the additional ad-
vantage, that when the interrupt returns, there is gen-
erally a group already at the return point. If asyn-
chronous exceptions were enabled everywhere, then
eventually groups would need to begin at every point
instruction in the original PowerPC code.

There is one problem with this scheme: it is possi-
ble that asynchronous exceptions are enabled (via the
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EE bit of the PowerPC MSR register) in the middle
of a group, and disabled prior to exiting the group.
If such a group is repeatedly executed in a loop or if
a long sequence of such groups is encountered, then
asynchronous exceptions are effectively and incor-
rectly disabled.

To overcome this problem the DAISY hardware
sets a bit, ASYNC ON, whenever exceptions are en-
abled during a group. At the end of each group,
if exceptions have been disabled, a counter is in-
cremented to indicate the number of groups which
have been executed without handling asynchronous
exceptions. If exceptions are enabled, the counter is
reset and any pending asynchronous exceptions are
handled. In either case the ASYNC ON bit is reset.
If the counter ever reaches a threshold value, Pow-
erPC operations are interpreted until exceptions are
enabled and any pending asynchronous exceptions
are handled.

DAISY uses 10 as a value of this threshold
counter, and thus far we have seen very few cases
where asynchronous exceptions occurred in the mid-
dle of a group. Informal observation suggests
that such mid-group asynchronous exceptions occur
about once every million group executions. Like-
wise, in informally examining this phenomenon, we
have seen only one fragment of PowerPC code which
caused such mid-group asynchronous exceptions.
The fragment was in the lowest level AIX code for
swapping in pages.

5 Machine Specific Details

Different chips implementing an architecture gener-
ally have small differences reflecting their microar-
chitectures. For example, implementations may dif-
fer in their set of special purpose registers (SPRs).
Many PowerPC chips have processor version regis-
ters, which provide a value unique to each imple-

mentation. The PowerPC 604e has two hardware im-
plementation dependent registers, HID0 and HID1.
These registers can enable and disable caches, flush
caches, enable branch prediction, enable serial ex-
ecution of instructions, and several other low level
micro-architectural functions.

Low level software, and in particular the firmware
make use of these registers to perform certain power-
on-self-tests, as well as to learn the type of chip on
which they are running. On the 604e, the cache dis-
able function is used early on when accessing I/O
locations with data address translation off (MSR.DT
off). When translation is on, the WIMG bits can
be used to disable caches when accessing such lo-
cations. However when data translation is off, there
are no WIMG bits, and a default value of WIMG
= 0011 is used. Since caching is enabled, access-
ing I/O locations is problematic on 604e if the cache
disable function of the HID0 register is not used.

This being the case, it is useful to have the DBT
system mimic a particular chip. For DAISY, we
chose to mimic the 604e.

6 Management of Translated Code

DAISY has a limited amount of space in which
to keep translated code. Consequently, when this
space is exhausted and a new page is translated,
some existing translation must be discarded. In ad-
dition, the PowerPC ICBI (Instruction Cache Block
Invalidate) instruction signals when a block of Pow-
erPC code is no longer valid and should be flushed
from the ICache For DAISY, ICBI signals that
translations corresponding to the specified PowerPC
block must be invalidated. ICBI must be used with
self-modifying code in PowerPC and is more typ-
ically used when new code pages are created or
swapped in.

In contrast to Dynamo’s simple policy of destroy-
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ing all translations when the translation cache is
full [3], DAISY adopts a more sophisticated strat-
egy. This complex strategy is useful in managing
translations efficiently for both the ICBI case and
the translation area full case. DAISY maintains sev-
eral data structures to support this management:

� The blk2grp structure lists for each PowerPC
code block, the translated groups which contain
it.

� The grp2blk structure lists for each group,
which PowerPC code blocks it contains.

� A two level cache maintains a mapping of Pow-
erPC real addresses of code entry points to their
corresponding DAISY code entry points simi-
lar to that employed by Shade [6]. We expect
the first level to be kept as a hardware struc-
ture, with the second level containing all current
mappings and managed in a way that is some-
what akin to a page table.

When an ICBI is encountered, blk2grp is used
to immediately find what groups contain the speci-
fied block and invalidate them. The grp2blk list is
also appropriately updated, as are the caches map-
ping PowerPC code addresses to VLIW code ad-
dresses.

The 2-level cache used to map PowerPC code ad-
dresses to translated VLIW code addresses serves
two purposes. First, it helps speed lookup of recently
accessed code pages. Not only is the first-level cache
lookup faster in terms of mean number of operations
than a search of the second level cache, but as well
we expect it to have a smaller Dcache footprint. As
is typical in cache hierarchies, DAISY employs

� A small, 128 entry, 4-way associative L1 cache.

� A large, fully associative, L2 cache. This L2
cache is implemented as a software hash table

and keeps a list of all current translations. It
uses a form of generational garbage collection
to determine which translations to purge when
the translation area is full, or when the second-
level cache itself is full.

Since we have a fixed amount of space for the
translator and its associated management soft-
ware and structures, and since the ratio of the
translated VLIW code size to the original Pow-
erPC code size is not constant, it can happen
that the second level cache is full, even when
there is space left for additional translations.
(Although we could start taking some of the
space normally allotted for translated code in
such cases, for simplicity reasons, we did not.)

The age of each translation in the 2nd level
cache is bumped by one each time there is a
miss in the first level cache. Since misses to
the first level cache are relatively infrequent, we
expect the overhead required to bump the ages
of every translation to be manageable. Further-
more, if the overhead ever becomes too high,
later versions of DAISY could add an interme-
diate size cache between the current two lev-
els, so as to reduce accesses to the second level
cache even more.

If the area to hold translated code becomes
full, or likewise if the L2 translation cache be-
comes full, then some translation must be in-
validated. This translation is chosen randomly
from among all of the oldest translations cur-
rently in the L2 cache.

As noted above, we manage all code translations
by real address. This way if the same real code is
referenced at different effective or virtual addresses,
only a single translation need be made. Likewise,
the invalidation process is simplified by not having to
know synonyms for each effective or virtual code ad-
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dress. Indeed, it is in general not known to the trans-
lator and simulator how effective and virtual code
addresses are shared. Such information is typically
maintained by the operating system, e.g., AIX, and is
not conveyed to the PowerPC architecture, and hence
is not conveyed to DAISY.

7 Results

We do not have DAISY hardware. Hence, we sim-
ulate DAISY on an RS/6000 Workstation running
AIX 4.1.5 and containing a 200 MHz PowerPC 604e
processor. This simulation is discussed in detail in
[16]. In short, the simulation:

� Loads the DAISY translator and system soft-
ware into a known fixed location in the real
memory of the RS/6000.

� Beginning with the firmware at the reset loca-
tion of the processor at 0xFFF00100, trans-
lates PowerPC code into DAISY code page by
page on an as-needed basis.

� Generates PowerPC code for each piece of
DAISY code. This PowerPC code simulates
the DAISY VLIW machine in manner similar
to Shade. In addition to supporting DAISY’s
64 integer registers, the simulation code sup-
ports the semantics of the VLIW instructions
including the predicated semantics of ALU and
memory operations, and the proper ordering of
ALU and memory operations within a VLIW
instruction. The simulation also raises both
synchronous and asynchronous exceptions and
simulates the virtual address translation needed
in DAISY. It likewise supports the WIMG bits
described in Section 3, and in particular make
certain that I/O accesses are not cached.

� Executes the simulation code for each fragment
of DAISY code.

With all of these capabilities, it is possible to
model DAISY’s full system binary translation. And
even with the

�����
to �
	�	 � slowdown due to simu-

lation, DAISY successfully

� Executes the firmware on the RS/6000.

� Loads an unmodified version of AIX 4.1.5 from
the hard disk.

� Loads device drivers for all devices in the sys-
tem, in particular for the graphics adapter, the
keyboard, the mouse, and the LAN adapter.

� Displays the login prompt.

� Runs X-Windows and a variety of applications
on X-Windows including emacs, LaTeX, dbx,
ls, w, ping and many others.

DAISY’s success in this endeavor shows the via-
bility of full system binary translation based solely
on modeling a processor architecture.

Our simulations have provided us with a variety
of (preliminary) data on aspects of system perfor-
mance important to binary translation. Figures 5, 6,
and 7 show a variety of information about instruc-
tions. For example, approximately 1.7 billion Pow-
erPC instructions are executed in the firmware (as
indicated by the first bar of the middle group in Fig-
ure 5). By the time that the login prompt is reached
in AIX, almost 8 billion PowerPC instructions have
been executed (as indicated by the second bar of the
middle group in Figure 5). This 8 billion figure in-
cludes the 1.7 billion firmware instructions, hence
6.3 billion instructions are executed in bringing up
AIX. The third bar in the series indicates that af-
ter logging in, bringing up X-Windows, and running
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Figure 9: Number of Exceptions in DAISY.
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a few utilities, almost 19 billion PowerPC instruc-
tions have been executed. As before, 19 billion is
cumulative, hence the number of instructions spent
in X-Windows and the utilities is approximately 11
billion. The utilities include ls, w, grep, vm-
stat, and hostname.

Figure 5 also provides an estimate of the amount
of static PowerPC code executed. The DAISY sim-
ulator groups PowerPC memory into 8 PowerPC in-
struction chunks, and notes how many 8 instruction
chunks have at least one of their 8 instructions ex-
ecuted 1. In firmware, a little over 14,000 such
chunks have at least one instruction executed. In
other words, the static size of the code executed
in firmware is between 14,000 and � ������ 	�	�	����� � � 	�	�	 PowerPC instructions. In other experi-
ments we have found that somewhat over half the
instructions in an 8 instruction block are executed
on average, suggesting that perhaps 70,000 static in-
structions are executed at some point in the firmware.
As with other quantities, Figure 5 also provides
cumulative counts after AIX boots and after X-
Windows. These value gives an indication of how
many instructions need be translated by DAISY.

Figure 6 uses the number of static and dynamic
PowerPC instructions in Figure 5 to estimate how
many times each PowerPC instruction is executed.
This is important for DAISY’s binary translation,
as high reuse enables translation costs to be amor-
tized, while low reuse does not. We estimate that
DAISY takes approximately 4000 cycles to translate
each PowerPC instruction to DAISY code. Thus any
reuse substantially higher than 4000 allows amor-
tization of translation costs. As just discussed, we
do not have a precise count of instructions executed,
only the number of 8-instruction blocks, thus Fig-
ure 6 shows the possible range of reuse. Figure 6

1Maintaining counts on individual instructions requires pro-
hibitively large space in our system.

also shows the expected amount of reuse if on aver-
age, 5 of the 8 PowerPC instructions in a block are
actually executed, which is what we have found in
other experiments.

Cumulatively (the left part of Figure 6) reuse is
expected to be about 23,000 in firmware, 12,000 in
firmware plus AIX, and 21,000 in firmware, AIX, and
X-Windows. Since AIX does not reuse any firmware
code, it is possible to compute reuse during only the
AIX portion of the boot. As shown on the right of
Figure 6, expected reuse is 11,000. X-Windows
does reuse some code from the AIX boot, although
it is not clear how much. Thus Figure 6 shows reuse
if no AIX code is reused in the second rightmost bar
(X-Win(a)), and reuse if all AIX code is reused in
the rightmost bar (X-Win(b)). The difference is dra-
matic: 47,000 versus 13,000 respectively.

Although these numbers reflect moderate reuse,
Figure 7 suggests that they underestimate actual
reuse. The plot of PowerPC Blocks Seen in Fig-
ure 7 shows that new PowerPC instructions are seen
mostly at the start of each phase – firmware, AIX, and
X-Windows. All of these phases are run in immediate
succession. Although this constant invocation of new
code may occur in some systems, we believe that it
is not typical. As reflected by the last 60% of the
AIX boot time in Figure 7, most applications reach a
steady state after which they invoke little new code.
Figure 7 also shows the dynamic number of instruc-
tions executed, which as expected increase linearly
with time.

Returning to Figure 5 the number of ICBI (In-
struction Cache Block Invalidate) instructions en-
countered is also depicted. The number of ICBIs
is important because in general translations must be
invalidated each time an ICBI is encountered. The
larger the number of ICBIs, the more work (and
time) that is required in the translator. Figure 5 in-
dicates that firmware has almost 1 million ICBIs
and by the time that X-Windows has run, this num-
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ber jumps to almost 10 million. These numbers are
not encouraging: 1 million ICBIs in 1.7 billion in-
structions of firmware corresponds to an ICBI every
1700 instructions.

Luckily, however, most of these ICBIs are NOPs.
A NOP ICBI is an ICBI issued for an address for
which there is currently no DAISY translation. As
can be seen in Figure 5, there are vastly fewer NOP
ICBIs than ICBIs as a whole. In firmware there are
only 2381 ICBIs which are not NOPs, meaning that
over 700,000 instructions occur between times when
translations must be invalidated.

We have identified two reasons for the large
number of NOP ICBIs. AIX appears to do an
ICBI whenever a page is swapped in, regardless of
whether it contains instructions. Likewise, it issues
128 ICBIs per page since the size of an ICBI block
is normally 32 bytes and a page has 4096 bytes. In
our current implementation, the first ICBI done on a
page invalidates all DAISY translations on that page.
As with PowerPC instructions, a more precise break-
down of the number of ICBIs executed over time
is given in Figure 8. Most non-NOP ICBIs oc-
cur early — prior to starting the AIX portion of the
boot. This suggests that in booting and starting X-
Windows, there is no thrashing of the code working
set.

Figure 9 indicates the number of times that a va-
riety of PowerPC exceptions occur. Like Figure 5,
these counts are cumulative going from firmware to
AIX to X-Windows. The most common type of
exception is the System Call, which is the way in
which AIX kernel functions are normally invoked.
AIX incurs almost 300,000 System Call while boot-
ing, while X-Windowsmakes about 150,000 more.
Luckily System Calls are not really an “exceptional”
condition in DAISY, but more akin to a cross-group
branch to the DAISY translation of the PowerPC
System Call code.

The next most common type of exception is DSI
(Data Storage Interrupt), which has two common
subtypes – page faults and protection violations, with
page faults being by far the more common. On a data
page fault, DAISY does a software page table walk
and updates the DTLB as described in Section 3.

ISI (Iinstruction Storage Interrupts) are orders of
magnitude less frequent than DSI, and we have ob-
served no instruction protection violations, only in-
struction page faults. No Program Exceptions oc-
cur until after X-Windows executes. All of the
Program Exceptions are for Illegal Instructions –
interestingly no traps are observed. All Illegal In-
structions that we have examined come from old li-
brary code and are Power operations such as lscbx
that are not supported in the PowerPC architecture,
but seem to be emulated by AIX after are encoun-
tered on an Illegal Instruction exception. The rela-
tive infrequency of traps, illegal instructions, protec-
tion violations, as well as IEEE Floating Point Ex-
ceptions suggest that DAISY has some margin for
laxity in dealing with them.

Figures 10 and 11 show several additional statis-
tics related to how DAISY performs translation. The
Distinct Groups Created is the number of PowerPC
code fragments translated by DAISY. The Distinct
Static Paths Created is the total number of exits from
the code fragments translated by DAISY. For ex-
ample, if DAISY translated a single basic block, it
would have one Distinct Group Created and one Dis-
tinct Static Path Created. If DAISY translated a code
fragment with a single conditional branch, it would
have one Distinct Group Created and two Distinct
Static Paths Created. Interestingly the ratio of Dis-
tinct Static Paths Created to Distinct Groups Cre-
ated is about 3 for AIX and X-Windows, but only
about 1 for the firmware. This difference is likely
due to the fact that a great deal of the firmware is
interpreted Forth code. This code has many indirect
branches and other code which serializes in this ver-
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sion of DAISY. In general, we have concentrated on
the functional correctness of DAISY to this point,
and not on obtaining the highest performance.

Figure 10 also shows the number of Distinct Dy-
namic Paths Executed. Comparing this number to
the number of Distinct Static Paths Created gives
an idea of how much code is translated unnecessar-
ily by DAISY. As expected from the fact that the
firmware translations contain little branching, 75%
of the translated firmware code is actually executed.
However, this number drops to a bit less than

�� for
AIX and X-Windows.

Finally, Figure 10 shows the number of times
that DAISY branches between translation fragments.
These branches are further broken down into direct,
Link Register, and Counter Register branches. These
statistics give us an idea of where DAISY should be
tuned for good performance. Since there are many
more direct branches than those of the other types,
it is especially important that they be executed effi-
ciently. We re-emphasize, however, that these num-
bers were not obtained with the full aggressive opti-
mization that we feel is possible in DAISY.

We reported DAISY’s potential performance in
terms of ILP in [10]. For Specint95, an 8-issue ver-
sion of DAISY achieves an average ILP of about 2.4
PowerPC instructions per cycle — including cache
and TLB effects, as well as translation and other bi-
nary translation overhead. For TPC-C, DAISY still
achieves an ILP of 1.5 PowerPC instructions per cy-
cle. Of course DAISY normally issues many more
than 2.4 or 1.5 instructions in each cycle, however
many are speculative and their results are not used.
In addition, some PowerPC operations are cracked
into multiple DAISY primitives.

8 Conclusions

We have described DAISY, our full system binary
translator. There are many difficulties in efficiently
performing full system translation, including sup-
port for precise exceptions, support for virtual ad-
dress translation, and the ability to deal with raw
I/O devices. DAISY deals with all of these and suc-
cessfully boots an RS/6000 workstation and runs X-
Windows under translation. We have gathered a
variety of preliminary statistics from this work, in
particular the fact that translated code is invalidated
at a very slow rate, thus allowing time to amortize
the cost of translation. Other exceptions and difficult
cases also occur with suitably low frequency as to
make full system binary translation practical.
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