
RC23265 (W0406-180) June 30, 2004
Computer Science

IBM Research Report

Cremona: An Architecture and Library for Creation and
Monitoring of WS-Agreements

Heiko Ludwig, Asit Dan, Robert Kearney
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Cremona: An Architecture and Library for Creation and
Monitoring of WS-Agreements

Heiko Ludwig
IBM T. J. Watson Research Center

19, Skyline Drive
Hawthorne, NY 10532, USA

+1 914 784 7160

hludwig@us.ibm.com

Asit Dan
IBM T. J. Watson Research Center

19, Skyline Drive
Hawthorne, NY 10532, USA

asit@us.ibm.com

Robert Kearney
IBM T. J. Watson Research Center

19, Skyline Drive
Hawthorne, NY 10532, USA

firefly@us.ibm.com

ABSTRACT
Using services across domain boundaries, be they organizations
or self-managing components of large distributed systems, re-
quires the setup of an agreement between the parties involved, de-
fining the terms of the service including interfaces, security and
Quality of Service (QoS) properties. In an on-demand environ-
ment in which services are contracted on a short notice, the
establishment of an agreement as well as the setup of agreement-
fulfilling and monitoring systems of the parties involved must be
spontaneous and, partially, automated. WS-Agreement is a stan-
dardization effort being conducted in the Global Grid Forum
defining a simple agreement establishment protocol, an XML-
representation of agreements and agreement templates as well as a
runtime agreement monitoring interface, based on the WSRF set
of standards.
WS-Agreement standardizes the interaction between the organiza-
tional domains. In addition, providers require an infrastructure to
manage agreement templates, implement the interfaces, check
availability of service capacity and expose agreement states at
runtime. Also, agreement requesters need infrastructure to read
templates, fill in templates to create suitable agreements, and
monitor agreement state at runtime. Cremona (Creation and
Monitoring of Agreements) proposes an architecture for the WS-
Agreement-implementing infrastructure. In addition, the Cremona
Java Library implements the WS-Agreement interfaces, provides
management functionality for agreement templates and instances,
and defines abstractions of service-providing systems that can be
implemented in a domain-specific environment.

Categories and Subject Descriptors
C.2.4 [Distributed Systems] Distributed applications,
Client/server
C.2.6 [Internetworking] Standards
C.4 [Performance of Systems]

General Terms
Management, Measurement, Performance, Reliability,
Experimentation, Standardization, Legal Aspects.

Keywords
WS-Agreement, Web service, Grid service, contract, template,
contract management, quality of service.

1. INTRODUCTION
The use of services in an enterprise environment often requires
quality guarantees from the service provider. Providing service at
a given quality-of-service (QoS) level consumes resources
depending on the extent to which the service is used by a client,
e.g., the request rate per minute in the case of a Web service.
Hence, a service client and a provider must agree on when a client
can access a service at a particular QoS level for a given rate of
usage. Based on this agreement, a service provider can allocate
the necessary resources to live up to the QoS guarantees. Hence,
the traditional publish-find-bind approach is not sufficient for
services with customized quality guarantees.
The notion of a “service” covers a broad spectrum. Depending on
the environment, a service may be the processing of a compute-
intensive job, a Web service being accessible via SOAP over
HTTP, network bandwidth provided or a combination of services.
The WS-Agreement specification draft, which is being developed
in the Global Grid Forum’s GRAAP working group, defines a
standard way of establishing agreement between a service
provider and a service customer. The terms service provider and
customer, however, comprise different autonomous components
of a system as well as different organizations. Like many other
standards in the environment of service-oriented architectures it is
meant to apply both within an organization and in a business to
business scenario.
Using the WS-Agreement specification, the publish-find-bind
approach can be extended by an agreement step that facilitates
providing QoS guarantees by

1. enabling the client to state its service capacity and QoS
needs,

2. enabling the provider to derive resource requirements
for the requested QoS level and capacity, additionally,
prioritize allocation of resources when enough resources
are not available to satisfy all requests, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

 2

3. empowering the provider to accept or reject a request by
a client based on the resource situation at the time the
client requests the service.

Furthermore, WS-Agreement defines a runtime interface to moni-
tor guarantee compliance, enabling service customers and provi-
ders to take agreement-level actions, e.g., changing to another
provider or extending agreements if more capacity is needed.

Figure 1: Binding by Agreement.
The figure shows an agreement management (AgM) function
involved before a service is being invoked, as introduced in [12].
An application client looking for a service requests its AgM for
guidance which service to use. The AgM may then negotiate an
agreement with potential providers, which it may have found
using a directory. If and when a consumer’s AgM has reached
agreement, it provides the application client with the claiming
information it needs to use the service on the agreed terms. A
consumer’s AgM may also “bulk-buy” services in one agreement
and then hand out claiming information to application clients
without making new agreements. This is a likely scenario for
“small” services such as financial information Web services due
to agreement establishment overhead. The decision-making
involved in closing agreements is often difficult to automate.
Hence, the AgM will also often comprise a buying and selling
client, beyond the middleware aspects of the AM.
To establish contact, the provider can advertise the kinds of
service it offers and exposes the interface to its AgM to potential
consumers to submit offers. The provider AgM can analyze its
prior agreements and its system’s capacity to decide whether to
accept or reject an offer or to counter-propose. If agreement is
reached, the service provider provisions its service system for use
by the client on agreed terms. In some cases, service consumers
might advertise their need and providers take the initiative in
establishing an agreement. The agreement compliance is
monitored at runtime.
The WS-Agreement specification draft defines the interaction
among a provider and a consumer AgM at binding time and, for
purposes of compliance monitoring, at runtime. However, this
interaction must be backed up by an infrastructure that enables a
provider to offer services by agreement, enter agreements aware
of resource situation and manage resources at runtime. Likewise,
on the customer’s side, infrastructure is needed to facilitate
agreement-based service binding and monitoring at runtime.
The objective of the paper is to propose an agreement
management architecture for customer and provider
infrastructure, Cremona, that facilitates agreement-based service

binding for a variety of types of services. The environment to
provide and consume a service depends on the particular type of
service and system choices that both parties make. The objective
of the Cremona library is to implement those parts of the
Cremona architecture that are independent of the particular
application domain.
The paper is structured as follows: To understand the required
level of abstraction needed for the Cremona architecture, section
2 introduces a set of example service scenarios. Section 3
provides an overview of the WS-Agreement specification draft. In
section 4 we outline agreement-driven management to scope the
Cremona architecture. The Cremona architecture and library are
discussed in Sections 5 and 6, respectively. Finally, we conclude
with a summary, related work and an outlook on future work.

2. SERVICE EXAMPLES
WS-Agreement is applicable to a wide variety of service
environments, both within and across business organizations,
spanning applications such as job scheduling, resource reserva-
tion, and web services.
It is important to understand the differences amongst the variety
of services, their system environments and their binding
mechanism to find the right level of abstraction for the elements
of the Cremona architecture. The following set of cases illustrates
this.

Resource Usage Agreement in Job Scheduling: Here, the client
logic is a job submission system or a workflow execution system
that uses a job scheduling environment for task execution. In
order to provide a guarantee on resource availability to meet a job
completion time objective and/or other execution environment
requirement, an agreement is established by the job submission
system with the execution environment. This may involve
advance resource reservation for a subsequent job submission,
setting up resource agreement for repeated job submissions or job
submission with individualized resource request via
individualized agreement. The scheduling system prioritizes
(statically or dynamically) execution of pending jobs, matches
resource requirements and/or dynamically allocate resources in
order to meet agreement objectives. Within this paradigm, there
are many nuanced scenarios. For example, the agreement may
include guarantees on aggregate resource usage across many jobs.
Also, the job scheduling system can be a broker and route to
various end systems based on the resource usage agreement
between the broker and the end systems.
Service Agreement: Again, this is a very typical use case of
service invocation (i.e., transactional workload) with agreement
on average response time for up to a pre-specified throughput
level [6]. This can represent application outsourcing in a cross-
organizational context. The provider logic must address
controlling prioritization of service invocation (and/or dynamic
resource allocation for the underlying execution environment) to
manage the response time objective associated with individual
services and/or user(s) as specified in agreements.
In distributed data center example, such agreements may be used
across data centers to shift transactional workload, where the
client logic represents a data center workload management
system, which upon detecting a load surge or degradation in
average response time, creates agreement with another data center
for routing this workload.

Service System

Service

Application
Application

Client

Request
for Service

Directory

Offers Agreement
Management

Agreement
Management

Agreement
Provisioning

Service Invocation

Advertise Search

Consumer Provider

 3

Service Agreements across Resource Managers: Service
agreements can also be used to manage complex large scale
distributed environments consisting of many resource managers,
managing different types of resources. Each resource/service
manager is autonomous in managing its local resources. For
example, an application server may rely on predictable behavior
of network, storage or database services. A workload manager
detects need for better storage or database response time as part of
its management loop and establishes or modifies the correspond-
ding agreement. Note that storage/database service may be shared
across multiple application servers (transactional and other types).
The Cremona architecture and libraries are to be used in all three
types of scenarios, where services can vary from providing client
requested resource environment to providing Quality of Service
for service invocation such as web services. The actual
management of underlying resources is very different in these
different scenarios. We will revisit this in Section 4 in describing
Cremona architecture.
In the above scenarios, we did not identify whether or not a
provider and consumer belongs to the same business organization.
This is to emphasize the fact that the agreement is of technical
nature involving automated interaction between service provider
and consumer systems, rather than a business relationship.
Agreements crossing business organization boundary raises many
issues on trust, pricing, auditing and monitoring. Hence, for cross-
organizational interaction for outsourcing or resource sharing, we
assume a pre-established business relationship, allowing dynamic
creation of technical agreement.

3. WS-AGREEMENT OVERVIEW
The objective of the WS-Agreement specification is to provide
standard means to establish and monitor agreements on services
independent of a particular application domain [1]. The
specification draft comprises three major elements:

1. A description format for agreement templates and
agreements;

2. A basic protocol for establishing agreements, and

3. An interface specification to monitor agreements at
runtime.

This section provides a brief overview that focuses on those
elements of the specifications that were particularly relevant to
the design of the Cremona architecture.

3.1 Interfaces and Interactions
Agreements are set up between two roles, the agreement initiator
and the agreement provider. These roles are independent of the
roles of service provider and service consumer. Figure 2 outlines
the main interaction structure.

Figure 2: WS-Agreement Roles and Interactions
An Agreement Provider exposes an interface of an Agreement
Factory, which offers an operation to create an agreement A and
an operation to retrieve a set of agreement templates proposed by
the agreement provider. Agreement templates are agreements with
fields to be filled in, much like a pre-printed car sales contract. It
helps an agreement initiator to create agreements that the
agreement provider can understand and accept. The
createAgreement operation returns the agreement, if accepted.

If the createAgreement operation succeeds, an agreement instance
is created. The agreement instance exposes the terms of the
agreement as properties P that can be queried. In addition, each
term has a runtime state that can be introspected. For example, a
guarantee can be not determined (cannot be measured), fulfilled or
violated. An agreement initiator can also submit a terminate
operation, requesting the agreement not to be in effect anymore.
The Agreement provider either terminates service activity (i.e.,
providing or consuming) or rejects the termination. In addition to
the agreement provider the initiator can also choose to provide an
agreement instance to the other party.

Both, Agreement Factory and Agreement instances expose their
interfaces as resources according to the Web Services Resource
Framework (WSRF) [8], [7]. Terms and term states are properties
that can be accessed with the standard get-operations.

3.2 Agreement and Template Content Model
Both, agreements and agreement templates are specified in an
XML-based language and have the following structure:

Agreement
Factory

Agreement
Agreement

Agreement

Agreement ProviderAgreement Initiator

Service Service Service
Interaction

getTemplates()
createAgreement(A)

getProperty(P)
terminate()

 4

Agreement

Context

WS-Policy Compositor

Constraint Section

Service Description Terms

Guarantee Terms

Figure 3: Structure of an Agreement document, based on [1],

figure 2.
An agreement and an agreement template consist of a context
section, the agreement terms and the constraint section. The
agreement context contains the definition of the parties, including
the end-point references of their planned agreement instances and
their roles, and related prior agreements. The agreement terms
represent contractual obligations and include description of the
service as well as the specific guarantees given. A service
description term (SDT) can be a reference to an existing service, a
domain specific description of a service (e.g., a job using the Job
Submission Description Language, a data service using Data
Access and Integration Services, etc.), or a set of observable
properties of the service. Multiple SDTs can describe different
aspects of the same service. A guarantee term on the other hand
specifies service level objectives as an expression over properties
of the service, an optional qualifying condition under which
objectives are to be met, and an associated business value
specifying the importance of meeting these objectives. All terms
can be composed using the compositors of the WS-Policy
specification [3]. Finally, an agreement template is defined by
adding constraints to be met in creating the agreement. A
constraint comprises a named pointer to an XML element in the
context or term sections of the agreement and a constraint
expression defining the set of eligible values that can be filled in
at this position.

The WS-Agreement specification only defines the overall
structure of agreements and agreement templates. This outer
structure must be complemented by means of expression suitable
for a particular domain. For example, a guarantee terms is defined
as comprising the elements scope, qualifying condition, service
level objective, and business value. There are no language
elements defined to specify a service level objective. Parties have
to choose a suitable condition language to express the logic
expression defining a service level objective, e.g., the OMG
Object Constraint Language (OCL).

3.3 Discussion
WS-Agreement provides a simple protocol to establish
agreements. This draft does not cover advertising a service nor
does it comprise more advanced means of negotiation. The
negotiation dialog can be either mapped onto the
createAgreement operation or can be conducted outside the
covered scope. In addition, WS-Agreement does not cover how to
access a service according to an agreement. While in the case of
job submission, no further activity might be needed from the
service consumer, transactional services entail a client application
to send SOAP messages to URL and it has to be agreed upon how
to label messages as being subject to an agreement, for example
by adding a contract ID to SOAP headers.

The agreement content definition provides an umbrella structure
that must be complemented by other language to describe a
service or to define guarantees. On the one hand, this is
convenient since it allows parties to use existing languages such
as WSDL to describe particular aspects of a service. On the other
hand, parties must be able to deal with a variety of specifications.
Hence, agreement initiators will rely on agreement templates
published by agreement providers to create agreements that will
be understood by providers.

Although WS-Agreement is open to which party will be
agreement provider, in many cases it appears natural that the
service provider will take this role. There is a tight relationship
between the service systems that a service provider can configure
and the agreement templates it can offer.

4. AGREEMENT-DRIVEN MANAGEMENT
The WS-Agreement specification covers the direct interaction
between the two parties. This agreement-level interaction must be
integrated in the overall life-cycle management of an offered or
requested agreement and it must be integrated with the service-
implementing and service-consuming systems. Each party must
implement a number of functions, dependent on the role it takes
in the agreement protocol, agreement initiator or agreement
provider, and in the service relationship, service provider or
service consumer.

Supporting WS-Agreement protocol and agreement-based service
management, however, requires functions that go beyond core
functions for retrieving templates, creation of an agreement and
agreement state monitoring. These include tooling and setting up
in both consumers and providers prior to creation of an
agreement, management logic in determining agreement to be
established, and finally managing the service including dynamic
provisioning of resources in order to meet objectives specified in
an agreement. Without reusable libraries, and management
middleware, these functions need to be implemented for every
service that requires QoS assurance, either in agreement factory
or in the service itself. Cremona provides a layered agreement
management architecture and a library for integrating system or
domain-specific functions.

Examining the differing scenarios and execution environments
presented earlier, the required functionalities can be classified into
three categories (see Figure 4):

• Core functions based on web services and WSRF for
supporting WS-Agreement protocol;

 5

• A set of libraries, tools, agreement management and
monitoring functions that are common to all environ-
ments for agreement based service management;

• Domain specific functions in managing services (e.g.,
job scheduling, workload management, etc.).

Figure 4: Layers of agreement management functions.
Figure 4 illustrates this layering of functionalities. At the very
core are a set of functionalities (to be detailed later in Section 5)
for supporting WS-Agreement protocol. The domain-independent
middle core interfaces with the protocol layer and the domain
specific logic. It provides management software for all phases of
agreement life-cycle. Prior to creation of an agreement, for the
provider side, it includes tools for creating new templates,
associating a template with a factory, and managing templates.
For the client side, it provides functions for managing templates
retrieved from various factories. During agreement creation, it
supports programmatic creation of an agreement document from a
template where the agreement parameters are passed by domain
specific logic, and provides a framework for evaluating an
agreement based on policy (which in turn relies on current or
projected capacity information provided by domain dependent
functions). It also provides management software for provisioning
that can be customized by domain specific information.
Subsequent to agreement creation, it monitors agreements based
on formal specification of agreement objectives and service state
information.
In this paper, we focus on the core layer and a subset of these
middle core functions.

5. Cremona Architecture
The Cremona architecture separates multiple layers of agreement
management, orthogonal to the agreement management functions:

The collective of functions associated with an agreement protocol
role, initiator or provider, is the Agreement Protocol Role
Management (APRM). It comprises, on the agreement provider
side, the agreement factory, the agreement instance
implementations, the Web services container in which factory and
instances are located and interfaces to an agreement template
repository, decision-making functionality for createAgreement
requests and the current state of terms. On the agreement
customer side, it comprises proxy functions to interact with an
agreement factory and created agreements, template processing
functions to create agreement instance document from templates,
and interfaces to components initiating agreement establishment,

to functions deciding on how to fill an agreement template, and to
guarantee monitors.

The Agreement Service Role Management (ASRM) is the
collective of functions that deals with a party’s role in the service
relationship, provider or consumer, and connects it to the service
system. On the service provider’s side, this includes the mapping
of agreements to provisioning specifications and other input to the
service-implementing system – the agreement implementation
plan [11]. In addition, the ASRM includes tools to create
agreement templates and associated agreement implementation
plan, decision-making functionality to admit new agreements,
taking into account the current system status and committed
capacity, and monitors that map that state of a service-
implementing system to guarantee status. On service consumer’s
side, the ASRM provides functions to assign agreements to
application client requests, decision-making functions that request
or accept agreements based on forecast demand and agreement
compliance monitors.

Strategic Agreement Management (SAM) refers to
management functions beyond the scope of individual templates
and agreements. This includes policy related to which other
parties are chosen to enter agreements with, whether one or more
providers are chosen, a provider’s yield management policy,
whether to act as agreement provider or initiator for a particular
type of service and so forth.

All levels of agreement management are over and above the
service system.

An import issue is the design of interfaces that the application
client of a service consumer uses to ask for a service. This issue
relates to the extent to which the application client of the service
consumer is aware of agreement management, on the one hand,
and to the variety of services that can be contracted using the
AgM, on the other.
We can distinguish the case of a client stating requirements on a
service and receiving claiming information from a case were a
client is actively involved in selecting parties, agreement
templates and deciding on offers. In the first case, a client uses the
agreement request interface and is not aware of the structure of
agreement management. In the second case, a client uses the
administrative interface to the AgM. In many cases, applications
setting up agreements and requesting service will be different but
in some scenarios, such as submission of compute-intensive jobs,
an integrated client may be a better solution.
Describing the service a client needs is generally a very domain-
specific problem. The general agreement request interface is very
general in the format of requests it accepts. In a particular domain,
conventions must be established how to request a service. In a
Web services scenario, for example, a client may request a port
type in a WSDL definition. The resulting claiming information
could be a WSDL containing binding information and an endpoint
reference. While variety is a problem in general, a typical domain
might not have so much variety, also because application clients
are typically not written in a very flexible. A financial services
company might have a foreign exchange information application
using the same port type. The AgM might have agreements with
two different providers on different QoS levels and returns the
binding that suits best.

WS-
Agreement
protocol &

WS-
Agreement
protocol &

Get

Request

Get Agreement

Create agreement
template

Associate template

 Validate agreement

Set up
validation/
negotiation

Monitor

Enforce
agreement

Service Service consumer Service provider

 Retrieve template
from repository

 Manage templates

 Negotiate
agreement Set up

provisioning

Provisioning
workflow

 Create agreement
from template

 Manage
agreements

 6

5.1 Agreement Protocol Role Management
The APRM is a middleware layer that can be used to create
agreements and to access agreement state at runtime. The APRM
has a different structure for agreement providers and for
agreement initiators. The design objective is to implement the
WS-Agreement protocol, to make it suitable for service providers
and customer, to separate domain-independent from system-
specific and domain-specific components, the outer layers of
Figure 4, and to provide interfaces to administrative tools.

The agreement provider structure is outlined below in Figure 5.
The APRM of an agreement provider comprises the following
components:

• The Agreement Factory is a domain-independent
implementation of the Agreement Factory interface.

• The Template Set maintains the collection of currently
valid agreement templates that initiators can use to
submit createAgreement requests.

• The Agreement Set component administers the
collection of agreement instances. It also routes status
requests addressed using an endpoint reference to the
corresponding agreement instance.

• An Agreement Instance exposes the terms and context
of an agreement as well as the runtime status of service
description and guarantee terms.

• The Agreement Instance uses a Status Monitor interface
to retrieve the status of its terms.

• The Status Monitor Implementation is specific to the
system providing or using the service. It accesses
system instrumentation on service provider or service
consumer side to gather relevant basic measurements
and derives from them the aggregate status of a SDT or
a guarantee term. For example, in the job submission
case, a status monitor of a service provider accesses the
schedule to find out if a job is still waiting, in process or
completed and replies correspondingly. In the case of a
guarantee relating to a completion time, the status
monitor would see if it is fulfilled in case of the job
completed or violated or not determined if the SDT
status is not completed.

• The Decision Maker interface is used by the Agreement
Factory to decide whether to accept a createAgreement
request. The decision maker implementation depends on
the service role and is domain-specific. It must be
implemented in the ASRM.

• The Agreement Implementer Interface is used to
announce a new agreement. Its service role-specific
implementation takes the necessary measures to provide
or consumer a service according to the agreement, e.g.,
provision a system or schedule the job.

All objects are accessible through the Administrative Web Service
Interface and by ASRM components.
Figure 5 illustrates the interaction among components processing
the createAgreement request by an agreement initiator.

Figure 5: APRM - provider structure, createAgreement flow.
Upon receiving a createAgreement request, the agreement factory
requests the decision maker whether the agreement can be
accommodated. If so, it creates the agreement instance and
registers it with the agreement set. Subsequently, it is announced
to the agreement implementer, which returns if the agreement is
set to be used under the terms defined in the agreement. This does
not require that the service is provisioned. The system must be set
to be ready when the agreement requires it, which can be much
later. Finally, the request is returned to the agreement initiator.
Operations to retrieve templates and obtain term status and
content on factory and agreement instance are implemented by
simpler interaction sequences.

The APRM of an agreement initiator mirrors the components of
the agreement provider APRM and complements it with initiator-
specific components. Figure 6 outlines these components.

• The Agreement Initiator component is the central
element of the initiator APRM. It mediates the
interaction on behalf of a component or user client that
wants to create a new agreement.

• The Factory Set maintains to factories to be used.

• The Agreement Set maintains references to the
agreements that the initiator can use.

• Factory Proxy and Agreement Instance Proxy maintain
connections to their respective counterparts on the
provider side APRM.

• The Template Processor facilitates the creation of
agreement instance documents from agreement tem-
plates. It fills in values in constraint items and validates
constraints.

• The Agreement Implementer interface is used to publish
the availability of a new agreement, equivalent to the
use in the provider APRM.

The initiator APRM does not contain domain-specific
components. Figure 6 illustrates the use of initiator APRM
components

Agr Factory

Agr Set

Agr Instance

Template Set

Status Monitor Decision Maker

Admin Web Service Interface

Party Web
Service

Interface

Admin Client

Status Mon.

domain-indep.

System

1. createAgreement

2. acceptAgreement

Agreement
Implementer

3. create

4. register
5. announce

domain-spec. or
service mgmt
middleware

APRM

 7

Figure 6: APRM – initiator structure, createAgreement flow.
In the case illustrated above, a user client requests templates,
wanting to initiate a new agreement. The agreement initiator
requests the set of templates from the factory set, which in turn
receives it from their respective agreement providers through the
factory proxies. Having decided on the template and its values,
the client submits the chosen values through the agreement
initiator to the template processor, which constructs an agreement
instance document. If valid, the agreement initiator invokes the
proxy of the factory in question to submit a createAgreement
request. If the return is positive, it registers the endpoint reference
of the new agreement with the agreement set, which then creates a
proxy connected to the agreement provider’s agreement interface.
Otherwise, the client can revise the values set in the template
based on the provider’s response and try it again. Finally, the new
agreement is announce through the agreement implement
interface whose implementation must make sure that it can be
used. The agreement initiator component can also be used by a
component other than a user client, i.e. an automated component,
if the decision-making task to fill in a template is simple. This
might often be the case for standardized job scheduling
agreements where mainly job specification information, e.g., in
the Job Submission Description Language (JSDL) must be filled
in and guarantees mainly relate to completion time and resource
availability.
Beyond the createAgreement flow, the initiator APRM
components can be used to add new factories to the factory set
and use the agreement proxies to query the agreement terms and
their current status.

5.2 Agreement Service Role Management
The ASRM builds on the APRM and relates it to the service-
implementing or service-consuming system. It provides the
components required to trigger the agreement-driven provisioning
of a service and to monitor compliance at runtime as well as
components that direct a client to a suitable contracted when
needing a service. The ASRM is different for the service provider
and the service consumer. Service provider and service consumer
ASRM must be able to build on both, an agreement provider and
an agreement initiator APRM.

The Service Provider ASRM is structured as illustrated in Figure
7. Since by its very nature it interacts with the service-
implementing system, many components are domain and system-
specific. However, some components can be implemented in a
domain-independent way if they are driven by explicit
specifications of behavior such as workflows or policies, which
can be run on a generic execution engine. We call a specification
that is derived from an agreement and that can be interpreted by a
provisioning system an Agreement Implementation Plan (AIP).
For example, an AIP could be a BPEL4WS specification of a
provisioning workflow. The Cremona ASRM architecture defines
a set of interfaces that can be implemented either way, domain-
specifically or by generic components driven by an AIP.

• Admission Control implements the Decision Maker
interface of the agreement provider APRM. It can
interact with the service-implementing system to find
out whether capacity is available. To do so, it must
translate the SDTs and guarantees of the agreement
requested into specific resource requirements.
Typically, it is implemented uses the capacity planning
component for this purpose.

• In case the service provider ASRM uses an agreement
initiator APRM, the Load Acquisition component
triggers agreement creation through the Agreement
Initiator if spare capacity can be solicited.

• If a new Agreement is created, the Agreement Imple-
menter Interface is invoked. In case of an AIP-driven
provisioning system, the AIP Generator implements the
Agreement Implementer interface. For each agreement
template an AIP is defined. It has a template structure
similarly to agreement templates. The template body
contains the AIP specification with “holes” to be filled
in based on agreement contents and system status. The
template section defines the location of the holes as
fields and how to fill them in. Fields can be filled in
either by agreement elements, identified by xpointers
into the agreement document. In addition, capacity
decision-makers can be defined that compute a field’s
value based on the system status and the agreement.
Capacity decision makers are system-specific.

• The AIP Template Set can be managed using an
administrative client to edit AIP templates.

• The Capacity Decision-Maker is an interface to a
system-specific and agreement-aware Capacity
Planner.

• The Provisioning interface is an abstract interface to an
AIP-driven provisioning system, which is invoked using
a system-specific Provisioning Proxy.

• During the validity of an agreement, a Compliance
Monitor uses the agreement instance of the APRM – or
its proxy on the agreement initiator’s side – to check
whether guarantees are met. A sophisticated compliance
monitor, e.g., eModel, not only analyzes current
violations but also predicts future violations and takes
corrective actions in advance.

• If guarantees are violated the compliance monitor
invokes the Compliance Manager Interface, the

Factory Set

Agr Set

Agr Inst
Proxy

Template Processor

Admin Web Service Interface

Proxies

Admin Client

APRM

domain-indep.
domain-spec.

System

1. getTemplates

Agreement
Implementer

2. getTemplates

4. createAgreementDocument

Agr Initiator Factory
Proxy

3. setTemplateValues

5. createAgreement

6. register
7. create

8. announce

 8

implementation of which is system-specific. In many
cases, this involves a change in system configuration or
schedule.

Figure 7 illustrates the flow of invocations affecting service
provider ASRM components upon a createAgreement request:

Figure 7: ASRM - service provider structure.
First, the admission control is invoked through the decision maker
interface. It verifies feasibility and available capacity of the
proposed agreement. If admitted, the AIP generator receives the
announcement through the agreement implementer interface; it
retrieves the corresponding AIP Template and processes it. AIP
fields are filled in either by agreement elements or capacity
planners are invoked. When the AIP is completed, it is submitted
to the provisioning system through the proxy exposing the
domain-independent interface. Finally, the compliance monitor is
activated.

The primary purpose of the Service Consumer ASRM is to
provide an application client an interface to retrieve information
how to access a contracted service based on information about the
client’s requirements.
The service consumer ASRM comprises the following
components:

• The Agreement Request Interface is invoked by an
application client to obtain information how to access a
service that it can use. The input to the request is a list
of service descriptions or pointers to it and a set of
name-value pairs detailing what is meant specifically.
In the case of a Web service, this would be a WSDL
definition and, for example, the name of a port type, if
multiple port types are defined. The response to the
request is a list of service information items. In the case
of a Web service, this would be a WSDL definition
containing binding information and potentially an
endpoint reference. Generally, this interface has a very
open structure. However, for a particular type of service
conventions have to be established between application
clients and service consumer APRM on the input
parameters and replies.

• The Service Mapping maintains which agreement
templates can be used to acquire a given service based

on service descriptions as expected in the agreement
request interface. For each service description entry the
mapping contains references to agreement templates of
different providers. In the case of Web services, the
mapping can be established on the basis of a WSDL file
reference and a port type name. For other domains other
ways the mapping can be established on other ground.
The mappings are set by an administrator.

• The Client Agreement Selector is the core of the service
consumer ASRM. It implements the agreement request
interface, uses the service mapping to find matching
agreement templates, looks for agreements based on
those templates, and decides which agreement to choose
for a particular request. The decision-making for a
particular agreement can be based on many aspects such
a current guarantee compliance, of an agreement, use of
an agreement by other clients and past performance.
This component is inherently domain-specific.

Figure 8: ASRM - service consumer structure.
Figure 8 outlines the basic flow in this component.

5.3 Strategic Agreement Management
Strategic Agreement Management (SAM) is the meta-layer to
APRM and ASRM. If automated, it decides which agreement
templates and AIP templates to use and may set policies for the
behavior of components, if they are policy-enabled. Decisions in
the area of SAM always involve understanding the specific
domain and a specific system. Based on monitoring agreement
compliance and usage, measured through APRM and ASRM
components and the service system itself, SAM components can
analyze behavior of agreement parties, usage of templates and so
forth and can either modify autonomously templates and
component policies, which is non-trivial, or the analysis can be
interpreted by an administrator and lead to changes. Cremona
does not propose a specific component model for the SAM layer
of management.

6. CREMONA LIBRARY
The Cremona library supports the implementation of an
Agreement Manager as a Java Servlet. It provides implementa-

Agr Set

Client Agreement Selector

Admin Web Service Interface

Admin Client

APRM

Application Client

Agreement
Request

1. getServiceByAgreement

Service
Mapping

3. getTerms

2. getTemplates

Application Web Service Interface
ASRM

Agreement

AIP Generator

Provisioning
Proxy

AIP Template Set

Dec
Maker

Admin Web Service Interface

Admin Client

Admission
Control

APRM

Cap DM

System

ASRM

Agr
Implr

Capacity
Planner

Provisioning
Load

Acquisition

Compliance
Monitor Agr

Instance Compliance Mgr

Compliance
Manager 1.

2. announce 3. getAIPTemplate

4. setAIPValue5. provisionAIP

6. monitor

 9

tions of domain-independent components and interfaces for
APRM and ASRM in Java.
Using the APRM classes, a WS-Agreement provider and initiator
can be implemented by implementing the status monitor. In
addition, the AIP template set and the AIP generator provide a
significant part of a AIP-driven provider ASRP. On the service
consumer side, the service mapping supports the implementation.
Finally, the structure imposed by the set of interfaces solves
conceptual problems for an implementer of an ASRP and also
administrative and application clients.

7. CONCLUSIONS AND OUTLOOK

7.1 Summary and Discussion
Cremona enables parties to provide and acquire services by
agreement as defined in the WS-Agreement standards draft. The
Cremona agreement management architecture defines
mechanisms to implement WS-Agreement interactions and
connects them to the service providing and consuming systems.
By separating the service role of a party from its role in the WS-
Agreement protocol, both service providers and consumers can
initiate agreement creation using Cremona. WS-Agreement
addresses a large variety of services, requiring partially domain
and system-specific implementations of a subset of agreement
management components. The Cremona architecture identifies
domain-specific components such as system monitors and
provisioning systems and defines their interfaces in a domain-
independent way, hence making it applicable to a wide range of
service environments. The Cremona library provides
implementations of the domain-independent components in Java
and defines interfaces that can be implemented in a domain-
specific manner. An implementation of the Cremona architecture
acts as an agreement middleware for service providers and
consumers, facilitating service binding by agreement.

7.2 Related Work
There are multiple approaches to use the concept of – formalized
– agreements (contracts) in the context of electronic services, both
in specifying contractual agreements as well as in architectures
and systems that deal with agreements.
In many cases, those approaches are specific to a particular aspect
of a service. For example, WSLA and WSOL are specifications of
QoS agreements for Web services [12],[13],[16]. WLSA has also
been used to drive a system provisioning [6],[11]. However, both
approaches are restricted to Web services and do not propose
solutions for service consumers. Other approaches propose
agreements formats and infrastructure to facilitate interaction and
coordination between parties, e.g., tpaML/BPF and CrossFlow
[5], [9]; also a specific aspect.
In the context of the ODP Enterprise Language a model for the
representation of contractual obligations has been proposed but no
language has been specified by the ISO [10], along with other
work on the formalization of contractual obligations and rights
[15], [14].
The Cremona architecture and library enable users to provide or
use various kinds of services sold and acquired using the WS-
Agreement standard while being able to complement the
infrastructure with domain and system-specific components.

7.3 Outlook
WS-Agreement as it stands is suitable for a wide range of services
and different aspects of a service such as QoS, interfaces, etc.
However, its set of obligation types is not very rich and the set of
obligations is static, no new obligations can be added by, e.g.,
exercising an option. This is likely to change in the future
development of WS-Agreement and will be reflected in Cremona.
Furthermore, Cremona does not support relationships between
agreements, which will be addressed in future versions. More
work is needed on the domain-specific adaptation of the
application client interface of the agreement management, the
relationship of agreement management to advertisement of a
service, negotiation support and intermediaries, and the metering
of service use on consumer and provider side. Finally, we will
work on additional support for layer 2, providing middleware to
reduce domain-specific implementation effort.

8. Acknowledgements:
We would like thank Bob Filepp, John Rofrano and Daniela Rosu
for their helpful comments and feedback on the paper.

9. REFERENCES
[1] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D.

Dillenberger, “Adaptive algorithms for managing a
distributed data processing workload”, IBM Systems Journal,
Volume 36, 2, 1997, pp. 242-283.

[2] A. Andrieux, C. Czajkowski, A. Dan, K. Keahey, H.
Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, M. Xu. Web
Services Agreement Specification (WS-Agreement). Version
1.1, Draft 20, June 6th 2004.

[3] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A.
Nadalin, N. Nagaratnam, M. Nottingham, C. von Riegen, J.
Shewchuk. Web Services Policy Framework (WS-Policy).
May 28th, 2003.

[4] J. Cole, J. Derrick, Z. Milosevic, and K. Raymond: Policies
in an enterprise specification. In M. Sloman (ed.).
Proceedings of the Policy Workshop, 2001.

[5] A. Dan, D. Dias, R. Kearney, T. Lau, T. Nguyen, F. Parr, M.
Sachs, and H. Shaikh. Business-to-Business Integration with
tpaML and a B2B Protocol Framework. IBM Systems
Journal, 40(1), February 2001.

[6] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D.
Kübler, H. Ludwig, M. Polan, M. Spreitzer, A. Youssef:
Web services on demand: WSLA-driven automated
management. IBM Systems Journal, Vol. 43 (1), 2004.

[7] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.
Ferguson, F. Leymann, M. Nally, T. Storey, S.
Weerawarana. Modeling Stateful Resources with Web
Services. Version 1.0. May 1st, 2004.

[8] S. Graham, K. Czajkowski, D. Ferguson, I. Foster, J. Frey, F.
Leymann, T. Maguire, N. Nagaratnam, M. Nally, T. Storey,
S. Tuecke, S. Weerawarana. Web Services Resource Proper-
ties (WS-ResourceProperties). Version 1.0, May 1st, 2004.

[9] Y. Hoffner, S. Field, P. Grefen, H. Ludwig: Contract-driven
creation and operation of virtual enterprises. In Computer
Networks 37, pp. 111 - 136, Elsevier Science B.V. 2001.

 10

[10] ISO/IEC JTC 1/SC 7: Information Technology - Open
Distributed Processing - Reference Model -Enterprise
Language: ISO/IEC 15414 | ITU-T Recommendation X.911,.
Committee Draft. 8. July 1999.

[11] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. N.
Tantawi, A. Youssef: “Performance Management for Cluster
Based Web Services”, IFIP/IEEE 8th International
Symposium on Integrated Network Management (IM 2003).
IFIP Conference Proceedings 246, Kluwer Academic
Publisher, 2003, pp. 247-261.

[12] H. Ludwig. A Conceptual Framework for Building E-
Contracting Infrastructure. In R. Corchuelo, R. Wrembel, A.
Ruiz-Cortez (eds.): Technologies Supporting Business
Solutions. Nova Publishing, New York, 2003.

[13] H. Ludwig, A. Keller, A. Dan, R. King, R. Franck: A Service
Level Agreement Language for Dynamic Electronic
Services. Electronic Commerce Research (3), Nr. 1, pp. 43 –
59, Kluwer Academic Publishers, 2003.

[14] H. Ludwig, M. Stolze: Simple Obligation and Right Model
(SORM) - for the runtime management of electronic service
contracts. IBM Research Report, RC22765, April, 2003.

[15] Z. Milosevic, A. Barry, A. Bond, K. Raymond. Supporting
business contracts in open distributed systems. Workshop on
Services in Open Distributed Systems (SDNE ’95). Whistler,
Canada, 1995.

[16] V. Tosic, B. Pagurek, K. Patel, WSOL – A Language for the
Formal Specification of Classes of Service for Web Services.
In Proc. of ICWS'03 (International Conference on Web
Services), pp. 375-381, CSREA Press, 2003.

