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ABSTRACT

Recently, several watermarking schemes have been proposed that embed a watermark into two halftone images
such that the watermark can be extracted by overlaying these halftone images. The watermark images in these
schemes are binary images and the pixels in the two halftone images are correlated or not depending on whether
the corresponding pixel in the watermark is on or off. In these schemes, the watermark is binary and does not
contain detailed features. Furthermore, the extracted watermark contains residual patterns from the two images
which reduces the fidelity of the extracted watermark image. This paper proposes a watermarking algorithm
that addresses these problems. In addition, the proposed scheme admits more general watermark extraction
functions and allows embedding of multiple watermark images.

Keywords: Data hiding, digital halftoning, error diffusion, steganography, watermarking

1. INTRODUCTION

Recently, several watermarking schemes have been proposed in the literature where a watermark is embedded
into two halftone images such that the watermark can be extracted by simply overlaying these halftone images.
In [1, 2] the halftone images are created using dither masks, whereas in [3–5] the halftoning is done via error
diffusion. The watermark images in these schemes are binary images and the binary pixels in the two halftone
images are correlated or not depending on whether the corresponding pixel in the watermark is black or white.
There are several restrictions to these schemes. First of all, the watermark is binary and not grayscale or full-color.
Second, because the watermark is embedded via correlation, the average intensity of a region of pixels is needed
to identify whether the watermark pixel is black or white. Therefore, the watermark images in these schemes are
limited to logos or simple graphics and do not contain detailed features. Third, the extracted watermark image
contains residual patterns and features from the two halftone images that reduce the fidelity of the extracted
watermark image. This also limits the fine details in the watermark image. Fourth, the embedding is done
by generating binary halftone images rather than grayscale or multibit images, further reducing the fidelity of
the extracted watermark. This paper proposes a novel watermarking algorithm to address these problems. In
particular, the proposed watermarking scheme can embed grayscale images having similar levels of details as the
two halftone (or multitone) images and there is no residual image in the extracted watermark, i.e. high fidelity
watermark extraction can be obtained. In [1–5], the watermark is extracted using OR or Exclusive-OR of pairs
of black and white pixels. In the proposed scheme, more general operations on pairs (or more generally n-tuples)
of pixels can be used in the watermark extraction algorithm. We also consider the general case where multiple
watermarks are embedded into multiple images.

2. PIXELWISE TRANSFORMATION

We consider an image to be a matrix of pixels, i.e. an image G consists of pixels G(i, j) where G(i, j), the (i, j)-th
pixel of G, is a vector in a color space. For grayscale pixels, the color space is one-dimensional whereas for RGB
pixels, the color space is 3-dimensional. A set of n images G1, G2, . . .Gn of the same size can be considered as a
matrix of n-tuples of pixels. This is denoted as G1×G2× . . .×Gn, i.e. the (i, j)-th element of G1×G2× . . .×Gn

is the n-tuple (G1(i, j), . . . , Gn(i, j)). Equivalently, a set of n images can be considered as a single image where
the color space is the Cartesian product of n color spaces of the images G1, . . . , Gn.

Send correspondence to C. W. Wu (E-mail: cwwu@us.ibm.com).
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Consider an image transformation Φ which acts on an n-tuple of pixels and produces an m-tuple of pixels,
i.e. Φ(p1, . . . pn) = (q1, . . . qm) where pi and qi are pixels. Applying Φ to each of the n-tuples of pixels in
G1 ×G2 × . . .×Gn independently generates a transformation which acts on a set of n images and produces m
images. An interpretation of the mapping Φ is that Φ is a watermark extraction algorithm which produces these
m auxiliary watermark images. Another interpretation is that the n + m images correspond to how a single (or
a few) image appears under different viewing conditions [6]. The goal in these applications and in general is to
produce a set of n images, such that these images, plus the additional m images that are generated by Φ, match
another set of n + m predefined images. In general, perfect matching is not possible as there are more sets of
n + m images than there are sets of n images. Instead of perfect matching we require only that the images look
similar when viewed at the proper distance, i.e. the images should look similar after the lowpass behavior of
the human visual system (HVS) and thus only low-pass versions of the images need to match. This reduction of
information by the low-pass behavior of HVS allow digital halftoning algorithms to produce an adequate solution
to the problem.

For n = 1, this approach has been used in digital watermarking [7] and in embedding images that are viewable
under different viewing conditions [6]. The main purpose of this paper is to give yet another specific application
using this framework for digital watermarking and data hiding where n ≥ 2. To illustrate ideas, we will next
concentrate on the case n = 2, m = 1, i.e. the case where a single image is embedded into two images. We will
return to the general framework in Section 6.

3. WATERMARKING USING OPERATIONS ON TWO IMAGES

In [1–5], watermarking schemes are proposed that construct two binary halftone images A1 and A2, which when
overlaid on top of each other produce an image B revealing a watermark image. Assuming that each pixel of A1

and A2 is either 0 (denoting a white pixel) or 1 (denoting a black pixel), the overlay operation can be expressed
as B(i, j) = A1(i, j) ⊕ A2(i, j) where ⊕ is the OR operation. These methods are based on correlation of pixels
between the two images. The watermark image W is a binary image and when W (i, j) = 0, the corresponding
pixels in A1 and A2 are correlated and uncorrelated otherwise. This implies that when W (i, j) = 1 the overlaid
pixels B(i, j) will be darker on average then when W (i, j) = 0 and thus B will reveal the watermark image W .
As remarked upon in Section 1, the uncorrelated pixels are darker than the correlated pixels only when averaged
over a region of pixels. Therefore the watermark cannot contain fine details. Furthermore, the pixels still reveal
residual features of A1 and A2 when overlaid.

The proposed watermarking scheme is formulated as follows. Given grayscale images Ã1 , Ã2, and B̃, we
construct two halftone images A1 and A2. The image B̃ represents the watermark. From the two images A1

and A2, we can extract an watermark image by the operation B(i, j) = A1(i, j) ◦A2(i, j). The binary operation
◦ is OR in the case of overlaying images, but can be any (not necessarily symmetric) binary∗ operation such as
Exclusive-OR, AND, etc. The goal is to construct A1 and A2 such that they resemble Ã1 and Ã2 respectively,
and such that B resembles B̃. We construct A1 and A2 via digital halftoning on the Cartesian product of color
spaces.

The input to the digital halftoning algorithm are pixels of the composite image Ã1 × Ã2 × B̃: p(i, j) =
(Ã1(i, j), Ã2(i, j), B̃(i, j)). Since A1 and A2 are binary images, the possible values for the pixel pair (A1(i, j),
A2(i, j)) are (0, 0),(1, 0),(0, 1) and (1, 1). As B(i, j) = A1(i, j) ◦ A2(i, j), the possible vectors in the space of
triples of pixels for A1 × A2 × B is one the following: (0, 0, 0 ◦ 0), (0, 1, 0 ◦ 1), (1, 0, 1 ◦ 0), (1, 1, 1 ◦ 1), which we
shall denote as output vectors. The set of output vectors is denoted as P . Next, we select a digital halftoning
algorithm operating in the space of triples of pixels to halftone (Ã1 × Ã2 × B̃) using these 4 output vectors, and
the resulting output halftone image (A1 × A2 × B) is such that A1 ≈ Ã1, A2 ≈ Ã2 and B ≈ B̃. The desired
output halftone images are A1 and A2 which, by construction, combine via the watermark extraction operation
to produce B.

There are several choices for the digital halftoning algorithm, as determined by the tradeoff between speed
and halftone quality. Vector error diffusion (VED) [8] is a well known one pass algorithm that is fast and
produces good halftones. Another choice is the modified error diffusion algorithm [9, 10] which alleviates some

∗Binary here means that the operation has two inputs, not that the operation acts on bits.

2



problems due to large errors in VED. These one-pass methods analyze and process each n-tuple of pixels once
in a specific order. This ordering of pixels to be processed, and the causality of the error diffusion filter cause
anisotropic artifacts in the halftone image. As we will see in Section 7, in some applications there could be
constraints relating pixels in the image which are far apart and for these applications one-pass methods such as
error diffusion are not appropriate. Therefore we will mainly use the iterative isotropic halftoning algorithm used
in [7] to halftone the images. The pseudo code for this halftoning algorithm applied to our problem is shown in
Algorithm 1. The inputs are three images (Ã1, Ã2, B̃) and the outputs are 2 halftone images A1 and A2. The
constants vi determine how strongly the error in each image is minimized. The linear operator L is the linear
space-invariant model of the HVS. Several choices of such filters can be found in [11, 12]. If the images A1, A2

and B are to be viewed at different distances, then L can be different from each of these images.

Because of the linearity, space-invariance and the relatively small support of the impulse response of L, the
computation of the variable Error in Algorithm 1 can be sped up by updating the change in Error due to
changing a single pixel of Outimage. This is because changing a single pixel of Outimage only changes a small
number (on the order of the size of the support of the impulse response of L) of entries of L(Outimagek − Ãk)
and L(Outimage3 − B̃). This technique has been used in dither mask construction when the output is binary
[13], but is equally useful here.

The output image Outimage can be initialized as an image with random pixels from the set of output vectors
or a uniform image of a single output vector. To reduce the number of iterations, Outimage can also be initialized
by running VED or Modified Error Diffusion and using its output as the initial Outimage.

Algorithm 1 Embed watermark in 2 images
repeat

for each i do /* loop through each row */
for each j do /* loop through each column */

for each output vector o = (o1, o2, o3) ∈ P do /* loop through all possible output vectors */
Outimagek(i, j)← ok, k = 1, 2, 3
Error(o) ← v1‖L(Outimage1 − Ã1)‖ + v2‖L(Outimage2 − Ã2)‖ + v3‖L(Outimage3 − B̃)‖

end for
find output vector omin ∈ P that minimizes Error, i.e., omin ← argmino∈P Error(o)
Outimage(i, j)← omin

end for
end for

until Outimage has not changed between two iterations or the maximum number of iterations is reached

4. GAMUT MAPPING

It was shown that for the error in an error diffusion algorithm to be bounded for arbitrarily large images, a
necessary and sufficient condition is that the pixels of the input image (Ã1× Ã2×B̃) should be within the convex
hull of the output vectors [9, 10]. The necessity of this condition is also valid for general halftoning algorithms.
We can view the lowpass behavior of the HVS as an averaging behavior and the original image is approximated
by an convex sum of output pixels. In order to satisfy this convex hull condition, scaling or gamut mapping of
the images is needed. In this section we describe how this can be done. Let S be the set of 3-tuples of pixels
in (Ã1 × Ã2 × B̃) i.e. S = {(A1(i, j), A2(i, j), B(i, j))}i,j . Furthermore, let S1, S2 and S3 be the sets of pixels
of images A1, A2 and B respectively, i.e. S1 = {A1(i, j)}i,j , S2 = {A2(i, j)}i,j , and S3 = {B(i, j)}i,j. For
simplicity, we consider only gamut mappings M that map a pixel p into a pixel M(p) having the following form:
for p = (p1, p2, p3) ∈ S, M(p) = (s1p1 + d1, s2p2 + d2, s3p3 + d3) where si are real numbers denoting scaling
factors and di are offset vectors in the color space. Let H be the (closed) convex hull of the output vectors. H
can be expressed by a set of linear inequalities: H = {x : Ax ≤ b}. A commonly used algorithm for finding the
convex hull of a set of points is the Qhull algorithm [14]. The optimization problem used to find the (optimal)
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gamut mapping is formulated as follows:

max
si,di

min
(

s1

α1
,
s2

α2
,
s3

α3

)
under the constraint that M(S) ∈ H (1)

The set of parameters {si, di} which solves the above optimization problem will be used as the gamut mapping
M , i.e the pixels of (Ã1 × Ã2 × B̃) are scaled by M before they are halftoned by the halftoning algorithm.

The coefficients αi determine the “penalty” of scaling each image. The smaller αi is, the more the correspond-
ing image will be scaled. For instance, in the watermark application, we want the two images A1, A2 to retain
most of the fidelity of the original images Ã1, Ã2, whereas the watermark image, which in many applications is
assumed to be a less complex image, can accept more distortion due to scaling. In this case, we set α3 to be
smaller than α1 and α2.

It is clear that the constraint in Eq. (1) is linear, i.e the inequality constraint M(S) ∈ H is linear in the
variables si, di. This is true since M(S) ∈ H for each pixel p = (p1, p2, p3) ∈ S can be written as

∑3
i=1 Λi(sipi +

di) ≤ b where A = [Λ1

...Λ2

...Λ3] and A, b are the matrices defining the convex hull H = {x : Ax ≤ b}.
If the number of pixels is large, the constraint M(S) ∈ H can be time consuming to compute. One way to

speed up the computation is to not use all the pixels to compute the gamut, i.e. replacing S with a subset S′′ ⊆ S.
This results in a larger feasible region as the set of parameters (si, di) satisfying the constraint M(S′′) ∈ H (i.e.,
the set {(si, di) : M(S′′) ∈ H}) is larger than the set of parameters satisfying M(S) ∈ H . This means that the
convex hull condition may not be strictly satisfied. However, if S′′ is a representative sample of S, then the gamut
mapping obtained using S′′ is close to the gamut mapping obtained using S. In other words, the convex hull
condition violation is mild and does not cause adverse effects to the halftone images. In experiments, choosing
S′′ to be 5 percent of the pixels in S using a sparse grid, gave a gamut mapping very close to the optimal one.

Another way to speed up the computation is using the following simplification which produces a smaller
feasible region for the optimization problem in Eq. (1) that is easier to compute than M(S) ∈ H . However,
since the feasible region is smaller, the gamut mapping is also less optimal. Let Vi be the set of extreme points
of the convex hull of Si. This means that the convex hull of Vi is equal to the convex hull of Si. We then replace
the constraint M(S) ∈ H with M(S′) ∈ H , where S′ = {(p1, p2, p3) : pi ∈ Vi}. It is clear that the convex
hull of S′ is larger than the convex hull of S, i.e. the feasible region {(si, di) : M(S′) ∈ H} is smaller than
{(si, di) : M(S) ∈ H}.

The gamut mapping is computed using the pixel values of the specific images A1, A2 and B. This gamut
mapping in general is not appropriate for another set of images. By replacing S1, S2, S3 with the extreme points,
which by abuse of notation we will denote as V1, V2 and V3 respectively, of the possible gamut (i.e. the possible
range of pixel values) of the images A1, A2 and B respectively, a gamut mapping obtained using the resulting
M(S′) ∈ H can be used for any possible image A1, A2 and B respectively. For instance, suppose that the pixel
in the image A2 can take on values between 0 and 1. Then by replacing S2 with the set {0, 1}, which is the set
of extreme points of the interval [0, 1], and solving the optimization problem using the constraints M(S′) ∈ H
where S′ = {(A1(i, j), v, B(i, j)) : v ∈ {0, 1}} we obtain a gamut mapping that can be used with images A1 and
B and any image A2 whose pixels lie in the interval [0, 1]. If we replace all three Si’s with {0, 1}, and assume the
OR operation for extracting the watermark, i.e. the output vectors are (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), then
we obtain the following gamut mapping: s1 = s2 = s3 = 0.25, d1 = d2 = 0.5, d3 = 0.75 which can be used for all
grayscale images A1, A2 and B. Thus by restricting the feasible region in this way we obtain suboptimal gamut
mappings that cause more distortion to the original images, but are applicable to a larger set of images.

As was shown in [6, 7], the error calculation in the digital halftoning algorithm can be weighted according
to the fidelity one wishes to achieve for each image. For instance, if a low fidelity watermark is adequate, the
error calculation can be skewed to include more emphasis in reducing the error in the two main images. This is
reflected in the parameters vi in Algorithm 1.

For general images, the condition that the input pixel lie in the convex hull of the output vectors can be
violated mildly without much loss in image quality. This allows the gamut mapping to distort the image less.
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5. EXAMPLES

Figure 1 shows an embedding of the Lena image into the two images Baboon and Boat. The gamut mapping is
obtained using α1 = 1, α2 = 1, and α3 = 0.5. Figure 1(a) and 1(b) shows the Baboon halftone image and the
Boat halftone image respectively, and Figure 1(c) is the extracted watermark image obtained by performing the
OR operation on the pixels of Fig. 1(a) and 1(b).

Figure 2 is the same as Figure 1, except that the Lena image is embedded into two images of uniform gray.
The gamut mapping is obtained using α1 = α2 = α3 = 1.

In Figure 3 the Lena image is embedded into two Baboon images where the extraction is done using the
Exclusive-OR operation, instead of the OR operation in the previous examples. This is an interesting example
because the two Baboon images (Fig. 3(a),3(b)) appear to be the same, but the halftone dots are arranged
differently. When pixelwise Exclusive-OR is applied to these two images, the watermark image (Lena) emerges
(Fig. 3(c)). The gamut mapping is obtained using α1 = α2 = α3 = 1.

The extracted watermark images in these examples have relatively high fidelity. This is in contrast with the
schemes in [1–5], where a residual of the two halftone images is evident in the extracted watermark image.

6. GENERAL FRAMEWORK

We next discuss the general framework for using this approach in image watermarking and data hiding ap-
plications. An image A is represented as a matrix of pixels. The (k, l)-th pixel of A is denoted as A(k, l).
Each pixel is a vector in some color space T (which can vary from image to image), i.e. A(k, l) ∈ T . Given
n images A1, . . . An, the watermark extraction algorithm Φ = (φ1, . . . , φm) constructs m images as follows:
Φ(A1, . . . , An) = (B1, . . . , Bm) where Bj = φj(A1, . . . , An), i.e. Bj are images created from the sets of images
A1, . . . An. The operation φj operates pixelwise on the images A1, . . . An, i.e. Bj(k, l) = φj(A1(k, l), . . . An(k, l)).

Given a set of n + m images Ã1, . . . , Ãn, B̃1, . . . , B̃m, the goal is to create n images (A1, . . . , An) resembling
Ã1, . . . Ãn such that the m images B1, . . . , Bm extracted from (A1, . . . , An) via Φ resemble B̃1, . . . B̃m.

This will be done using a digital halftoning algorithm. A digital halftoning algorithm can be described
generally as follows: given an image I, it creates a halftone image Ĩ such that each pixel of Ĩ is a member of a
restricted set of output pixels P and furthermore Ĩ resembles I under some metric d, i.e. d(I, Ĩ) is small.

Next we need to specify the set of output pixels for our specific problem in order to use digital halftoning
algorithms. Suppose that the pixels of Ai are chosen from the set Oi. Let R ⊆ O1 × . . . × On = {(p1, . . . , pn) :
pi ∈ Oi∀i} be the set of all possible output vectors for the combined image A1 × . . . × An. The subset R
can be a strictly smaller subset of O1 × . . . × On to express additional relationships between pixels in different
images. From R we create the set of extended output vectors P = {(p, φ1(p), . . . , φm(p)) : p ∈ R} and halftone
(Ã1 × . . .× Ãn × B̃1× . . .× B̃m) using P as the set of output vectors. The pseudocode of an iterative halftoning
algorithm for solving this problem is shown in Algorithm 2. In the algorithm, Ã1, . . . , Ãn, B̃1, . . . B̃m are the
input images, P is the set of output vectors and the coefficients vA

k and vB
k determine how strongly the error in

each image is minimized.

To satisfy the convex hull condition, the pixels of Ã1× . . .× Ãn× B̃1× . . .× B̃m are first scaled by the gamut
mapping M . The mapping M is found by solving

max
si,di

min
j

sj

αj

under the constraint that (s1p1 + d1, . . . , sn+mpn+m + dn+m) ∈ H for all pixels p = (p1, . . . pn+m) of (Ã1 × . . .×
Ãn × B̃1 × . . .× B̃m), where H is the convex hull of the output vectors in P . The gamut mapping is then given
by:

M : (p1, . . . , pn+m)→ (s1p1 + d1, . . . , sn+mpn+m + dn+m)

Other forms of the objective function can be used in the optimization, e.g.:

max
si,di

Πjsj
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(a) Baboon (b) Boat

(c) Lena

Figure 1. Embedding of an image into two images. Figure 1(c) is obtained by performing OR on Figure 1(a) and Figure
1(b).
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(a) uniform gray (b) uniform gray

(c) Lena

Figure 2. Embedding of an image into two images. Figure 2(c) is obtained by performing OR on Figure 2(a) and Figure
2(b).
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(a) Baboon (b) Baboon

(c) Lena

Figure 3. Embedding of an image into two images where extraction of watermark is via Exclusive-OR. Figure 3(c) is
obtained by performing Exclusive-OR on Figure 3(a) and Figure 3(b).
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Algorithm 2 Embed m watermark images in n images
repeat

for each i do /* loop through each row */
for each j do /* loop through each column */

for each output vector o = (o1, . . . , on+m) ∈ P do /* loop through all possible output vectors */
Outimagek(i, j)← ok, k = 1, . . . , n + m
Error(o) ←∑n

k=1 vA
k ‖L(Outimagek − Ãk)‖+

∑m
k=1 vB

k ‖L(Outimagen+k − B̃k)‖
end for
find output vector omin ∈ P that minimizes Error, i.e., omin ← argmino∈P Error(o)
Outimage(i, j)← omin

end for
end for

until Outimage has not changed between two iterations or the maximum number of iterations is reached
(A1, . . . , An, B1, . . . , Bm)← Outimage
Output A1, . . . An

The watermarking application in Section 3 is a case where the output are binary halftone images, n = 2 and
m = 1 and φ1 is a binary operation.

An example of an application where m > 1 is different combinations of the images producing different
watermarks. For example, given 3 images A1, A2 and A3, combining A1 and A2 produces one watermark B1,
and combining A1 and A3 produces another watermark B2. This is shown in Figure 4, where the gamut mapping
is obtained using α1 = α2 = α3 = 1, α4 = α5 = 1

2 . Figure 4(a), 4(b) and 4(c) show the halftone images of
Baboon, Boat, and Boat-on-a-lake. The Peppers image in Figure 5(a) is obtained by overlaying Figure 4(a) and
Figure 4(b) and the Lena image in Figure 5(b) is obtained by overlaying Figure 4(a) and Figure 4(c).

By choosing another Φ, halftone images can be produced where the extraction of the watermarks is done by
using all three images, for example, by pixelwise Exclusive-OR of all 3 images.

7. MULTIBIT IMAGES, COLOR IMAGES AND OTHER EXTENSIONS

The algorithms presented can easily be adapted to multibit output. Multibit here refers to each pixel having
multiple levels of gray, instead of bilevel where the image pixels are black or white. In this case, the graylevels
of the two images are simply added (with clamping) to produce the graylevel of the overlaid image. When each
component of the output vector is from a q-bit quantizer (e.g. the black and white case is when q = 1), the
number of output vectors is large when q is large. In this case the innermost loop in Algorithm 1 to search for
the output vector that minimizes Error can take too many computations. Since omin is the output vector that
gives the minimal value of the error among all choices of the output vectors at location (i, j), the computation of
omin = argmino∈P Error(o) is a discrete optimization problem. For large q this can be relaxed to a continuous
optimization problem and solved using nonlinear programming and the result quantized by a q-bit quantizer.

In another application, as was done in [5], the two images can be taken to be rotated versions of the same
image. In [5], the second image Ã2 is the first image Ã1 rotated 180 degrees. The idea is that the first image
contains all the information needed to extract the watermark. Note that for this application, there is an acausal
relationship between the pixels of the two images and thus error diffusion is not appropriate as the halftoning
algorithm in this setting. For this application, Algorithm 1 needs to be modified as follows. For an R-pixels by
C-pixels image, when computing Error(o), in addition to replacing Outimagek(i, j) with ok, we need to replace
Outimage1(R− i+1, C− j +1) with o2, Outimage2(R− i+1, C− j +1) with o1, Outimage3(R− i+1, C− j+1)
with o2 ◦o1. Note that the (R− i1, C−j+1)-th pixel is the (i, j)-th pixel rotated 180 degrees. Then when omin =
(omin

1 , omin
2 , omin

3 ) is found, we set Outimage(i, j)← omin, Outimage(R−i+1, C−j+1)← (omin
2 , omin

1 , omin
2 ◦omin

1 ).
Assuming that the binary operation ◦ is symmetric, the watermark image Ã3 must be such that it is invariant
under 180 degree rotation. The gamut mapping is chosen using α1 = α2 with the additional constraints that
d1 = d2, s1 = s2.
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(a) Baboon (b) Boat

(c) Boat on a lake

Figure 4. Embedding two images into three images. Shown here are three watermarked images. See Figure 5 for the
two extracted watermark images.
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(a) Peppers (b) Lena

Figure 5. Watermark images extracted from the images in Figure 4. Figure 5(a) is obtained from OR of Figure 4(a) and
Figure 4(b). Figure 5(b) is obtained from OR of Figure 4(a) and Figure 4(c).

An example of this is shown in Figure 6, where Figure 6(a) is the halftone image of Baboon and Figure 6(b)
is the watermark that is revealed when Figure 6(a) is OR’ed with a copy of itself that is rotated 180 degrees.
The gamut mapping is obtained using α1 = α2 = 1, α3 = 0.7.

This approach can also be used in color images. Each pixel lies in a multi-dimensional color space such
as CIELab, RGB or CMYK and the digital halftoning is performed in the Cartesian product of these color
spaces. Instead of processing in the Cartesian product of multi-dimensional color spaces, the images can also be
decomposed into their color planes and each plane processed independently as a grayscale image. The results
are combined afterwards to obtain a color halftone image. This alternative approach appears to work well in the
RGB color space.

8. CONCLUSIONS

We present a method of data hiding in images through halftoning of n-tuples of pixels and illustrate the idea by
constructing halftoning images which when overlaid reveal a watermark image. The proposed method overcomes
several limitations of previous methods and introduces new possibilities of embedding multiple watermark images
and using more general watermark extraction algorithms.
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