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Abstract

We consider the behavior of a simple algorithm for buffering packets weighted by different
levels of Quality of Service (QoS) guarantees in a single FIFO queue. Buffer space is limited,
and packet loss occurs when the buffer overflows. A simple greedy algorithm is known to have
a competitive ratio of 2. Here we give a very simple proof of this.

1 Introduction

Several recent papers address the problem of managing a single queue in a limited capacity buffer [3,
4, 1]. At each time step, many packets may enter the buffer, some packets may have to be be
dropped, and the packet at the head of the queue is delivered. Packets are delivered on a FIFO
(first in first out) basis: once packets enter the buffer, they may not be reordered. Differentiated
service is achieved by assigning different nonnegative values to different packets. The goal is to
deliver a subset of packets of greatest possible total value.

A natural and simple greedy policy, which drops minimum value packets only when the buffer
is full, has been shown to be 2-competitive, and this is tight [3]. Refinements of this algorithm that
drop (low-value) packets more aggressively, i.e., sometimes even when the buffer is not full, have
been shown to achieve ratios of 1.98 [4] and 1.75 [1]. Here we give a much simpler analysis of the
greedy algorithm.

Our model is as follows. In each unit time, some number of packets arrive. The arriving stream
of packets and the set of packets in the buffer from previous steps must be trimmed to size B.
Then the packet at the head of the buffer is delivered. We assume the buffer is empty at time 0,
and that all buffered packets are allowed to be delivered after the last packet arrival.

We denote by OPT an optimal offline algorithm. An online algorithm ON is called (strictly)
c-competitive, if for every instance, the total value of packets delivered by OPT is at most c times
the total delivered by ON. See Borodin and El-Yaniv [2] for background on competitive analysis of
online algorithms.

2 Analysis of the greedy algorithm

We consider the set of packets arriving at a single time step to arrive one by one. When a packet p
arrives, the greedy algorithm (hereafter denoted ON) simply accepts p if there is free space in the
buffer. Otherwise it drops a packet p′ with the smallest value among p and those in the buffer.
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Theorem 1 The greedy algorithm is 2-competitive.

Proof: We may assume that OPT never drops a packet that has been admitted to the buffer,
since it could instead simply reject the packet on arrival. We denote the queue of packets for
an algorithm A by QA. Because ON drops packets only when its buffer is full, we know that
|QON | ≥ |QOPT | at all times.

We use the well-known potential function method; see, for example, [2]. We define the potential

Φ =
|QOPT |∑

i=1

vi −
|QON |∑

i=1

wi −
|QOPT |∑

i=1

wi

where vi (resp. wi) is the value of the ith packet in OPT’s (resp. ON’s) buffer, in FIFO order.
We show for each time step t that 2 ·ON(t) ≥ OPT (t) + ∆Φ where OPT (t) and ON(t) denote

the values of the packets delivered at time t by OPT and ON, respectively, and ∆Φ denotes the
change in the value of the potential Φ. We show that this inequality holds separately for arrivals
and deliveries; summing the inequalities yields the claim for a single time step as a whole, and
summing over all time steps yields the theorem. Strict competitiveness follows since Φ = 0 before
any packets have arrived and after the last has been delivered.

For deliveries, the inequality is easily seen to be satisified (and tight if OPT’s queue is not
empty) if we consider the algorithms to simultaneously deliver the first packets (if any) in their
queues.

For arrival of a packet p of value v, we must show ∆Φ ≤ 0. We consider several cases. By QA,
wi, etc. we mean the state before the arrival of p.

1. OPT rejects p and |QON | < B. ON accepts p and ∆Φ = −v.

2. OPT rejects p and |QON | = B. The first sum in Φ is unchanged. ON must drop p or some
other packet. Depending on the position of the dropped packet, each of the second and third
sums is unchanged or increases, since the packet dropped by ON is one of smallest value and
is replaced in the sum, if present, by a packet of at least the same value.

3. OPT accepts p and |QON | < B. ON accepts p and the changes in the first two terms in Φ
add up to 0. The change in the third term is 0 or less.

4. OPT accepts p and |QON | = B. Let x = |QOPT |. We consider several subcases.

(a) p is dropped. ∆Φ = v − wx+1 ≤ 0 since v is no greater than any value in ON’s buffer.
(b) p′ at position i > x + 2 in ON’s queue is dropped. ∆Φ = v− v + wi −wx+1 ≤ 0 since wi

is the smallest value in ON’s buffer.
(c) p′ at position i ≤ x is dropped. ∆Φ = v − v + 2wi − wx+1 − wx+2 ≤ 0 since wi is the

smallest value in ON’s buffer.
(d) p′ at position i = x + 1 or i = x + 2 is dropped. These are similar to the previous case.

3 Conclusion

Hitherto the analysis of the greedy algorithm [3] and its derivatives [4, 1] has been rather compli-
cated. As mentioned, the greedy algorithm cannot achieve a ratio less than 2. However, it is our
hope and conjecture that the simple proof given here can be adapted to obtain improved results
for policies that drop packets more aggressively.
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