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Job shop scheduling with unit processing times

Nikhil Bansal∗ Tracy Kimbrel∗ Maxim Sviridenko∗

Abstract

We consider randomized algorithms for the preemptive job shop problem, or equivalently,
the case in which all operations have unit length. We give an improved approximation ratio
of O( log m

log log m ) for an arbitrary number m of machines, the first (2 + ε)-approximation for all
constant numbers of machines, and an α-approximation for the case of two machines where
α < 1.45. The last result is via an approximation algorithm for a string matching problem
which is of independent interest.

1 Introduction

Job shop scheduling is a widely studied and difficult combinatorial optimization problem [11]. We
consider the preemptive case with the objective to minimize makespan. This problem is strongly
NP-hard even with only two machines [9]. If the number of machines is part of the input then
Williamson et al. [20] result implies that there is no polynomial-time approximation algorithm
with performance guarantee better than 5/4 unless P = NP .

For the general nonpreemptive job shop scheduling problem the best known approximation
algorithm has performance guarantee of O(log2 mµ/ log2 log mµ) where m is the number of machines
and µ is the maximum number of operations in a job [19, 7]. In the case when for every job there
is at most one operation on each machine this bound could be improved to O(log1+ε m) for every
ε > 0 [5, 6]. This variant of the problem is called acyclic job shop scheduling problem. In the
case of acyclic job shop with unit processing times for every operations the famous papers [12, 13]
design constant factor approximation algorithms.

In the case of preemptive job shop or, equivalently, the case in which all operations have
unit length (we will explain this equivalence in the next section), the results [12, 19, 7] give
O(log mµ/ log log mµ). A polynomial-time approximation scheme (PTAS) is known for the spe-
cial case of a constant number of machines and a constant number of operations per job [10] both
for the preemptive and nonpreemptive problems. Sevastianov [16, 17] gave an algorithm that con-
structs a schedule with makespan L + O(mµ3)pmax, where L is maximum load on a machine and
pmax is the maximum length of an operation. In particular, for the preemptive case, pmax = 1 and
hence Sevastianov’s result gives a schedule of length L + O(mµ3).

In this paper we give the following results for the general preemptive job shop scheduling
problem:

1. For arbitrary m: We give an algorithm with approximation factor of O(log m/ log log m) for
m machines. This eliminates the dependence on µ in previous results of [12, 19, 7].

We give another very simple algorithm that constructs a schedule of length (1 + ε)L +
O(µ log m)pmax in the non-preemptive case, and hence a schedule of length (1 + ε)L +
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O(µ log m) in the preemptive case. This gives a substantially stronger guarantee than Sev-
astianov’s result [16, 17] stated previously. In particular, if the instance is such that µ ≤
εL/ log m, then our algorithm gives a (1 + ε) approximation.

2. For constant m: We show how our additive approximation stated above can be used to give a
polynomial time (2+ ε)-approximation algorithm for any constant number of machines (note
that we allow number of operations per job to be part of the input). Previously, no algorithm
with an approximation ratio independent of m was known for the problem.

3. For m = 2: Sevastianov and Woeginger [15] give a linear-time 1.5-approximation algorithm for
minimizing the makespan in the two-machine case. An algorithm with a tighter approximation
guarantee in terms of the maximum machine load L and the maximum job length l, but still 1.5
in the worst case, was given by [3]. All known approximation results for shop scheduling (other
than approximation schemes) use as a lower bound the maximum of L and l. Sevastianov
and Woeginger [15] note than any approximation algorithm with ratio better than 1.5 for the
two machine case would require a new, non-trivial lower bound on the optimal makespan. In
this paper, we give such a result based on the relationship between the preemptive job shop
scheduling problem and a string matching problem over the binary alphabet. Our algorithm
has an approximation ratio of less than 1.45.

2 Model and notation

In the job shop scheduling problem there is a set J = {J1, . . . , Jn} of n jobs that must be processed
on a given set M = {M1, . . . ,Mm} of m machines. Each job Jj consists of a sequence of µj

operations O1j , . . . , Oµjj that need to be processed in this order. Operation Okj must be processed
on machine Mπkj

, during pkj time units. A machine can process at most one operation at a time,
and each job may be processed by at most one machine at any time. For a given schedule, let Ckj

be the completion time of operation Okj. The objective is to find a schedule that minimizes the
maximum completion time, Cmax = maxkj Ckj. The value of Cmax is also called the makespan or
the length of the schedule.

For a given instance of the job shop scheduling problem, the value of the optimum makespan will
be denoted C∗

max. For each job j and machine i, �ij is the total amount of work in job j designated
for machine i. Let �j =

∑
i∈M �ij denote the total length of job j, and let � = maxj∈J �j . Let Li =∑

j∈J �ij denote the load on machine i, and let L denote maxi∈M Li. Clearly, max{L, l} ≤ C∗
max.

Let µ = maxjµj be the maximum number of operations in any job.
In this paper we consider the preemptive job shop scheduling problem, in which every operation

can be preempted during its execution and resumed later without any penalty. Of course, we
must still obey precedence constraints between operations, and for every operation Okj , the total
time allocated on machine πkj must be equal to its processing time pkj. It is well-known that
there exists an optimal schedule for the preemptive job shop problem where preemptions occur at
integral times (see [4] for more general results of this sort). We may assume that all operation
lengths are polynomially bounded since this assumption can be removed with only ε loss for any
ε > 0 by standard scaling and rounding techniques. Thus, we will consider the preemptive job shop
scheduling problem to be equivalent to the nonpreemptive job shop scheduling problem with unit
processing times; i.e., we split every operation Okj with processing time pkj into pkj unit length
operations and assume that all inputs pkj, Li, lj are polynomially bounded. We use ε throughout
the paper to denote a constant that can be made arbitrarily small, where running times depend on
1/ε.
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We assume without loss of generality that for all i ∈ M, Li = L; this is easily achieved as follows.
We add a dummy job for each machine i if needed, comprising L − Li unit length operations on
machine i only. It is easy to see that this does not change the optimal makespan, since any schedule
has length at least L and thus L − Li idle time steps in which the dummy job may be executed.

3 The two-machine case

In this section we consider the preemptive two-machine job shop problem J2|pmtn|Cmax. The
previously best known algorithms for this problem have a worst case approximation ratio of 1.5
[15, 3]. As mentioned previously, it is impossible to achieve a better ratio if we use the trivial lower
bound of max{L, l} only. To see this, consider the instance with two identical jobs J1 and J2. Each
of them consists of L/2 operations that require machine 1 followed by L/2 operations that require
machine 2. Cleary, the trivial lower bound on the makespan is L. However, it is easy to see that
any feasible schedule has makespan at least 1.5L.

In order to get a ratio strictly better than 1.5, we adopt the following approach: We first note
that in the cases when l < 0.88L or when l > 1.16L the trivial lower bound is enough to give a
ratio better than 1.442. In the hard case with a job B of length about L (i.e. l ≈ L), we attempt
to maximize the number of operations of other jobs that are performed concurrently with B. This
is most clearly stated in terms of a string matching matching which we describe in Sections 3.1 and
3.3 below. We show how to solve this string matching problem so that we can perform concurrently
with B at least a 1−1/e fraction of the most possible. We then show that combining these different
cases gives a worst case approximation ratio of about 1.442 in the general case.

3.1 Maximizing matches between a set of binary strings and one long one.

We consider the following problem, which is interesting on its own and which may have other
applications. Let S be a binary string and C = {S1, S2, . . . , Sn} be a collection of binary strings.
Let � denote the length of S, and let �i denote the length of Si. For a string X, let X(i) denote
the ith character of X. We say that Si has a matching Ei of value k in S if there exist indices
a1 < a2 < . . . < ak and b1 < b2 < . . . < bk such that Si(aj) = S(bj) for all 1 ≤ j ≤ k. We denote
the value of Ei by |Ei|. We also associate Ei with the set of indices b1, . . . , bk. Matchings Ei and
Ej of Si and Sj , respectively, in S are said to be disjoint if Ei ∩ Ej = ∅.

Problem: Find a collection of matchings E1, . . . , En of S1, . . . , Sn in S such that the Ei are
pairwise disjoint, i.e. Ei ∩ Ej = ∅ for all 1 ≤ i < j ≤ n. The goal is to maximize the cardinality of∑n

i=1 |Ei|.
We show the following:

Theorem 1 There is a randomized approximation algorithm for our string matching problem with
expected ratio at least 1 − 1/e.

The proof is deferred until section 3.3.

3.2 Solving job shop using the string matching algorithm

Theorem 2 For every ε > 0, there is a randomized (α+ε)-approximation algorithm for J2|pmtn|Cmax,
where α = 1 + e

3e−2 ≈ 1.442, with running time polynomial in the number n of jobs, the maximum
number of operations in a job µ, and 1/ε.
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Proof: Let 0 ≤ δ ≤ 1 be a constant to be determined later. We consider separately the following
cases:

1. l ≤ 2δL. In this case, we use the algorithm of [3] which finds a schedule of length at most
L + l/2, so the trivial lower bound of L in this case is enough to give an approximation ratio
of 1 + δ.

2. l ≥ 2
e−1L. Again we use the algorithm of [3]. In this case the trivial lower bound of l implies

a ratio of at most L/l + 1/2 ≤ e/2 ≈ 1.36.

3. 2
e−1L > l > 2δL. In this case, Theorem 1 can be used. We reduce J2|pmtn|Cmax to the
string matching problem as follows. String S corresponds to a “big” job B job of length
l (an arbitrary choice can be made if there are two or more such jobs), and all other jobs
correspond to strings in the set C. Operations of B processed on the first machine correspond
to ones in S and operations on the second machine correspond to zeros. For the other jobs, the
correspondence is inverted: operations on the first machine correspond to zeros and operations
on the second machine correspond to ones. We can obtain a schedule for a job shop instance
from a solution to the matching problem such that the number of matches is the number of
time units in which two operations are executed in parallel.

Let V denote the optimal value of the string matching instance. V is the maximum possible
overlap between job B and the remaining jobs, i.e., the maximum number of unit-length
operations in B that can be executed concurrently with operations in other jobs. Note this is
not necessarily the amount of overlap between B and the other jobs in any optimal schedule,
but is an upper bound. The optimal makespan C∗

max is at least

l +
1
2
(
∑

j �=B

�j − V ) = L + l/2 − V/2

even if the maximum overlap between B and the other jobs is achieved and the remaining
operations in the other jobs are executed fully in parallel. Using Theorem 1 we can obtain a
schedule with expected length at most 2L − (1 − 1/e)V . Thus the approximation ratio is at
most

2L − (1 − 1/e)V
L + l/2 − V/2

.

Consider the quantity

f(W ) =
2L − (1 − 1/e)W
L + l/2 − W/2

.

It can be verified that for l ≤ 2
e−1L, f(W + 1) ≥ f(W ). Thus since V ≤ l the approximation

ratio has maximum value at most 2 − 2(1 − 1/e)δ with l = V = 2δL.

Choosing whichever of these two algorithms yields a smaller makespan, we obtain a schedule of
length at most min{2 − 2(1 − 1/e)δ, 1 + δ}C∗

max. Thus we set δ = e
3e−2 ≈ 0.442, and the theorem

follows.

3.3 Proof of Theorem 1

We first consider a linear program formulation for a relaxation of the problem. We view the relaxed
problem as follows: Consider a character Si(j) and imagine traversing the string S one character
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at a time starting from S(1) and going all the way to S(l). At step k we match a fraction xi,j,k of
Si(j) to S(k), and then we discard (i.e., leave unmatched) a fraction yi,j,k of Si(j) before moving on
to stage k + 1. We also assume that for each i, j, there is a step 0, where we can discard a fraction
yi,j,0 of Si(j).

Consider the following linear program:

Maximize

n∑

i=1

�i∑

j=1

�∑

k=1

xi,j,k

∀i, j, k

k−1∑

t=0

(xi,j−1,t + yi,j−1,t) −
k−1∑

t=0

(xi,j,t + yi,j,t) − xi,j,k ≥ 0(1)

∀k
∑

i,j

xi,j,k ≤ 1(2)

xi,j,k = 0, Si(j) �= S(k)(3)
yi,j,k ≥ 0(4)
xi,j,k ≥ 0(5)

∀i, j

l=|S|∑

t=0

(xi,j,t + yi,j,t) = 1(6)

The first set of constraints models the precedence constraints implied by the ordering of the
characters in the strings. They say that the amount of Si(j) matched up to S(k) and discarded up
to S(k − 1) is no more than total amount of Si(j − 1) matched and discarded up to S(k − 1). The
second set of constraints ensures that every character is S is matched to a total amount of at most
1. The third set of constraint ensures that 0s are not matched to 1s and vice versa. The fourth and
fifth sets of constraints ensure that xi,j,k and yi,j,k are non-negative. The final set of constraints
say that each character Si(j) is either matched or discarded.

We now show that the LP optimum is an upper bound on the integral optimum solution.
Consider any integral solution (I), and suppose that Si(ja) is matched to S(ka), for a = 1, . . . , b.
Then for a = 1, . . . , b we set xi,ja,ka = 1 and xi,ja,t = 0 for all t �= ka. We also set yi,ja,t = 0 for all
t. For j such that ja < j < ja+1, we set yi,j,ka = 1 and xi,j,t = 0 for all t. If j < j1, we set yi,j,0 = 1.

Clearly the value of the objective function for this assignment of variables is exactly the number
of matches in I. We only need to show that this assignment satisfies all the constraints. Since xi,j,k

and yi,j,k are {0, 1} variables in this assignment and every Si(j) is either matched or discarded,
the last 3 sets of constraints are trivially satisfied. The third set of constraints is satisfied since I
does not match a 0 to a 1 or vice versa. The second set of constraints holds because each S(k) is
matched to at most one character among the Si.

For the first set of constraints, since xi,j,k and yi,j,k are {0, 1}, such a constraint is violated only
if Si(j − 1) has not been matched or discarded by step k − 1 and either

1. Si(j) is matched at step k.

2. Si(j) is matched or discarded by step k − 1 or sooner.

However, it is easy to see that if Si(j) is matched at to S(k), then either j − 1 was matched to
S(h) for h < k or discarded at step g, where g is the last step before k where some character from
Si was matched.
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If Si(j) is matched or discarded by step k − 1 or sooner, it is trivial to see by construction that
Si(j − 1) is matched or discarded before step k − 1 as well.

We now give a randomized procedure to round this LP solution. We will show that it produces
a feasible integral solution which has a number of matches equal to at least 1 − 1/e times the
optimum LP value in expectation.

It is useful to view the LP solution in the following equivalent way. Let 0 ≤ si,j,k ≤ 1 denote
the extent to which Si(j) has been matched to S(1), . . . , S(k−1) or discarded during the first k−1
steps, i.e. si,j,k =

∑k−1
t=1 (xi,j,t + yi,j,t). Let vi,j,k = si,j,k + xi,j,k; thus vi,j,k − si,j,k is exactly the

extent to which Si(j) is matched to S(k). Also note that yi,j,k = si,j,k+1− vi,j,k. Note that the first
set of constraints implies that si,j−1,k ≥ vi,j,k.

Rounding Procedure:

1. For each string Si choose ui ∈ [0, 1] uniformly at random.

2. For each i, j assign Si(j) to S(k) if and only if si,j,k ≤ ui < vi,j,k.

3. Let N(k) denote the number of characters assigned to S(k) at the end of the previous step.
N(k) is a random variable. If N(k) = 0, S(k) is not matched to any character. If N(k) = 1,
we match S(k) to the unique Si(j) assigned to it. If N(k) ≥ 2, we arbitrarily match S(k) to
one of the characters, and discard the remaining N(k) − 1 characters (never to be matched
again).

We now study the properties of the obtained solution. Given two open intervals of numbers
I1 = (l1, u1) and I2 = (l2, u2), we say that I1 > I2 if l1 ≥ u2, i.e. each element in I1 is greater than
every element than I2.

Fix i and j. Since xi,j,k ≥ 0 and yi,j,k ≥ 0 it trivially follows that vi,j,k ≤ si,j,k+1 and hence the
intervals Ik = (si,j,k, vi,j,k) are pairwise disjoint.

Thus, no Si(j) can be assigned to two or more characters in S. At the end of the third rounding
step, no S(k) is matched to two or more characters. Thus, to show the validity of the solution
produced after rounding, we need only to show that no precedence constraints are violated for any
Si.

Lemma 1 For a fixed i and k, let Ij denote the (possibly empty) interval (si,j,k, vi,j,k). Then,
Ij1 > Ij2 for all j1 < j2 or equivalently, vi,j2,k ≤ si,j1,k. In particular this implies that Ij1 ∩ Ij2 = ∅
for all 1 ≤ j1 < j2 ≤ �i

Proof: It suffices to show that Ij−1 > Ij for all j. By the first set of constraints we know that
vi,j,k ≤ si,j−1,k for all i, j, k. This implies the desired result.

We now show that no precedence constraints will be violated for any Si. Suppose Si(j1) is
assigned to S(k1) and Si(j2) to S(k2) for j1 < j2 and k1 ≥ k2. Since we use the same random ui for
all characters in the string Si, it must be the case that ui ∈ (si,j1,k1, vi,j1,k1) and ui ∈ (si,j2,k2, vi,j2,k2),
which implies that vi,j2,k2 > si,j1,k1. Since vi,j,k is monotonically increasing in k, and k2 ≤ k1, this
implies that vi,j2,k1 > si,j1,k1. But this violates lemma 1. Thus we have shown that the rounding
produces a feasible solution.

We now analyze the quality of the solution.

Lemma 2 Let V denote the optimum LP value. The rounding procedure matches at least V (1−1/e)
characters in S in expectation.
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Proof: Let us consider the solution obtained after the first two steps of rounding. Let N(i, k) be a
random variable that denotes the number of characters from Si that are assigned to the character
S(k). Let pi,k denote

∑
j xi,j,k =

∑
j(vi,j,k − si,j,k). By Lemma 1, we know that the intervals

Ij = (si,j,k, vi,j,k) are disjoint. Hence the probability that some character of Si is matched to S(k)
is exactly equal to the probability that ui ∈ ∪jIj, which is exactly pi,k. Thus N(i, k) is a Bernoulli
random variable with parameter pi,k, that is, it is 1 with probability pi,k and is 0 otherwise.

Thus, N(k) is the sum of m Bernoulli random variables with parameters p1,k, . . . , pn,k. Let I0

denote the random variable that denote the number of characters in S that have zero matches.
Thus, I0 = |{k : N(k) = 0}|.

Clearly, the number of matches in the LP is
∑

i,j,k xi,j,k =
∑

i,k pi,k. The number of matches
in the integral solution is the length of S minus the number of non-matches. Thus, the number of
matches is � − I0.

Now
Pr [N(k) = 0] = Πn

i=1(1 − pi,k) ≤ e−
∑n

i=1 pi,k

Thus, E[I0] ≤
∑�

k=1 e−
∑n

i=1 pi,k Thus the expected number of matches is

l − E[I0]

≥
�∑

k=1

(1 − e−
∑n

i=1 pi,k)

≥ (1 − 1/e)
�∑

k=1

n∑

i=1

pi,k

The last step holds since 1 − e−x ≥ x(1 − 1/e) for 0 ≤ x ≤ 1. Note that
∑n

i=1 pi,k ≤ 1 follows
from constraint set 2.

This completes the proof of theorem 1.

4 An improved bound for an arbitrary number of machines

4.1 An O(log m/ log log m)-approximation algorithm.

In this section we consider a simple randomized algorithm previously considered in [12, 19, 7].
Namely, the algorithm chooses an integer number tj between 0 and L− 1 independently at random
for each job Jj ∈ J . It then constructs an infeasible schedule processing each job Jj in no-wait
fashion in the time interval [tj , lj + tj − 1]. The problem with this schedule is that in some time
steps, some machines must process more than one job each. Let τit be the number of operations
assigned to a time step t on machine Mi by the above randomized procedure.

To obtain a feasible schedule from the infeasible one constructed by the randomized shifting
procedure, we expand every time step t into maxi=1,...,m τit steps. Since all operations assigned to
the same step belong to different jobs we can feasibly schedule all such operations using this interval
of length maxi=1,...,m τit. Finally, we concatenate the schedules so obtained for all time steps. The
total length of the final feasible schedule is at most

∑L+l
t=1 maxi=1,...,m τit (where the upper limit of

summation corresponds to the upper bound of L + l on the length of the infeasible schedule).
By Chernoff bounds it can be shown that with high probability maxi,t τit = O(log mL/ log log mL) [12,

19, 7]. Therefore, with high probability the length of the final schedule is O(log mL/ log log mL)max{L, l}.
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Instead of using this high probability result, we will try to estimate the expected schedule length
which is E(

∑L+l
t=1 maxi=1,...,m τit) =

∑L+l
t=1 E(maxi=1,...,m τit). We will do this using the following

lemma. The techniques are standard and similar results can be found in [8, 14]. We defer the proof
of this lemma to Section 6.

Lemma 3 (Non-uniform Balls and Bins) Suppose we have m bins and n balls. Every ball j
chooses a bin i at random with probability λij , i.e.

∑m
i=1 λij ≤ 1. The expected number of balls in

every bin is at most one, i.e.
∑n

j=1 λij ≤ 1. Then the expected maximum number of balls in any of
the m bins is O(log m/ log log m).

Lemma 3 immediately implies an upper bound for
∑L+l

t=1 E(maxi=1,...,m τit). In every time
interval of unit length we have an instance of the balls and bins problem with m bins and n balls.
Ball j landing in bin i corresponds to an operation of job Jj being scheduled on machine Mi at time
step t by the randomized shifting procedure. This occurs with probability at most min{ lj

L , 1} · lij
lj

=
lij/max{L, lj}, which is an upper bound on the probability that the job is processed in the time
interval t, multiplied by the probability that the job is processed on machine i conditioned on its
being processed during time step t. Therefore, E(maxi=1,...,m τit) = O(log m/ log log m) and we
obtain the following.

Theorem 3 The expected makespan of the feasible schedule obtained by the above randomized al-
gorithm is O(log m/ log log m)max{L, l}.

4.2 An approximation algorithm with an additive performance guarantee.

Our second randomized algorithm also chooses random integer shifts tj in the interval [0, L− 1] for
every job Jj. The difference is that instead of processing every job in the time interval [tj, tj + lj],
we process job Jj in the time interval [tj, tj + lj · K log m] with equal delays of K log m between
consecutive operations of the same job where K is a constant specified later. This schedule has
length at most L+(K log m)l. This schedule also may be infeasible, but unlike the no-wait schedule
from the previous section we will show it can be transformed into a feasible schedule of length
(1 + ε)L + O(log m)l for an arbitrarily small constant ε > 0. Note that the constant K depends on
ε, which means that higher precision in the first term is compensated by an increase in the second
term of our bound.

We now show how to transform an infeasible schedule into a feasible one with 1 + ε increase
in the schedule length. Consider an infeasible schedule obtained by the modified randomized
shifting procedure. This schedule has length at most L + (K log m)l. We split the time interval
[0, L + (K log m)l] into consecutive intervals of length K log m; the last interval may have smaller
length. We use another variant of the balls and bins lemma.

Lemma 4 Let 0 < ε < 1 and Kε = 4/ε2. Suppose we have m bins and n balls. Every ball j
chooses a bin i at random with probability λij , i.e.

∑m
i=1 λij ≤ 1. The expected number of balls in

every bin is at most
∑n

j=1 λij ≤ Kε log m. Then the expected maximum number of balls in any of
the m bins is O((1 + ε)Kε log m).

Therefore, all jobs which appear in the same interval of length Kε log m in the infeasible schedule
can be scheduled in (1 + ε)Kε log m time steps (in expectation) since there are no two operations
of the same job in such intervals. Thus we obtain the following.

Theorem 4 The expected makespan of the feasible schedule obtained by the above randomized al-
gorithm is (1 + ε)L + O(log m)l.
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Remark. Applying the same algorithm for the nonpreemptive job shop scheduling problem
with general processing times and using delays of (K log m)pmax between consecutive operations
of the same job, where pmax is maximum processing time in the instance, we can get a feasible
schedule of length at most (1 + ε)L + O(µ log m)pmax, where µ is maximum number of operations
per job and a hidden constant depends on ε. Sevastianov [16, 17] obtained similar bounds by using
so-called vector summation techniques. More precisely he described a polynomial time algorithm
which always finds a schedule of length at most L + O(mµ3)pmax.

5 A (2 + ε)-approximation for any constant number of machines

Our (2 + ε)-approximation for for the job shop scheduling problem Jm|pmtn|Cmax with unit oper-
ations (or preemptions) is based on the following standard idea in scheduling. We split the set of
jobs into two sets: L = {Jj |lj ≥ εL/(Kε log m) is the set of “big” jobs and S = J \ L is the set of
“small” jobs.

The set of small jobs is scheduled by using the randomized algorithm from the previous section.
Theorem 4 guarantees that the schedule length is at most (1 + O(ε))max{L, l}.

To schedule the set of big jobs we employ a well-known technique for the job shop scheduling
problem with constant number of jobs. It is known that the job shop problem with two jobs is
polynomially solvable [1]. If the number of jobs is constant k ≥ 3 then the problem is weakly NP-
hard [18] when processing times are allowed to be exponentially large, but can be solved in pseudo-
polynomial time by a straightforward generalization of Akers’ technique to a grid of k dimensions
rather than 2. With unit processing times, the problem is polynomially solvable. Therefore, we
can schedule the big jobs with makespan at most C∗

max (or (1 + ε)C∗
max if we include the factor we

lose when we apply rounding and scaling to decrease number of unit length operations).
Concatenating the two schedules, we obtain a schedule of length at most (2 + ε)C∗

max.

6 Proofs of Lemmas 3 and 4

We use the following version of Chernoff bounds as given on page 267, Corollary A.1.10, [2].

Lemma 5 Suppose X1, . . . ,Xn, are 0-1 random variables, such that Pr[Xi = 1] = pi. Let µ =∑n
i=1 pi and X =

∑n
i=1 Xi. Then

Pr[X − µ ≥ a] ≤ ea−(a+µ) ln(1+a/µ)

We will also need the following corollary.

Lemma 6
Pr[X − µ ≥ a] ≤ e−a min(1/5,a/4µ)

Proof: Let x = µ/a. Then the right-hand side can be written as e−a((x+1) ln(1+1/x)−1).
Now, (x + 1) ln(1 + 1/x) − 1 is decreasing in x. At x = 2, its value is 3 ln 5/3 − 1 ≥ 1/5. For

x > 2, it is at least (x + 1)(1/x − 1/2x2) − 1 = 1/2x − 1/2x2 ≥ 1/4x.

Proof: (of Lemma 3)
Let Bij be a 0-1 random variable that is 1 iff ball j goes to bin i. Let Bi denote the number of

balls in bin i. Finally, let B = maxi Bi. As E[Bi] ≤ 1, by Lemma 5,

Pr[Bi ≥ 1 + a] ≤ Pr[Bi ≥ E[Bi] + a] ≤ ea−(a+E[Bi]) ln(1+a/E[Bi]) ≤ ea−a ln(1+a).
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For a ≥ 3 ln m
ln ln m and observing that ln(1 + a) − 1 ≥ ln(ln m/ ln ln m) ≥ 1/2 ln ln m), we have that

Pr[Bi ≥ 1 + a] ≤ e−a ln ln m/2

Since,
By the union bound, Pr[B > 1 + a] ≤ me−a ln lnm/2. Now,

E[B] =
∞∑

x=1

Pr[B ≥ x]

≤ 3
ln m

ln ln m
+

∑

a≥3 ln m
ln ln m

Pr[B ≥ 1 + a]

≤ 3
ln m

ln ln m
+ m

∑

a≥3 ln m
ln ln m

e−a ln ln m/2

≤ 3
ln m

ln ln m
+ 2

m−1/2

ln ln m
≤ 5

ln m

ln ln m

Proof: (of Lemma 4) By Lemma 6

Pr[Bi ≥ Kε ln m + δ] ≤ Pr[Bi ≥ E[Bi] + δ] ≤ e−δ min(1/5,δ/4µ)

We will only be interested in δ ≥ εKε lnm. Thus, Pr[Bi ≥ Kε ln m + δ] ≤ e−δ·ε/4. and hence by
the union bound Pr[B ≥ Kε ln m + δ] ≤ me−δ·ε/4. Thus, we have that

E[B] ≤ (1 + ε)Kε ln m +
∑

δ>εKε lnm

me−δ·ε/4

≤ (1 + ε)Kε ln m + m
4
ε
e−ε2Kε ln m/4

Recalling that Kε = 4/ε2, we have that E[B] ≤ (1 + ε)Kε ln m + 4/ε ≤ (1 + ε)Kε lnm + εKε ≤
(1 + 3ε)Kε ln m.

7 Open Problems

Two outstanding open questions that remain for the general preemptive job shop problem are:

1. Is there an O(1) approximation for the general preemptive job shop problem with an arbitrary
number of machines?

A natural way to show an approximation ratio is to use the trivial lower bound max{L, l}.
Moreover all other known lower bounds are provably within a constant factor of max{L, l}
and therefore are useful only if we want to refine an approximation ratio (as we did in Section
3). It is known that for nonpreemptive job shop scheduling there is no O(1) approximation
algorithm with respect to the trivial lower bound max{L, l} even for acyclic instances [6]. We
believe that resolving this question would require significant new insights into the structure
of preemptive schedules.

10



2. Is there a polynomial time approximation scheme for the case of a constant number of ma-
chines?

Our algorithm in this paper gives a PTAS if µ ≤ εL/ log m. On the other hand, if we restrict
the problem to instances with only a few long jobs that comprise all but an ε fraction of the
load, then we can get a PTAS via the generalization of Akers’ technique mentioned earlier.
Making progress on the general case, in which both long jobs and short jobs may make up
significant portions of the load, would require an understanding of how small jobs and long
jobs are ”mixed” together in an optimal. A first step in this direction would be to understand
the approximability of the string matching problem from Section 3.
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