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Abstract 

The rapid publication of important research in the biomedical literature makes it 

increasingly difficult for researchers to keep current with significant work in their area of 

interest. This paper reports a scalable method for the discovery of protein-protein interactions 

in Medline abstracts, using a combination of text analytics, statistical analysis and a set of 

easily implemented rules. Using a collection of 564 abstracts describing protein interactions, 

a precision of 0.92 and a recall on 0.84 were obtained. Applying similar techniques to 12,300 

abstracts, a precision of 0.61 and a recall of 0.90 were obtained, (f = 0.72) and when allowing 

for two-hop and three-hop relations discovered by graphical analysis, the precision could be 

extended to 0.82. 
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1. Introduction 

Scientists in molecular biology find that a significant technique for studying protein 

function is through the study of protein-protein interactions. While the actual experimental 

study of such interactions remains the most important manner of obtaining these data, the 

number of protein-protein interactions reported in the literature is substantial and growing 

rapidly. There are a number of tabulations of these interactions, such as that provided by the 

Munich Institute for Protein Sequence (MIPS), these tabulations are of necessity incomplete.  

To address this problem, we have been developing a group of biology-specific annotators 

that work in conjunction with our group’s text analytic software, for the discovery of protein-

protein relations in text. 

In this paper, we undertook a study that utilizes a combination of computational 

linguistics, statistics and domain-specific rules to detect protein-protein interactions in a set 

of Medline abstracts. 

The system we describe here is particularly appealing because it can be used both to find 

known interactions and to find interactions not yet tabulated. According to the National 

Library of Medicine, Medline contains over 11 million abstracts, with about 40,000 being 

added each month. Thus, having a scalable, robust system for protein interaction discovery 

provides a major information tool for molecular biologists. 

A number of workers have tackled portions of this problem previously with some partial 

success. The SUISEKI system [ 1] recognizes various grammatical frames which may 

describe protein interactions. They reported high precision (68%) for the shorter patterns and 

lower precision (21%) for the longer ones. 

In a more narrowly focused experiment, Pustejovsky et. al [ 2] described a computational 

linguistic system for detecting inhibit relations, with 90% precision and recall of 57%. 
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Recently Leroy [ 3] described Genescene, a software package for detecting relations 

between genes. They used both rule-based detection and co-occurrence based methods, 

finding that rule-based relations were 95% correct and co-occurrence based relations 60% 

correct. 

Researchers at Ariadne Genomics [ 14] have quite recently described a system called 

MedScan, which they report as having 91% precision and 21% recall on human protein-

protein interactions. 

We [ 4] have previously described methods for detecting relations between noun phrases 

and methods for displaying them [ 5]. In this paper we propose using these techniques along 

with a combination of statistical and rule-based approaches to identify protein interactions in 

Medline abstract text. 

Ideally one would imagine constructing a protein interaction network much like the 

network that allowed discovery of the relationship between “fish oil” and “Reynaud’s 

disease” [ 6]. The relations extracted in this paper can be used to form just such a network. 

This paper discusses the text analytic tools used, and then describes our experiments 

against a gold standard of protein relations. Finally the results of mining relations across a 

large set of Medline abstracts are described.  

2.  Comparing Approaches 

The SUISEKI system and the MedScan system both do fairly deep parses of each sentence 

in the abstract and align these results with patterns or frames. The Genescene system uses a 

combination of a very simple parser and a set of rules, as well as a distance co-occurrence 

measure. 
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The SUISEKI and Genescene systems attempt to find protein or gene names from patterns 

and syntax, while the Medscan system uses a compiled dictionary of protein names and 

synonyms. 

In this work, the approach is to use a tagger and shallow parser primarily for sentence 

boundary recognition, and use a dictionary derived from public sources to recognize the 

protein names. The goal of this approach is to be fast and scalable as well as to improve 

precision and recall over other methods.  

3. Text Analytic Tools 

The system used in these experiments is constructed using the TALENT (Text Analysis 

and Language Engineering Tools) text mining system [ 10]. The current version of this system 

operates in the Unstructured Information Management (UIMA) environment [ 11]. It consists 

of a series of document-level annotators that perform preliminary part-of-speech lookup, tag 

each word for part of speech, perform a shallow parse of each sentence, and annotate yeast 

proteins in a manner described below. Each of these annotators leaves its results in an 

annotation repository called the Common Annotation System (CAS).  

While the underlying TALENT text analytic system is written in C++, the UIMA 

framework allows users to write programs in Java that can load the CAS and launch the C++ 

annotators, and then perform the analysis of the results in Java. This is the approach used in 

these experiments. 

After each Medline abstract is processed by the series of annotators, a CAS consumer 

program converts these annotations into entries in a DB2 database load file. This file contains 

all of the salient terms per document, their part of speech and their relative token positions in 

the document. An additional database load file contains the Medline document metadata: 

dates, titles, authors and ID numbers. 
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Then it is possible to use a few simple database queries to construct a Terms database 

table of all the unique terms in the document collection, and compute their frequencies, and 

the number of documents in which they appear once and more than once. Using these data 

the salience or IQ [ 12] of each term can be computed.  

4. Computing Relations 

This paper explores the idea that the computation of relations between terms that was 

described earlier by our group [ 7] can be applied to recognizing protein interactions.  

Relations between terms are computed based on their proximity. If two terms occur near 

each other on several occasions within the collection of documents they have a stronger 

relation than those that co-occur but once. Since the document number, paragraph, sentence 

and offset position for each term are stored in the database, it is a simple matter to find terms 

that co-occur within any specified distance. Further, these relations can be tuned to select 

only those where one or both of the terms have a salience above a specific value. 

The weights of these relations are computed using the mutual information formula 
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log
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paircounttotaltermsm  (1) 

where totalterms is the total number of unique terms in the collection, paircount is the 

number of documents in which both terms occur, and freq1 and freq2 are the frequencies of 

the two terms in the collection. After computing all the mutual information values m for the 

term pairs, they are scaled to lie between 0 and 100. 

In this paper, the co-occurrences are limited to those within a single sentence and no more 

than a selectable number of tokens apart. We chose a maximum separation value of 30 

empirically. 
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5. Preliminary Experiments Using MIPS Data 

The Munich Institute for Protein Sequences (MIPS) maintains a database of published 

yeast (saccharomyces cerevisiae) protein interactions along with a reference to the Medline 

abstract of the paper in which the interaction is reported. This table gives 2050 protein names 

and 2604 pairs of protein interactions and provides links to additional information on each 

protein. The interaction table was parsed and reduced to 959 unique relations, and the protein 

names and the 564 Medline abstracts downloaded. 

An annotator was then developed that compared each lexical token found by TALENT 

against the list of proteins and marked those that matched. Then, a simple CAS consumer 

program was designed to report the location of these proteins within each sentence in each 

document.  

Initially, this was not particularly successful because each protein has a number of 

possible representations that needed to be matched to a common canonical form. For 

example, the protein SRV2 can also be represented as Srv2p, SRV2p, CAP and (CAP).  

Synonyms for most of these proteins are available on pages linked from the original page on 

the MIPS web site. The dictionary was expanded using these synonyms and the various 

allowed capitalizations and the analysis rerun, storing all terms and their document positions 

in a database table. 

Even with the expanded protein synonym table, only 388 protein interactions were 

detected within single sentences that matched those in the MIPS interaction table, and 432 

other interactions were detected which did not match those in the MIPS table. This amounted 

to a precision of 0.47 and a recall of 0.68. Further, there was no particular correlation 

between the computed strength of the relation (mutual information value) and the likelihood 

that it agreed with those in the MIPS table. 
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6. Detecting relations in individual documents 

In an effort to improve the accuracy of protein-protein interaction detection, a detailed 

study of 65 of the abstracts was undertaken to determine what algorithms and approaches 

would be most effective. In this study, each abstract was examined along with a list of the 

interactions reported by the MIPS table, including all of the synonyms for each protein. This 

process led to the following conclusions: 

1. Some interactions were not reported in the abstracts, but only in the full papers. In 

fact some review articles contained no protein names at all in the abstracts. This finding 

is similar to that previously described [ 1]. 

2. Some interactions were described that were not tabulated by MIPS. For example, the 

abstract might mention prior work. 

3. Protein complexes were frequently mentioned. For example references are made to  

dimers such as “Ddc2-Mec1” and trimers such as  “Hap2p-Hap3p-Hap5p.” Such 

complexes do, in fact, represent protein interactions and should also be detected and 

reported. 

4. Proteins were frequently referred to by two synonyms separated by a slash, such as 

“GIM1/YKE2.” 

5. In all but one case, the interactions were described in the same sentence, and thus 

resolving co-reference issues would add only marginally to the quality of the 

interaction detection. Thus, the fact that two proteins occurred in the same abstract, but 

not in the same sentence was not a good metric for the number of relations we should 

be able to find. 

6. No instances of negation were found. 
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7. A database query of verbs that lay between two proteins led to the small list shown in 

Table 1. We note that this list is virtually identical to that used empirically by previous 

workers  13]. 

Table 1 - Verbs Used to Describe Protein Interactions 

act 
activate 
associate 
bind 
complex 
co-precipitate 
depend 
inhibit 
interact 
mediate 
phosphorylate 
stabilize 

 

Accordingly two additional annotators and an extractor to operate on these abstracts were 

written. One annotator recognized protein complexes: dimers and trimers, and the other 

recognized protein synonyms in the “slash notation” we illustrated in point  4 above. When 

the annotator found these synonyms, it only annotated one of the two mentions, to avoid 

skewing the mention statistics. All protein complexes were treated as reports of interactions 

and annotated as such. 

A CAS consumer was also written to find the verbs or their noun-equivalents in each 

sentence, if that sentence contained two or more different protein annotations.  

7. Evaluation of Revised Annotations 

Examination of protein interactions detected in 26 randomly selected documents showed 

that nearly all of the relations detected by our unnamed relations algorithm actually existed in 
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the document, whether tabulated by MIPS or not, and that of those our algorithm missed, 

nearly all were not discussed in the abstract at all. 

In these 26 documents, MIPS had reported 129 relations. We found that 17 of these were 

not in the abstracts. We also found an additional 52 interactions by proximity of which only 6 

were incorrect. By reporting complexes as protein interactions as well, we found an 

additional 37 interactions. Overall, the results showed a precision of 0.92 and a recall of 0.84.  

While we had anticipated using the protein interaction verbs to filter the excess relations 

we discovered, we actually found very few cases in this preliminary experiment where the 

verbs provided a meaningful filter. 

8. Study of a Larger set of Medline Documents 

With these encouraging preliminary results in hand, a study of a larger dataset was 

undertaken. The query “yeast protein” was submitted against our local indexing of Medline 

documents through 2002 and a list the top 12,300 documents was obtained. The MIPS protein 

interaction table was enhanced by one from Stanley Fields [ 8]. These documents were 

annotated as above using the same series of annotators and database table created of the 

documents, terms, the proteins found in each of them. 

The initial results of this experiment returned 912 relations, but only 133 agreed with the 

combined gold standard MIPS-Fields table. Considering the large number of abstracts 

examined, this small number of interactions indicates that the original data referred to by the 

MIPS table were a serendipitous set which referred specifically to protein-protein 

interactions. This larger dataset included a number of papers referring to genes which needed 

to be eliminated from consideration. Modifying the annotator to exclude sentences containing 

the words “gene,” “express,” and “encode,” improved the accuracy to 110 out of 660. 
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In this larger set of data, protein names may co-occur in more ways that our initial 

approach allowed for. To reduce the error rate in these experiments, the annotator was further 

modified to exclude sentences which did not contain one of the verbs in Table 1, or their 

nominalizations. This resulted in improving the accuracy to 94 out of 437. 

To further explicate the reasons for the remaining 75% apparent false positives, each 

relation reported was studied in each abstract where it was detected and conservatively rated 

either true or false. Of the 343 unmatched relations, this resulted in 140 additional relations 

being discovered which were not in the combined gold standard table but which were 

definitely reported in the abstracts. This leads to 234 out of 437 relations being discovered 

correctly. These new 140 relations were added to the “true relations” table in the experiments 

that follow. 

To further reduce the false positives, sentences containing any negation word (see  

Table 3) were also excluded from consideration, as were sentences containing the word 

“allele.” It is possible that exclusion of sentences with “not” and the like will also exclude 

double negatives, but we found only one such case in the entire set of candidate abstracts. 

This reduced the false positives to 239 out of 381. These results are summarized in Table 2. 

Table 2 – Summary of precision in recognizing protein interactions under various conditions. 

 Matched 
relations 

All 
relations 

prec 

All sentences 133 912 0.14 

Exclude genes 110 660 0.17 

Require verbs 94 437 0.21 

Discovering 
relations not in 
MIPS table  

234 437 0.53 

Exclude negatives, 
alleles 

239 381 0.62 

9



 

Table 3 – Terms that cause a sentence to be excluded from protein interaction discovery 

gene 
express 
encode 
no 
not 
fail 
mRNA 
transcription 
allele 

 

9. Study of Secondary Relations in the Preliminary Dataset 

A cursory study of these protein interaction relations leads to the question of whether there 

are clusters of protein interactions where the non-adjacent nodes can be said to be related 

indirectly.  

In Figure 1, we see a network of term relations around Tip20, composed of both proteins 

and other noun phrases. The numbers separating the nodes represent the scaled strength of the 

relation based on the mutual information computation discussed earlier. 

By inspection the relations 

Tip20-Ufe1p 
Tip20-Sec20p 
 

can be observed. (The figure shows specific rather than canonical protein names.) 

But examining the original MIPS data, there are also interactions between 

Tip20-SEC22 
Sec20p-SEC22 
Sec20p-Ufe1p 
 
These additional relations can be observed as “secondary” relations or those one node 

distant from each other.  

10



 

Figure 1 – A network of relations around “Tip20.”  

10. Graphical Study of Secondary Relations in the Large Dataset 

Accordingly, we undertook a study of the graphical relations between proteins, in a similar 

fashion to that described by Jeong [ 15]. In this study, we looked at two networks, one of the 

“true” relations described by the combined table and one described by the network of 

relations we discovered by text analytic methods. The true relations graph was, of course, 

larger than the one we mined, and for comparison purposes, we reduced the true relations 

graph to contain only the nodes found in the experimental data.  

In our experimental data, as noted above, we found 385 interactions of which 239 were 

confirmed by the combined true relations table, while 146 were not, for a precision of 62%. 

These 385 interactions were among 266 proteins. However, our true relations table contained 
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only 246 of these proteins. Of the 385 interactions found by our approach, 42 involved one of 

the 20 proteins not part of the true relations table. If we consider only interactions over the 

246 proteins common to both tables, we find that 239 of 343 match and 104 do not, for a 

precision of 70%. 

In examining these two networks, we built a graph corresponding to each interaction 

found by our approach but not present in MIPS. We then compared the data to find out if 

relations which were not directly tabulated in the true relations graph but were found in the 

experimental data could be explained by indirect relations. For example, in Figure 2, there is 

no direct relationship between Ypt1 and Bet2 in the true relations network. However, our 

experiments discovered such a relationship, and from examination of Figure 2, it is apparent 

that there is strong support for this relation. There are relations between Ypt1 and Sec4, Bet2 

and Sec4, Bet2 and Mad2 and Mad2 and Sec4. Thus, there is a path of length 2 (Bet1-Sec4-

Ypt1) and a path of length 3 (Bet2-Mad2-Sec4-Ypt1) between Ypt1 and Bet2. This lends 

considerable support for the relationship between Ypt1 and Bet2. 

If we then return to our database of computed relations, the document containing this 

relation is abstract 1903184, and the supporting text for this relation is: 

“We propose that Bet2 modifies Ypt1 and Sec4 in an analogous manner.” 

Thus, our graphical analysis method discovered an actual relation missed by our text mining 

system. In this case, it was missed because the verb “modifies” was not one of those we 

selected, as shown in Table 1. 

More formally, given a interaction between two proteins, P and Q, we define a 

neighborhood graph, GN(P,Q), as follows: 
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1. First, we form 2 graphs, GA and GM, with edges corresponding to interactions found 

by our algorithm and in MIPS, respectively. The nodes in each graph are the interacting 

proteins.  

2. We merge GA and GM into a single graph, GT. Because we are looking for support 

for interactions in GA, we use the nodes (proteins) in GA as the nodes of GT. We 

annotate the nodes to indicate which were present only in GA and which were present 

in both GA and GM. We include all edges from GA and  all edges from GM both of 

whose endpoints have been included in GT. We annotate the edges to indicate which 

were present only in GA, which were present only in GM and which were present in 

both. 

3. For each P and Q related by our approach but not present in MIPS, we define a 

neighborhood graph GN(P,Q) as a subgraph of GT. The nodes of GN(P,Q) are all 

nodes (proteins) which have relations with P or Q (or both) in GA or GM (or both) and 

which also are nodes in GT (i.e., which appear in GA). The edges of GN(P,Q) are all 

edges in GA or GM (or both) who endpoints are included in GN(P,Q). 

We then analyze the cohesion of GN(P,Q) for each P and Q and collect statistics on the 

cohesion. (For a thorough description of graph representation and algorithms for analyzing 

cohesion, see [ 16] .) 

The cohesion of a graph or subgraph is defined as the ratio of the number of edges present 

to the possible number of edges. In the case of a single node, n, in an undirected graph, if the 

degree (number of incident edges) of n is d we define the neighborhood of n as the set of 

nodes including the endpoints of these d edges, and all edges whose endpoints in this node 

set. Say there are e such edges. The cohesion, C(n) is then defined in Equation (2).  
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In this paper, we are analyzing the cohesion of a subgraph defined over the union of the 

neighborhoods of two nodes, specifically P and Q above. There are also three types of edges 

in this graph. There are thus many possible definitions of cohesion. For simplicity, we take 

the conservative approach of only considering 2 and 3 hops paths (i.e., paths between P and 

Q which contain 2 or 3 edges). This ignores some longer paths which could support the 

interactions were found, but leads to a clearer picture of what is happening. 

In the 104 protein interactions found by our method, but not in the combined true relations 

table, 32 are related by at least one 2-hop path, 35 are related by at least one 3-hop path and 

41 are related by at least one 2-hop or 3-hop path. If we accept the 41 indirectly supported 

interactions, in addition to the 239 present in our combined true relations table, we find that 

we have 280 of 343 “correct” interactions, giving a precision of 82%. 

Our method found 343 interactions over 246 proteins. The true relations table contained 

396 interactions over these same 246 proteins. Thus, of the (246 x 245)/2 = 30,135 pairs of 

proteins, there are only interactions tabulated between 396/30,315, or 1.2% of them, and only 

1286 or 4.2% are connected by 2-hop or 3-hop paths. Also, in most of the 41 cases where the 

interactions we found were supported by these paths, more than one such path was found. 

Specifically, in 19 of the 32 cases where 2 hop paths were present, more than one path was 

present, with the average being  2.3, and similarly, 25 of the 35 occurrences of 3-hop paths 

were multiple occurrences, with the average being 4.1. Thus, the assumption that these paths 

support new interactions found by our method seems statistically persuasive. These results 

are summarized in Table 4. 
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Figure 2 – The true relations network around the discovered YPT1-BET2 relation.  

Table 4 – Results of including network analysis data 

 Matched 
relations 

All 
relations

prec 

Exclude negatives, 
alleles (from Table 2) 

239 381 0.62 

Exclude 20 proteins that 
are not part of true 
relations table. 

239 343 0.70 

Include 2-hop and 3-hop 
relations. 

280 343 0.82 
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11. Validation of Graphical Computations 

Computation of all relations having 2-hop and 3-hop paths which do not have direct 

reported interactions gave 30 relations deduced from 2-hop paths and 60 relations deduced 

from 3-hop paths. Of the 2-hop path relations, 15 (50%) of them were found to be true by 

examination of the text of the abstracts. A similar proportion was found for the 3-hop paths. 

12. Estimation of Recall 

Recall, of course, can only be approximated in such a large collection. In the 12,300 

document collection, 451 documents were returned as containing one or more of the 

computed interactions. In reading these documents to validate these interactions, we found 

only one interaction which was missed by the algorithm because it was referred to across 2 

sentences and the co-reference was not resolved by this system. 

It is difficult to devise a method for measuring recall when 12,000 documents constitute 

the sample. Thus, an experiment was devised which would return the most likely candidate 

documents where protein relations might have been missed. In this experiment, the verb 

filters (Table 1) were excluded. This approach will return documents containing at least one 

sentence with two proteins which does not include the word “gene.” The other exclusion 

terms in Table 3 were not used. This resulted in 581 documents, of which 130 were additional 

to the original set of 451. 

These abstracts were examined in detail for the description of any protein interactions 

anywhere in the abstract, and 12 such interactions were found. Of these, 2 were discovered 

across sentence boundaries, requiring anaphora resolution and 2 more occurred in sentences 

containing the word “gene.” This means that 118/130 documents were correctly identified as 

having no relations, or only 12/130 contained relations, resulting in a recall of at least 90.1%. 

This allows us to approximate the F-measure as 0.72. 
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We note that is an extremely conservative measure of recall, since the sample selected for 

detailed analysis is less likely to contain correct relations, because we did not carry out all the 

exclusions noted in Table 3 

13. Mutual Information and Reliability of Protein Interaction Prediction 

At the outset, it was assumed that in a large collection such as the 12,300 Medline 

documents analyzed in this experiment, the strength of the relation would be predictive of the 

likelihood that a protein interaction was taking place. Accordingly, a plot of the decile of 

mutual information value (Eq. 1) versus the percent of relations found to be correct is shown 

in Figure 3. 
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Figure 3 – Plot of mutual information decile versus percent of interactions found to be correct. 

There may be no particularly strong correlation between the computed mutual information 

value and the correctness of the protein interaction, but there is a general upward trend from 

0.40 through 0.80, but a downward trend at 0.90 which may only be related to the small 

number of relations having this high mutual information value. Over all, this measure appears 

to be less useful than originally proposed. 
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14. Rules Used in Finding Protein Interactions 

This section summarizes the rules and techniques used in finding the protein interactions. 

1. Exclude any sentence containing the words in Table 3.. 

2. Recognize proteins from a dictionary of proteins and their synonyms and variant 

spellings. Exclude all lowercase spellings, which usually represent mutations. 

3. Recognize protein complexes by hyphenation. 

4. Recognize protein synonyms when separated by a slash. 

5. Require any sentence with two or more proteins to contain one of the verbs in Table 

1. 

6. Allow any sentence containing “form” and “complex” along with two or more 

proteins. 

7. Recognize secondary interactions based on those found by 2-hop and 3-hop 

connections in the primary table of correct interactions. 

 

15. Summary and Conclusions 

In a small set of abstracts describing protein-protein interactions, it is possible to use 

shallow parsing along with a dictionary, mutual co-occurrence and dimer recognition to 

achieve 0.92 precision and 0.84 recall (F-measure = 0.89). 

In a larger set of abstracts, the primary task is filtering out sentences in documents which 

describe genes and other non-protein interactions. Once this is done, 61% precision is 

possible, and if the predictions of secondary interactions hold true, the precision reaches 82%. 

Based on reading of the abstracts the recall is estimated to be at least 90% The F measure is 
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0.72, based on a precision of 0.61, and is 0.85 based on the precision of 0.82. There is some 

possible correlation between the mutual information value and the likelihood of there being a 

protein interaction. 

These experiments result in respectable precision and considerably higher recall than 

previously reported methods and tend to indicate that a combination of statistical and 

linguistic methods can give better results than linguistic (frame based) methods alone.  

Finally, we note that there is apparently no “silver bullet” to improve detection of protein-

protein relations. Instead, the process is one of incremental improvement based on rules and 

filters of data. However, the set of rules we report here appear to have the highest F-measure 

yet reported. 
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