
RC23287 (W0408-022) August 6, 2004
Computer Science

IBM Research Report

An Efficient Subspace Sampling Framework for High
Dimensional Data Reduction, Selectivity Estimation and

Nearest Neighbor Search

Charu C. Aggarwal
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Efficient Subspace Sampling Framework for High Dimensional

Data Reduction, Selectivity Estimation and Nearest Neighbor

Search∗

Charu C. Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
charu@us.ibm.com

Abstract

Data reduction can improve the storage, transfer time, and processing requirements of very large

data sets. One of the challenges of designing effective data reduction techniques is to be able to

preserve the ability to use the reduced format directly for a wide range of database and data mining

applications. In this paper, we propose the novel idea of hierarchical subspace sampling in order

to create a reduced representation of the data. The method is naturally able to estimate the local

implicit dimensionalities of each point very effectively, and thereby create a variable dimensionality

reduced representation of the data. Such a technique is very adaptive about adjusting its repre-

sentation depending upon the behavior of the immediate locality of a data point. An important

property of the subspace sampling technique is that the overall efficiency of compression improves

with increasing database size. Because of its sampling approach, the procedure is extremely fast

and scales linearly both with data set size and dimensionality. We propose new and effective solu-

tions to problems such as selectivity estimation and approximate nearest neighbor search. These

are achieved by utilizing the locality specific subspace characteristics of the data which are revealed

by the subspace sampling technique.

Keywords: High Dimensions, Dimensionality Reduction, Nearest Neighbor Search, Selectivity

Estimation
∗This paper is an extended version of [2].

1

1 Introduction

Recent advances in hardware technology have made it possible to collect very large amount of

data. For example, even simple transactions of every day life such as using a credit card or the

phone are logged in an automated way. Such data sets are often very high dimensional. Examples

of such domains include supermarket data, multimedia data and telecommunication applications.

This often results in massive data tables whose sizes are of the order of tera-bytes. In such cases,

it is desirable to reduce the data in order to save on critical system resources such as storage space

and transfer time of large files. In addition, many database applications can be implemented more

efficiently on reduced representations of the data.

The dimensionality reduction problem has been well studied in the generic multi-dimensional con-

text [29, 18, 12], or for particular data domains such as time series [9, 23, 24, 22, 32] and text

[26]. In the generic case, a well known technique for dimensionality reduction is the method of

Singular Value Decomposition [29, 18, 12] (SVD), which projects the data into a lower dimensional

subspace. The idea is to transform the data into a new orthonormal coordinate system in which

the second order correlations are eliminated. In typical applications, the resulting axis-system

has the property that the variance of the data along many of the new dimensions is very small

[18]. These dimensions can then be eliminated, a process resulting in a compact representation of

the data with some loss of representational accuracy. Even though a variety of compression tech-

niques [5, 16, 33] provide such guarantees, dimensionality reduction methods are more desirable

because of their use of multidimensional representations for the compressed format. Furthermore,

dimensionality reduction techniques are rarely used as stand alone methods for data compression.

Rather, such representations allow the use of database applications such as indexing directly on

the reduced representation without a first phase of reconstruction. This alternative often turns

out to be significantly more efficient. On the other hand, the multidimensional representation is

also a constraint which reduces the effectiveness of the reduction process. Furthermore, the high

computational requirements of the dimensionality reduction method reduce the applicability of the

approach for large and high dimensional databases.

Recent research has shown that even though the implicit dimensionality of a given data set may be

quite high, particular subsets of it may show data dependencies which lead to much lower implicit

dimensionality [3, 10]. An effective data reduction system would try to optimize the representation

2

of a record depending upon the distribution of the data in its locality. Clearly, it is a non-trivial

task to find a representation in which each point adjusts its storage requirements naturally to

the corresponding local implicit dimensionality. Since the issue of data reduction is most relevant

in the context of large data sets, it is also necessary for the computational and representational

requirements of such approaches to scale efficiently with increasing data size. Unfortunately, the

techniques in [3, 10] are orders of magnitude slower than even the standard dimensionality reduction

techniques, and are inflexible in determining the dimensionality of data representation. As a result,

the applicability of these methods is restricted to specific applications such as indexing.

In recent years, the technique of random projection [1, 15, 26] has often been used as an efficient

alternative for dimensionality reduction of high dimensional data sets. These techniques typically

use spherically symmetric projections, in which arbitrary directions from the data space are sampled

repeatedly in order to create a new axis system for data representation. While random projection

is a much more efficient process than methods such as SVD, its average reduction quality is not

quite as effective [8]. In this paper, we investigate the use of subspace sampling approaches in

which the subspaces picked are determined by the (local) properties of the particular data set

at hand. The use of a locality sensitive random sampling approach results in a system which

is both more effective and efficient than SVD, while providing worst case bounds on the error

loss of each record. The locality sensitive sampling method uses a hierarchical subspace sampling

approach in which the storage requirement of each data point is influenced by the corresponding

local implicit dimensionality. This variation from the global approach of standard dimensionality

reduction methods has the interesting property that local implicit dimensionalities can be estimated

more robustly for larger data sets. While the improvements of the sampling effectiveness with

increasing number of database points are well known for many applications, this is not the case for

global subspace sampling techniques [1, 17]. This is because previously proposed subspace sampling

procedures [1, 8, 17, 15] sample dimensions rather than points, while each point must continue to be

represented in the reduced format. For example, for the case of global random projection techniques

[1, 17], the reduction factor may worsen [1] with increasing number of points. In this paper, we

combine point sampling with space sampling in order to scale the effectiveness of the reduction

technique with increasing database size. This is because the concept of data locality can be defined

in a more refined way for larger data sets. Thus, one of the contributions of the paper is to leverage

the power of sampling in such a way that the greater statistical information available in larger

data sets is used more effectively. Some recent techniques such as LLE and ISOMAP [30, 31] use

3

locality concepts in the dimensionality reduction process. Although these techniques use locality

properties in the reduction process, the aim of doing so is quite different. While the hierarchical

subspace sampling technique attempts to find different (local) coordinate systems, the methods in

[30, 31] try to use these in order to find a global projection system which will expose the desired

(non-linear) properties of the data. A recent technique also uses data locality for reduction in the

time series domain [24].

We will also show that the local characteristics of the data revealed by the hierarchical subspace

sampling technique can be effectively leveraged for innovative solutions to problems such as selec-

tivity estimation and nearest neighbor indexing. The selectivity estimation problem is motivated

by the time-consuming nature of the query resolution problem in very large databases. In such

cases, it may be desirable to estimate the sizes of the query responses, rather than resolve the query

itself. Typical approaches to the selectivity estimation problem such as histograms work well in low

dimensionality, but degrade rapidly with increasing dimensionality because of dependencies among

attributes [11, 13, 27, 28]. For dimensionalities larger than five or six, the error rates become unac-

ceptably high for most real data sets. It has been conjectured in [13] that simple random sampling

is likely to outperform most other schemes such as histograms with increasing dimensionality. In

this paper, we will show that the local characteristics of the data revealed by the subspace sam-

pling technique can be utilized in order to improve the effectiveness of the selectivity estimation

procedure. We will also demonstrate similar results for the approximate nearest neighbor search

problem.

In order to facilitate further development of the ideas, we will introduce additional notations and

definitions. We assume that the data set is denoted by D. The number of points in the data set

is denoted by N and the dimensionality by d. The full dimensional data space is denoted by U .

We define the l-dimensional hyperplane H(y, E) by an anchor y and a mutually orthogonal set of

vectors E = {e1 . . . el}. The hyperplane passes through y, and the vectors in E form the basis

system for its subspace. The projection of a point x onto this hyperplane is denoted by P(x, y, E)

and is the closest approximation of x, which lies on this hyperplane. In order to find the value

of P(x, y, E), we use y as the reference point1 for the computation. Specifically, we determine the

projections of x − y onto the {e1 . . . el}. Then, we translate the resulting point by the reference
1We always choose a point on the hyperplane as the reference point.

4

point y. Therefore, we have:

P(x, y, E) = y +
l∑

i=1

[(x − y) · ei] ei (1)

We have illustrated a pictorial representation of x′ = P(x, y, E) in Figure 1. We note that x′ can

be represented in the orthonormal axis system for E with the use of only l cooordinates ((x − y) ·

e1 . . . (x − y) · el)). This incurs the additional overhead of maintaining y and E . This is however

a constant storage overhead, which can be amortized over the large number of points stored on

this hyperplane. The error of approximating x with P(x, y, E) is given by the Euclidean distance

between x and P(x, y, E) and is denoted by ∆(x, y, E). The lossy reduction system discussed in this

paper will determine locality specific hyperplanes, so that for each data record, this value is less

than a pre-specified tolerance ε. In other words, for each data point x projected into a hyperplane

denoted by (y, E), we have ∆(x, y, E) ≤ ε.

This paper is organized as follows. In the next section, we will introduce the hierarchical subspace

sampling technique and discuss some of its properties. In section 3, we will discuss how the data

is stored in compressed form using the hierarchically sampled subspaces. Section 4 will discuss

the application to the nearest neighbor search and selectivity estimation problems. The empirical

results are discussed in section 5. Finally, we present the conclusions and summary in section 6.

1.1 Contributions of this paper

This paper introduces an effective and linearly scalable subspace sampling approach to the problem

of data reduction. This technique uses a hierarchical partitioning approach in conjunction with a

subspace sampling procedure which is sensitive to the data set at hand. The dual nature of

this hierarchical partitioning and subspace sampling approach makes the reduction process very

effective. While the subspace sampling approach provides a much more compact representation

than traditional dimensionality reduction techniques, it also provides hard bounds on the error

of the approximation. A useful property of the subspace sampling technique is that the reduction

factor improves with increasing number of database points. While sampling techniques are generally

expected to improve with the number of database points, this is not the case for previously proposed

subspace sampling procedures [1, 8, 17, 15] which sample dimensions rather than points. The use

of a sampling approach also results in a computationally efficient implementation which is almost

linearly scalable both with data set size and dimensionality.

5

H

x

x’
e(1)

e(2)

(x-y).e(1) (x-y).e(2)
y

Hyperplane

Figure 1: Pictorial Representation of Approxi-
mation

x

x
x

xx

x x

x

xx

xx

Space Sampled
x

x
x

xx

x x

x

xx

xx

(a) (b)

Point Sampled

Random Projection
Random Projection

Figure 2: Comparing Point Sampled and Space
Sampled Random Projections

We show how to use the subpscae sampling method in order to provide effective solutions to

database applications such as nearest neighbor search and selectivity estimation. The subspace

sampling method reveals important local characteristics of the data which can be used for effective

solutions to these problems. We note that traditional methods for selectivity estimation such as

histograms do not provide accurate results for even ten dimensional applications [13], whereas

our empirical results indicated that the subspace sampling technique provides accurate results on

color-histogram data sets of dimensionality larger than fifty. We will also show that the partitioning

created by the hierarchical subspace method can be used for effective nearest neighbor search in a

way which is significantly more effective than currently used dimensionality reduction techniques.

x

x
x

xx

x x

x

xx

xx

x xx
xx

x

x
x

x x

x x

x

x

x
x

xx

x x

x Projection

xx

xx

x xx
xx

x

x
x

x x

x x

x

x

x

x
x

xx

x x

x

xx

xx

x xx
xx

x

x
x

x x

x

x

(a) (b) (c)

Point Sampled

Global Random

Projection

Point Sampled

Local Random

Projection

Point Sampled

Local Random

Figure 3: Effects of Data Locality on Subspace
Sampling

E

F

x

x

i3

 i4

x i8

B
x i7

i2

xi1

x i6

x i5

A

C

D

A B

C D E F

{i1, i2} {i3, i4}

{i1, i2, i5} {i1, i2, i6} {i3, i4, i7} {i3, i4, i8}

2-dimensional representations

1-dimensional representations

x

Figure 4: Illustration of the Sampling Proce-
dure

6

2 The Hierarchical Subspace Sampling Technique

The method of random projections [1, 8, 15, 26] has recently been recognized as an efficient and

scalable alternative to dimensionality reduction. These techniques sample2 spherically symmetric

random directions on which the data is projected. Such methods may often require an unnecessarily

higher dimensionality to represent the data, since they do not utilize the properties of the particular

data set at hand. In order to intuitively understand this point, we will illustrate with the use of 1-

dimensional projections of 2-dimensional data. Consider the data set illustrated in Figure 2 in which

we have illustrated two kinds of projections. In Figure 2(a), the data space is sampled in order to

find a 1-dimensional line along which the projection is performed. In data space sampling, random

projections are chosen in a spherically symmetric fashion [1] irrespective of the data distribution.

The reduced data in this 1-dimensional representation is simply the projection of the data points

onto the line, as illustrated in lower diagram of Figure 2(a). Though repeated applications of

subspace sampling [1, 8, 17, 15] provide bounds on data reduction quality, it is clear from the

above illustration that such a projection may often turn out to be blind to the basic patterns in the

data. In the second case of Figure 2(b), we have sampled the points in order to create a random

projection. The sampled subspace is defined as the (l − 1)-dimensional hyperplane containing l

randomly chosen points from the data. In this case, the chosen subspace is naturally biased by

the original data distribution. For example, in Figure 2(b), the 1-dimensional line obtained by

sampling two points picks up the directions of greater variance more effectively than the space-

sampled random projection of Figure 2(a). For this reason, the quality of the reduction for Figure

2(b) is significantly better than that in Figure 2(a).

While it is intuitively clear that point sampling is more effective than space sampling for variance

preservation, the advantages are limited when the data distribution varies considerably with locality.

For example, in Figure 3(a), even the optimal 1-dimensional random projection cannot represent

all points without losing a substantial amount of variance of the data. In Figures 3(b) and (c), we

have used the random projection technique locally in conjunction with data partitioning. In this

technique, each data point is projected on the closest of a number of point sampled hyperplanes.

It is clear that in the latter cases, the projections of the data points onto the lines are the best

approximations. This is because each subspace is optimized to a locally sampled set of points. It is
2The hyperplanes are repeatedly sampled, and the best alternative is picked in order to determine the final

representation.

7

also interesting to see that even though the data is 2-dimensional, it can be (approximately) rep-

resented by projections along 1-dimensional lines. This is because the local implicit dimensionality

of each data point is only one, once that data has been partitioned appropriately. We also note

that there may be some differences in the quality of the final reduction (such as those in Figures

3(b) and (c)) depending upon the subspaces which get sampled, but the final representation always

loses less information than a global approach with the same number of samples. This follows from

the straightforward observation that when the k hyperplanes S1 . . . Sk are sampled, the distance of

the data point x ∈ D to the closest of S1 . . .Sk is always at most the distance loss of x when only

one of these hyperplanes (say Si) is chosen for reduction of each data point in D.

On the other hand, the improvements of the localized subspace sampling technique come at the

additional storage costs of the different hyperplanes. This limits the number of hyperplanes which

can be retained from the sampling process, and requires us to make judicious choices in picking these

hyperplanes. A second important issue is that even the implicit dimensionalities of the different

portions of the data partition may be different. Therefore, we need a mechanism by which the

sampling process is able to effectively choose hyperplanes of the lowest possible dimensionality for

each portion of the data partition. This is an issue which we will discuss after developing some

additional notational machinery:

Definition 2.1 Let P = (x1 . . . xl+1) be a set of (l + 1) linearly independent points. The represen-

tative hyperplane R(P) of P is defined as the l-dimensional hyperplane which passes through each

of these (l + 1) points.

The hyperplane R(P) can also be represented with the use of any point y on the hyperplane, and an

orthonormal set of vectors E = {e1 . . . el}, which lie on the hyperplane. We shall call (y, E) the axis

representation of the hyperplane, whereas the set P is referred to as the point representation. Thus,

R(P) (point representation) is the same as H(y, E) (axis representation). We note that there can

be infinitely many point or axis representations of the same hyperplane. The axis representation is

more useful for performing distance computations of the hyperplane from individual points in the

database, whereas the point representation has advantages in storage efficiency in the context of a

hierarchical arrangement of subspaces. We will discuss this issue in greater detail in section 3.

8

2.1 The Subspace Tree

In this section, we will introduce the subspace tree, which is a conceptual organization of subspaces

used in the data reduction process. This conceptual organization imposes a hierarchical arrange-

ment of the subspaces of different dimensionalities. The hierarchical organization is also useful in

developing variable dimensionality representations of the data. Each node in the subspace tree

corresponds to a hyperplane along with its representative set which is drawn from the database

D. The nodes at level-m in the subspace tree correspond3 to m-dimensional subspaces. The root

node corresponds to the null subspace. Thus, the dimensionality of the hyperplane for any node

in the tree is determined by its depth. The subspace at a node is hierarchically related to that of

its immediate parent. Each subspace other than the null subspace at the root is a 1-dimensional

extension of its parent hyperplane. This 1-dimensional extension is obtained by adding a sampled

data point to the representative set of the parent hyperplane. In order to elucidate the concept of

a subspace tree, we will use an example. In Figure 4, we have illustrated a hierarchically arranged

set of subspaces. The figure contains a two-level tree structure which corresponds to 1- and 2-

dimensional subspaces. For each level-1 node in the tree, we store two points which correspond to

the 1-dimensional line for that node. For each lower level node, we store an additional data point

which increases the dimensionality of its parent subspace by 1. Therefore, for a level-m node the

representative set is of cardinality (m + 1). For example, in the case of Figure 4, the node A in

the subspace tree (with representative set {i1, i2}) corresponds to the 1-dimensional line defined by

{i1, i2}. This node is extended to a 2-dimensional hyperplane in two possible ways corresponding

to the nodes C and D. In each case, an extra point needs to be added to the representative set for

creating the 1-dimensional extension. In order to extend to the 2-dimensional hyperplane for node

C, we use the point i5, whereas in order to extend to the hyperplane for node D, we use the point

i6. Note from Figure 4(a) that the intersection of the 2-dimensional hyperplanes C and D is the

1-dimensional line A. The subspace tree is formally defined as follows:

Definition 2.2 The subspace tree is a hierarchical arrangement of subspaces with the following

properties: (1) Nodes at level-m correspond to m-dimensional hyperplanes (2) Nodes at level-(m+1)

correspond to hyperplanes which are 1-dimensional extensions of their parent hyperplanes at level-m

(3) The point representative set of a level-(m + 1) node is obtained by adding a sampled data point

to the representative set of its m-dimensional parent subspace.
3We assume that level 0 corresponds to the root.

9

So far, we have only discussed the concept of a subspace tree, while we have not discussed the

algorithmic process of construction. The aim of this paper is to show that by carefully sampling

the data points and constructing the subspace tree, each data point can be typically be represented

in a relatively low dimensional subspace with very little reconstruction loss.

Once a subspace tree has been constructed, each data point x is assigned to a node in this tree,

so that the distance of the corresponding hyperplane from x is less than the reduction tolerance

ε. The data point x is represented in terms of its coordinates on the hyperplane to which it is

assigned. Thus, the amount of space needed to represent x depends only on the dimensionality of

the corresponding hyperplane rather than the dimensionality of D. Since higher levels of the tree

require lower storage overhead, it is desirable to assign x to as high a level of the tree as possible.

We note the following:

Observation 2.1 Let S be a set of representative points, and let z be a data point which extends

the dimensionality of the corresponding hyperplane to that of its child. Let (y1, E1) and (y2, E2) be

the axis representations of S and S ∪ {z} respectively. Then, for any data point z, it must be true

that ||z − P(z, y2, E2)|| ≤ ||z − P(z, y1, E1)||.

The above observation simply states that the distance of the point z to a hyperplane H(y2, E2) is

lower than the distance to its parent hyperplane H(y1, E1), since the former subsumes the latter.

Thus, if the reduced data points are stored in the subspace tree, then as the value of ε is reduced,

a larger number of points would need to be stored at the lower levels of the tree. Since the storage

at lower levels requires a greater number of coordinates for representation, it follows that there is

a natural trade-off between the storage requirements and representational accuracy.

2.2 Subspace Tree Construction

In this section, we will show how the subspace tree may be constructed by careful localized sampling

of the data points in conjunction with a recursive partitioning of the data. This procedure turns

out to be extremely effective in influencing the subspace sampling process so that the resulting

subspaces are effectively biased for particular data localities. The input to the subspace sampling

algorithm for tree construction is the reduction tolerance parameter ε, and the data set D. The

subspace tree is constructed hierarchically in top-down fashion, while also partitioning the data

set D along this hierarchy. The subspace tree construction uses a levelwise algorithm in order to

10

Algorithm SampleSubspaceTree(CompressionTolerance: ε, MaximumTreeDegree: kmax, Database: D, Node Limit: L)
begin

Root = null;
Sample 2 ∗ kmax ∗ sampfactor points from D;
Pair up points randomly to create kmax ∗ sampfactor 1-dimensional point

representative hyperplanes (lines) denoted by S ;
{ Pick the kmax hyperplanes which create a partitioning for which distances

between data points and their localized projections are as low as possible }
S = SampleBestHyperplanes(S , kmax);
{ Let S have the kmax level-1 nodes (hyperplanes) S1 . . . Skmax }
(T (S1), . . . T (Skmax),Q(S1), . . .Q(Skmax)) =AssignData(D, S);
{ Remove any node which has fewer than minthresh assigned points; These

points also become outlier points }
S = RemoveNodes(S1 . . . Skmax , minthresh); { Lm is the set of level-m nodes }
L1 = S ; { Each hyperplane (line) in S is the child of Root };
m = 1;
while (Lm �= {}) and (less than L nodes have been generated) do
begin

for each level-m node R ∈ Lm do
begin

Sample kmax ∗ sampfactor points from T (R);
Extend the node R by each of these kmax ∗ sampfactor points (in turn)

to create the kmax ∗ sampfactor corresponding (m + 1)-dimensional
point representative hyperplanes denoted by S ;

S = SampleBestHyperplanes(S , kmax);
(T (S1), . . . T (Skmax),Q(S1), . . .Q(Skmax)) = AssignData(T (R),S);
S = RemoveNodes(S1 . . . Skmax , minthresh); { Thus S contains at most kmax children of R }
Lm+1 = Lm+1 ∪ S ; m=m+1;

end;
end;
Perform final post-processing phase of reassignment of database D to nodes in subspace tree;

end

Figure 5: Subspace Tree Construction

11

build the tree structure. This is done in order to restrict the number of database passes during the

tree construction phase. Each node of the subspace tree corresponds to a hyperplane defined by

the sequence of representative points sampled, starting from the root up to that node. Therefore,

we will be using the term hyperplane and node interchangeably throughout the discussion of the

subspace tree.

At each stage of the algorithm, every node N in the subspace tree has a set of descendent assign-

ments T (N) ⊆ D from the database D. These are the data points which will be assigned to one

of the descendants of node N during the tree construction process. In addition, each node also

has a set of direct assignments Q(N), which are data points within the specified tolerance ε of the

hyperplane corresponding to node N . In each iteration, the descendent assignments T (N) in each

of the nodes at a given level are partitioned further into at most kmax children of node N . This

partitioning is based on the distance of the data points to the hyperplanes corresponding to the

kmax children of N . Specifically, each data point is assigned to the hyperplane from which it has

the least distance. This results in each point from T (N) becoming either a direct or descendent

assignment of one of these kmax children depending upon whether or not it lies within the tolerance

factor ε of the corresponding hyperplane. This process continues until each data point becomes

either the direct assignment of some node or is identified as an outlier. The overall algorithm for

subspace tree construction is illustrated in Figure 5.

The subspace tree construction algorithm proceeds in an iterative levelwise fashion. The mth level

of the tree is constructed during the mth levelwise phase. The reason for this levelwise approach is

that the database operations during the construction of a given level of nodes can be consolidated

into a single database pass. The actual construction of the mth level is achieved by sampling one

representative point for each of the kmax children of the level-(m − 1) nodes in order to create the

corresponding 1-dimensional extension. However, we also use oversampling in order to improve the

quality of the resulting subspaces. The subspace sampling algorithm defines a parameter called

sampfactor, which is the factor by which we oversample the points at a given node from which

the final kmax representative extensions are chosen. Thus, a total of kmax ∗ sampfactor points

are picked for extension of the nodes from level-(m − 1) to level-m. Only the first iteration of the

algorithm (m = 1) is special in which we sample 2 ∗ kmax ∗ sampfactor points in order to create

kmax ∗ sampfactor lines. Next, the procedure SampleBestHyperplanes picks kmax lines out of these

kmax ∗ sampfactor lines for which the localized projection losses are as low as possible. Details

12

of the SampleBestHyperplanes procedure are discussed in subsection 2.3. Once the hyperplanes

for the first level nodes have been determined, we assign each point in the database to one of

these nodes either as a direct assignment or as a descendent assignment. This is achieved by the

procedure AssignData, and is discussed in detail in subsection 2.4. We also ensure that those nodes

with fewer than minthresh points assigned to them are removed from consideration. These are the

outlier nodes which are discarded by the procedure RemoveNodes. The assigned points for these

nodes are outliers which need to be stored separately by the algorithm. Details of this procedure

are discussed in subsection 2.5. As a result, the final outdegree of the node may be less than kmax.

In the example illustrated in Figure 4, the two lines created by this procedure are A and B. The

corresponding sampled points which create these lines are {i1, i2}, and {i3, i4} respectively.

The algorithm then proceeds in a levelwise fashion of building level-m of the tree in the same

sequence of operations as discussed above for level-1 of the tree. The main difference for m ≥ 2 is

in the methodology for extending the subspaces by a dimensionality of one. In this case, for each

node N , we sample kmax ∗sampfactor points from T (N). The process of sampling the points from

T (N) intentionally biases the children subspaces depending upon the data distribution of T (N).

Further, the purpose of oversampling by a factor of sampfactor is to increase the effectiveness of the

final children subspaces which are picked. The larger the value of sampfactor, the better the sampled

subspaces, but the greater the computational requirement. Thus, a total of kmax ∗ sampfactor m-

dimensional hyperplanes can be generated by combining the representative points from node N with

each of these sampled points. In each iteration, the algorithm assigns the data points in a given

node N to its closest child. Next, the SampleBestHyperplanes procedure picks the kmax hyperplanes

out of these kmax ∗ sampfactor hyperplanes in order to create the most effective partitioning. As

in the case of level-1 nodes, the AssignData procedure determines the assignments of the data

points in the nodes of T (N) to the respective children. In the example illustrated by Figure 4, the

1-dimensional hyperplane A is extended to the 2-dimensional hyperplanes C and D by adding the

points i5 and i6 respectively to the representative set of A.

We note that in Figure 5, we have presented the AssignData procedure separately for each node

for ease in description. In the actual implementation, this procedure is executed simultaneously for

all nodes at a given level in one scan. Similarly, the process of picking the best hyperplanes for all

nodes at a given level is executed simultaneously in a single scan of the data. We will discuss details

of these issues in a later subsection. The process of levelwise tree construction continues until no

13

node in the current level can be extended any further, or the maximum limit L for the number of

nodes has been reached. This limit L is governed by the amount of available memory since we would

like the subspace tree to be memory-resident for a number of useful applications such as nearest

neighbor indexing and selectivity estimation. For our implementation, we used a conservative limit

of only L = 10, 000 nodes, which was well within current main memory limitations for even 1000-

dimensional data sets. At the end of the subspace tree construction process, we re-optimized the

assignment of each data point x by finding the hyperplane at the highest level of the tree for which

the distance value was less than ε. In many cases, this reduces the data even further by reducing

the dimensionality of the representation.

Each of the procedures SampleBestHyperplanes and AssignData require the computation of dis-

tances of data points x to the representative hyperplanes. In order to perform these distance

computations, the axis representations of the hyperplanes need to be determined. A hyperplane

node N at level-m is only implicitly defined by the (m + 1) data points {z1 . . . zm+1} stored at the

nodes along the path from the root to N . The next tricky issue is to compute the axis represen-

tation (y, E = {e1 . . . em}) of the points {z1 . . . zm+1} efficiently in a way that can be replicated

exactly at the time of data reconstruction. This is especially important, since there can be an

infinite number of axis representations of the same hyperplane, but the projection coordinates are

computed only with respect to a particular axis-representation. The corresponding representation

(y, E = {e1 . . . em}) is computed as follows:

We first set y = z1 and e1 = (z2 − z1)/||z2 − z1||. Next, we iteratively compute ei from e1 . . . ei−1

as follows:

ei =
zi+1 − z1 −

∑i−1
j=1 [(zi+1 − z1) · ej] ej

||zi+1 − z1 −
∑i−1

j=1 [(zi+1 − z1) · ej] ej||
(2)

The set (y, E) generated by the Equation 2 is an axis representation of the hyperplane defined by

the points {z1 . . . zm+1}. This is because this technique is essentially a modified version of the Gram

Schmidt orthogonalization process.

Many axis representations can be generated using Equation 2 for the same hyperplaneR({z1 . . . zm+1})

depending upon the ordering of {z1 . . . zm+1}. Since we need to convert from point representations

to axis representations in a consistent way for both data reduction and reconstruction, this ordering

needs to be fixed in advance. For the purpose of this paper, we will assume that the point ordering

is always the same as one in which it was sampled during the top-down tree construction process.

This leads to representative points sampled at higher levels of the tree to be ordered first, and points

14

at lower levels to be ordered last. The only ambiguity is for the level-1 nodes at which 2 points

are stored instead of one. In that case, the record which is lexicographically smaller is ordered

earlier. We shall refer to this particular convention for axis representation as the path-ordered axis

representation.

2.3 Oversampling and Selection of Subspaces

In this section, we will discuss the details of the SampleBestHyperplanes subroutine of Figure 5. The

subspace sampling procedure oversamples the number of hyperplanes by a factor of sampfactor.

This is done in order to improve the quality of the subspaces determined. The first task is to

partition the kmax ∗ sampfactor hyperplanes into sampfactor sets of kmax hyperplanes. We will

pick one of these partitions depending upon the quality of the assignment of the data points to these

hyperplanes. In order to do this, the distance of the data point x to each of the kmax ∗ sampfactor

hyperplanes is determined. For each of the sampfactor sets of hyperplanes, we assign the data

point x to the closest hyperplane from that partition. This results in a total of sampfactor

possible assignments of the data points. The cost of the assignment is the average distance of

the data point to its assigned hyperplane, and is equal to the average distance information lost

by the corresponding reduced representation. The lowest cost of these sampfactor assignments is

determined. The SampleBestHyperplanes procedure returns the kmax points which can be used to

extend the current node to each of the kmax children by a dimensionality of one. We note that the

SampleBestHyperplanes procedure may not necessarily provide an optimum solution, but turns out

to be effective in practice because of its simplicity and implementation efficiency.

2.4 Partitioning the Points

In this section, we will describe the AssignData procedure of Figure 5. The procedure AssignData

partitions the points among the children nodes, and also decides whether the assignment of a data

point x to a hyperplane is of the descendent or direct type. For each child hyperplane (y, E),

the distance value ∆(x, y, E) is calculated. Next, we check if this value is below the compression

tolerance ε. If so, then the data point x is directly assigned to that node. Otherwise, it is assumed

that a higher implicit dimensionality is needed to represent that point and it is considered a

descendent assignment. The top-down algorithmic process of subspace tree construction ensures

that such a data point will be a direct assignment for one of the descendants of its current node,

15

unless it is determined to be an outlier.

2.5 Removal of Outlier Nodes

This procedure is denoted by RemoveNodes in Figure 5. Many points in any data set may be

outliers for which efficient locality specific representations cannot be found. Such points need to be

stored separately by the algorithm. In each iteration, we find all nodes in the current level of the

tree which have less than minthresh descendent assignments. These nodes and the corresponding

points are removed by the algorithm. The corresponding points are stored separately in their full

dimensional representation.

We note that the tree structure may be optimized a variety of ways by picking different outdegrees

at various levels of the tree. Finding this optimal structure is a complex theoretical problem which

is outside the scope of this paper. Our primary aim is to show that a simple binary tree implemen-

tation of the subspace tree structure can yield substantial advantages over global dimensionality

reduction methods. This illustrates the power of the simple concepts underlying the technique.

2.6 Disk Sensitive Implementation for Large Databases

Each of the procedures AssignData and SampleBestHyperplanes require the assignment of the data

to nodes at a given level of the tree. In order to improve the I/O efficiency, we process all the nodes

at a given level in a single database scan. We maintain an additional vector with one entry for each

database record. Each entry in this vector indicates the node to which the corresponding database

record is assigned and whether the corresponding record is a descendent or direct assignment.

During the database scan, we use the vector to find the hyperplane (y, E) for each database record x.

This is then used to calculate the value of ∆(x, y, E) for the AssignData and SampleBestHyperplanes

procedure.

3 Storage and Reconstruction

Since the reduction process stores the reduced data in the context of a hierarchical subspace tree

structure, we need to maintain the following two pieces of information:

16

• The Subspace Tree: This is a constant overhead which can be maintained very efficiently

with the use of the point representation. For each level-1 node we maintain the two points

which define the sampled line in lexicographic ordering. For each level-m node, we maintain

the additional data point which increases the dimensionality of the corresponding subspace

by one. In addition, we need to maintain the identity of the node and its immediate parent,

which requires another two integers for each node. Thus, for a subspace tree with β nodes,

the storage requirement is of the order of (β · (d+2)) values. This is almost the best that one

could hope to achieve, since at least β ·d values will always be required in order to store all the

β subspaces of a d-dimensional space. In fact if the subspaces were maintained explicitly, then

the storage requirement would be β · d · l values for an average subspace dimensionality of l.

This is because explicit storage of the axes require maintenance of a d-dimensional vector for

each of the l axes of β nodes. The storage requirement of β ·(d+2) values requires the storage

of only 1 additional vector for each of the β subspaces. The reason for this extraordinarily

high storage efficiency is the use of the point representation in which the hyperplane at a

given node is not stored explicitly, but is implicitly represented by the points stored along

the path from that node to the root. (Therefore, the vector stored at a node is reused for

the subspace representation of all descendents of that node.) Our empirical results indicated

that the overhead for maintaining the subspace tree is very small compared to the storage

requirements of the database itself.

• The Reduced Database: For each data point, we need to maintain one integer which

indicates the identity of the node for which it is a direct assignment. In addition, we maintain

the coordinates of the data point for the axis representation (y, E) of this hyperplane in

accordance with Equation 1. For the data point x, these coordinates are given by (c1 . . . cm) =

{e1 · (x − y) . . . em · (x − y)}. Thus, only (m + 1) values need to be stored for each database

point.

3.1 Reconstruction Algorithm

The reconstruction algorithm proceeds in two phases. In the first phase, the (path-ordered) axis

representation of the subspace tree is built. In the second phase, this subspace tree is used in order

to reconstruct the database.

At first sight, it would seem that the first phase could be time consuming, since for each node in

17

List of pages containing

direct assignments to node

List of pages containing

direct assignments to node

partitions

Subspace Tree with compressed data in

Figure 6: The Subspace Index

the subspace-tree, we would need to find its d-dimensional axis representation. However, it turns

out that because of the use of the path-ordered convention for axis-representations, the first phase

can be achieved in a time complexity which requires the computation of only one axis per node.

The trick is to construct the axis representations of the nodes in the tree in a top-down fashion.

This is because the axis representation {e1 . . . ei} of a given node can be computed using the axis

representation {e1 . . . ei−1} of its parent and the point z′ stored at that node in just the single

computation of Equation 2. (For the nodes at level-1, lexicographic ordering of the representative

points is assumed.) This also automatically results in the path-ordered axis representation of the

node.

Once the axis representations of the nodes have been constructed, it is simple to perform the

necessary axis transformations which represent the reconstructed database in terms of the original

attributes. Recall that for each database point x, the identity of the corresponding node is also

stored along with it. Let (y, E) be the corresponding hyperplane and (c1 . . . cm) = {e1 ·(x−y) . . . em ·

(x − y)} be the coordinates of x along this m-dimensional axis representation. Then, as evident

from Equation 1, the reconstructed point x′ is given by:

x′ = y +
m∑

i=1

[ci] ei (3)

4 Applications to Approximate Nearest Neighbor Search and Se-
lectivity Estimation

The hierarchical subspace sampling techniques discussed in this paper have the property that they

do not treat all parts of a high dimensional data set equally; some of the parts can be represented

using a small number of dimensions, whereas other parts are inherently high dimensional. Tradi-

tional indexing structures [14, 20, 21, 25] and selectivity estimation techniques [27, 28] treat all parts

18

of the data in a homogeneous way from the dimensionality perspective; a strategy which results in

the worst-case behavior of the data to dominate. In this section, we will provide additional insights

into how hierarchical subspace sampling techniques can lead to inherently more effective solutions

to such problems by using its variable dimensionality local decompositions. The aim of writing

this section is to demonstrate that even simple applications of the proposed principles can lead to

dramatically improved solutions for difficult high dimensional problems. A detailed treatment of

the optimization of these schemes will be discussed in future work.

4.1 Application to Approximate Nearest Neighbor Search

In the approximate nearest neighbor search problem, we would like to find the nearest neighbor

to a given target record within the pre-specified error bound of ε. Since our compression system

provides such a worst-case guarantee, a sequential scan can be used on the reduced representation

in order to find the approximate nearest neighbor. In fact, any compression method can provide

savings in I/O even with the use of a sequential scan, as long as the reconstruction procedure can

recognize individual records as they are generated in main memory. Such a technique works quite

effectively, since the I/O requirements are the motivation for index structure construction. However,

the subspace tree provides savings even beyond the advantages of lower storage requirements, since

it allows us to create an index in which large portions of the reduced representation need not even be

accessed. The ability to use such query optimization directly on compressed database systems has

recently been recognized as a promising approach for optimizing performance in database systems.

The subspace tree imposes a natural partitioning of the data in which similar records occur together

in one block. Unlike an index tree in which only leaf nodes contain the individual records, we allow

each node in the tree to point to a list of pages which contain all the direct assignments to that

node. Thus, the internal tree size is only dependent upon the original subspace tree, rather than

the restrictions created by the page sizes of individual nodes. Furthermore, the subspace tree

construction algorithm imposes a maximum limit L on the number of subspace tree nodes, which is

determined by the main memory limitations. Thus, the subspace tree itself is maintained in main

memory. On the other hand, the lists of pages pointed to by each node are maintained on the disk.

We also note that since each node points to multiple pages, and only the last of these pages is

underfull, this does not lead to s significant reduction in the efficiency of representation for search

purposes. The index structure is illustrated in Figure 6.

19

The actual nearest neighbor search of the tree uses a branch and bound method on the partitioning

created by the direct assignments of data points to nodes. The branch and bound method is a

classical technique in combinatorial optimization. It uses an ordered search method on a parti-

tioning of the data in order to avoid searching many of the sets in this partitioning. A global

pessimistic bound is maintained which provides an upper bound on the distance of the query point

to the nearest neighbor. Pruning is done by finding good optimistic bounds (lower bounds) on the

distance of a target point to each set in this partition. A set may be pruned when its optimistic

bound is higher than the global pessimistic bound. For example, in the case of a query point q

and subspace (y, E), this optimistic bound for any direct assignment of that hyperplane is given by

||q−P(q, y, E)||. This is the nearest distance between the query point and the hyperplane, and any

point lying on the hyperplane cannot have distance lower than this value. The global pessimistic

bound is the nearest distance to any subset of the data accessed so far. However, unlike a tradi-

tional branch and bound technique, we cannot prune entire subtrees by using the optimistic bound

at the root of the subtree. This is because in traditional index structures, lower level nodes are

subsumed by higher level nodes, whereas in the subspace tree structure, the lower level subspaces

subsume the higher level subspaces. Therefore, in a traditional index structure, the optimistic

distance bounds from the query point to the nodes along a given path increase with the depth of

the tree structure, whereas this is the reverse in a subspace tree (see Observation 2.1). Hence, one

cannot use the optimistic bounds at the root of a subtree as representative of the optimistic bounds

at the lower level nodes. In order to account for this, we treat each node as an independent entity

irrespective of the hierarchical relationships between the nodes. Initially the pessimistic bound is

set to the closest of all the outlier points and is gradually updated as more and more records are

accessed. The nodes in the tree are accessed in increasing order of optimistic distance. When the

distance ||q −P(q, y, E)|| is larger than the pessimistic bound, all data points assigned to this node

can be pruned from consideration. This is because it is certain that all data points which lie on

this hyperplane are not as close as the best point found so far. Otherwise, we need to access the

records in the list for the node (y, E), and calculate their distances to the query point q. This may

result in the improvement of the pessimistic bound to the closest record to query point q lying on

this hyperplane. The record corresponding to the pessimistic bound at termination is returned as

the approximate nearest neighbor. We note that this approximate nearest neighbor is an exact

nearest neighbor over the set of reduced data points. However, since each reduced data point may

have distance at most ε from its original representation, it follows that the final nearest neighbor

20

found lies within the error tolerance of ε. The method can also be easily extended to a generalized

k-nearest neighbor search problem. For this case, we maintain the global pessimistic bound as the

kth best data point found so far by the search procedure. A search procedure is applied to the

index structure as in the previous case. A data node is pruned when the optimistic bound for that

node is worse than the global pessimistic bound. We note that this method shows the property

that the (found) k-nearest neighbor lies within an error bound of the (true) k-nearest neighbor by

a distance of ε. The correctness of this procedure follows a similar logic as that of finding a single

nearest neighbor.

4.2 Application to Selectivity Estimation

The selectivity estimation problem is a difficult one for high dimensional data because of the

sparsity of the points [11, 13, 27, 28]. For the high dimensional case, it has been conjectured

from empirical evidence [13] that simple random sampling may be the most effective method for

selectivity estimation. Specifically, the work in [13] states: “We conjecture that sampling will

outperform any of these techniques for dimensionality of around 10, but the error will be too large

to make the technique practical.”

The reason for the (relative) robustness of random sampling in higher dimensionality is that it can

model the correlations in multi-dimensional data more accurately than methods such as histograms,

since the correlations in the data are also reflected in the sample. On the other hand, the histogram

technique is significantly more effective for lower dimensional cases.

The subspace tree procedure naturally reveals those parts of the data which have low implicit

dimensionality. Since it is known that different techniques work more effectively in different implicit

dimensionalities, this data decomposition naturally suggests an ensemble-based approach to the

problem. Ensemble based approaches have recently become quite popular in methods such as

indexing and classification [6, 19] because of their ability to combine different techniques in a

flexible way so that the final solution is significantly more robust than the use of each individual

method.

In the ensemble-based approach for selectivity estimation, we use a histogram based technique for

all hyperplanes in the subspace tree with dimensionality at most qmax, whereas we use random

sampling for data points in the higher dimensional components. The histograms for the lower

dimensional component are built directly on the sampled hyperplanes, and are thus not parallel

21

to the original axis-system. Thus, a separate set of histograms is constructed for each partition

of the data in its locally optimized subspace. A wide array of methods are available to construct

histograms. This choice is orthogonal to our primary aim of showing the effectiveness of the

decomposition and the corresponding ensemble based approach. We will demonstrate that even

the use of a simple equi-width grid based histogram for the lower dimensional component of the

ensemble is sufficient to outperform existing approaches.

Let ns be the total number of points with implicit dimensionality larger than qmax and nt be the

remaining number of points. We define a fraction rf known as the representation factor, which has

the same value but is defined differently for each of the two components of the ensemble:

(1) For the random sampling approach, the representation factor rf is defined as the fraction of

the ns points (with implicit dimensionality greater than qmax) which are sampled.

(2) For the histogram based approach, the representation factor rf is defined as the number of

buckets b used divided by the number nt of low implicit dimensionality points.

For the histogram based approach, we assume uniform distribution within each bucket and store

the number of points and index of each bucket. Empty buckets are not included in this list. The

index of a bucket provides its position in the multidimensional grid assuming a unique ordering

convention of the grid points. Thus, only two values are required in order to store a bucket, while d

values are required to store each sampled point. In addition, a fixed amount of space CT is required

in order to store (the relevant segment of) the subspace tree. Thus, the total space requirement

for this ensemble based procedure is given by CT + rf · (nt · 2 + ns · d). We note that CT is likely

to be (asymptotically) negligible for very large databases. The nt histogram buckets are divided

among the different hyperplanes in the subspace tree. The number of buckets assigned to each

hyperplane is proportional to the number of points assigned to it. Therefore, for a m-dimensional

hyperplane with q assigned buckets, the number of intervals into which the data is discretized is

given by �q1/m�. This also results in adaptive bucket sizes and orientations depending upon the

subspace specific data localities.

At query time, we determine all the buckets which intersect with user-specified query ranges. Let

the total number of (extrapolated) points4 in these buckets be denoted by s1. Similarly, for the
4For partially intersected buckets, we needed to find the fraction of the bucket inside user-specified ranges. In

most cases, buckets were intersected by only one of the user specified constraints, in which case extrapolation was
straightforward for 2- or 3-dimensional buckets. We included or omitted the entire count of buckets which were either
greater than 3-dimensional (for qmax > 3) or intersected with more than one constraint. This was determined by
whether or not the bucket center lay inside the user specified range.

22

sampling component of the ensemble, we determine the total number of points s2 from the random

sample which lie in the user specified ranges. Then, the expected number of points from the second

component of the ensemble was given by s2/rf . Therefore, the total selectivity estimated by the

ensemble is given by s1 + s2/rf . The histogram component can be significantly improved with the

use of more sophisticated methods such as those in [13] though our aim in this section is to only

show the effectiveness of the ensemble-based subspace decomposition principle. In the next section,

we will show that this approach achieves much greater accuracy over random sampling for difficult

high dimensional cases.

5 Empirical Results

The system was implemented on an AIX 4.1.4 system with 233 MHz and 100 MB of main memory.

The data was stored on a 2GB SCSI drive. The breadth and scope of our empirical results included

not just the effectiveness anf efficiency of the compression system, but also the effectiveness of the

subspace sampling technique to the nearest neighbor and selectivity estimation problems. We tested

the subspace sampling method for the following measures: (1) Effectiveness of data reduction. (2)

Efficiency of data reduction. (3) Effectiveness of indexing directly on the reduced subspace tree

representation. (4) Effectiveness of the ensemble based method for selectivity estimation.

In each case, we will show that the hierarchical subspace sampling method achieves considerable

improvements over currently used methods for data reduction in terms of efficiency, effectiveness,

or both. In addition, we will show that the hierarchical subspace sampling technique achieves

orders of magnitude improvement over standard random sampling techniques which are used for

selectivity estimation. Unless otherwise mentioned, the parametric values kmax = minthresh = 2,

and sampfactor = 10 were used in the implementation.

5.1 Performance of data reduction

For the purpose of testing, we used a combination of synthetic and real data sets. The synthetic

data sets each contained nc = 20 clusters which were gaussian in nature. The (relative) number

of points in each cluster was determined by generating a uniform random number between 0 and

1. The centroids of the clusters were chosen randomly. The axis system of each gaussian cluster

was arbitrarily oriented with respect to the original data set and the radius along each axis was

23

2 4 6 8 10 12 14 16
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

MAXIMUM ERROR TOLERANCE
1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

2 4 6 8 10 12 14 16
0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

MAXIMUM ERROR TOLERANCE

(a) Error Tolerance vs. (b) Average Loss vs. (c) Error Tolerance vs.
Red. Factor (Syn. 1) Red. Factor (Syn. 1) vs. Red. Factor (Syn. 2)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

0 2 4 6 8 10 12 14
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
R

E
D

U
C

T
IO

N
 F

A
C

T
O

R

MAXIMUM ERROR TOLERANCE
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

(d) Average Loss vs. (e) Error Tolerance vs. (f) Average Loss vs.
Red. Factor (Syn. 2(Red. Factor (Syn 3) vs. Red. Factor (Syn 3)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

MAXIMUM ERROR TOLERANCE
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

MAXIMUM ERROR TOLERANCE

(g) Error Tolerance vs. (h) Average Loss vs. (i) Error Tolerance vs.
Red. Factor (64d hist) vs. Red. Factor (64d hist) Red. Factor (32d hist)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

(j) Average Loss vs.
Red. Factor (32d hist)

Figure 7: Average Loss and Error Tolerance for Synthetic and Real Data Sets

24

chosen as an exponential distribution with 1% of the average distance between the clusters along

the individual dimensions. We generated three data sets with dimensionalities 150, 200 and 250

respectively. Each data set contained 100,000 records. We shall refer to these data sets as synthetic

data sets 1, 2, and 3 respectively. We also used a 32-d and a 64-d color-histogram data set for

testing purposes. In Figures 7(a), (c), (e), (g), and (i) we have illustrated the effect of the error

tolerance threshold on the reduction factor on each of the five data sets. The reduction factor

was defined as the fraction of the original data set size occupied by the reduced representation

(including the subspace tree itself.) In each case, the compression was more effective at higher

tolerance levels. This is because of the natural tradeoff between reduction quality and compactness.

In order to get a better understanding of the effectiveness of the technique, we compared it to the

Singular Value Decomposition method.5 We compared the reduction factor of the our technique

with SVD using the average loss on the X-axis. The average loss was defined as the average

distance between the original record and the projected record in the reduced representation. In

each case of Figures 7(b), (d), (f),(h), and (j) we have plotted the average reduction factor versus

the average loss of each record for both methods. It is clear that the subspace sampling technique

is significantly more effective than the standard dimensionality reduction technique. We note that

since SVD provides optimal results for the global case, it shows that our technique is at least able

to outperform any global reduction algorithm. Another interesting observation from the charts

is that the relative compression performance of the subspace sampling technique improves with

reduced error tolerances. This is because for very relaxed (high) loss rates, it suffices to represent

the data in 1- or 2-dimensional format for either of the two methods. As the error tolerances are

tightened, the advantages of localized subspace sampling begin to show up, and the method is

able to represent the data in a much smaller number of dimensions. As a result, the overall space

required by the subspace tree representation is significantly lower than the standard dimensionality

reduction method. Furthermore, we note that these improved results are in spite of the fact that

the subspace sampling method provides hard guarantees on the error tolerances, whereas this is

not achieved by the standard dimensionality reduction method. It is evident by comparing6 the

different charts in Figure 7 that in each case the average loss was about 50% of the error tolerance

for the subspace sampling method. For each case, we also recorded the total number of nodes
5The SVD implementation computed only the appropriate number of eigenvectors as was required for the reduction

process.
6For example, by matching the common axis value (reduction factor) of Figure 7(a) and (b), one can obtain the

relationship between the error tolerance and average loss. We have omitted the corresponding explicit graphs for lack
of space.

25

Data set Tree Nodes
Syn1 78
Syn2 85
Syn3 107

Histogram (64d) 51
Histogram (32d) 56

Table 1: Number of Nodes in Subspace Tree for Each Data Set

sampfactor minthresh
(Compression Factor) (Compression Factor)

2 (0.19) 1 (0.18)
5 (0.15) 2 (0.14)
10 (0.14) 4 (0.16)
20 (0.13) 8 (0.19)

Table 2: Sensitivity to Parameter Values

in the subspace tree structure for the highest tolerance constraint on the number of nodes. This

corresponds to the left hand side of each axis in Figures 7(a), (c), (e), (g), and (i) respectively.

The results are illustrated in Table 1. As illustrated, less than 150 nodes were required in each

case. We have also illustrated the sensitivity of the algorithm to different parameters in Table 2

for the case synthetic data set 1. For each parameter value, the corresponding reduction factor is

indicated in brackets. For the case of the sampling factor, it is clear that the the performance of the

algorithm improves considerably initially, but tapers off with larger values of the sampfactor. The

default value of sampfactor = 10 was chosen as an efficient solution throughout this paper. We

note that the running time increases linearly with sampfactor. Therefore, at the expense of some

more computational cost, it is possible to improve the efficiency of the scheme further. In Table 2,

we have also illustrated the sensitivity of the scheme to minthresh. In this case, it is clear that a

choice of minthresh which is either too large or too small leads to inefficiency. This is because in

one case, too many nodes are created. In the other case, too many points get classified as outliers.

We also tested the performance of the hierarchical subspace sampling technique with increasing

database size. In Figures 8 and 9, we have illustrated the behavior of the reduction factor with

database generations of different sizes for the parameters of the synthetic data sets Syn. 1 and Syn.

3. On the X-axis, we have illustrated the database size in records whereas the reduction factor is

illustrated on the Y-axis. The maximum error tolerance was kept constant at 2% of the standard

26

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.05

0.1

0.15

0.2

0.25

C
O

M
P

R
E

S
S

IO
N

 F
A

C
T

O
R

ORIGINAL DATABASE SIZE (Number Of Records)

Figure 8: Improvement in Reduction Efficiency
with Increasing Database Size (Synthetic 1)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

ORIGINAL DATABASE SIZE (Number Of Records)

Figure 9: Improvement in Reduction Factor
with Increasing Database Size (Synthetic 3)

0 2 4 6 8 10 12 14 16 18 20
0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

ORIGINAL DATABASE SIZE (Megabytes)

Figure 10: Improvement in Reduction Effi-
ciency with Increasing Database Size (Color
Histogram 32-d)

2 4 6 8 10 12 14 16

x 10
6

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

C
O

M
P

R
E

S
S

IO
N

 F
A

C
T

O
R

ORIGINAL DATABASE SIZE (Megabytes)

Figure 11: Improvement in Reduction Factor
with Increasing Database Size (Color Histogram
64-d)

27

deviation of the data. It is clear that the reduction factor improves with increasing database size.

In Figure 10, we have illustrated the reduction factor with increasing number of records for the

case of the 32-dimensional color histogram data set. In this case, the error tolerance ε was set

at 0.23. In Figure 11, we have illustrated the same results by sampling an increasing number of

records from the 64-dimensional color histogram data set. In this case, the error tolerance was set

at ε = 0.3. Thus, the synthetic and real data sets show very similar trends. It was our experience

over a number of data sets that the reduction factor always improved with increasing database size.

This is a very useful property of the subspace sampling technique, since the data reduction problem

is motivated by the large size of data sets. There are two reasons for this behavior:

(1) The size of the subspace tree itself scales sublinearly with database size. In fact, for most

data sets that we tested, the subspace tree size increased only marginally for database sizes above

100,000 points. At this point, all the major subspace patterns are already significantly represented

in the tree structure as well as the database. In all cases, the total number of nodes in the subspace

tree was only about 0.5-10% of the maximum limit L = 10, 000 nodes.

(2) For larger data sets, the local subspaces determined by the sampling technique are more refined.

These refined nodes are reflected in the lower levels of the subspace tree. As a result, a large number

of points which would otherwise get classified as outliers are reflected in some lower dimensional

projection in the subspace tree. The basic intuition is that in larger data sets, all the natural local

data patterns can be reflected in a refined way, which leads to a more optimized representation.

5.2 Efficiency of Data Reduction

We tested the efficiency of the scheme for dimensionality reduction. In order to test the efficiency,

we need a data set in which the dimensionality can be varied effectively, while retaining the basic

structure of the data. To this effect, we found the market basket data generator of [4] useful. We

derived7 two data sets from the data sets T20.I20.D100K and T15.I15.D100K respectively. This

was done by using random projections of varying dimensionality. The error tolerance was fixed at

5% of the standard deviation in each case. In Figures 12 and 14, we have illustrated the scalability

of the approach with increasing data dimensionality. It is clear that for lower dimensionalities, the

standard SVD approach performs more effectively, but for dimensionalities higher than 60 to 80,
7We are using a procedure described in detail in [4]. The transactions are generated by pre-generating a set of

potentially frequent baskets and then combining these potentially frequent baskets in order to create transactions.
For the transaction Tx.Iy.Dz, it is assumed that each transaction contains x items, the average size of the frequent
basket is y, and the number of data points is given by z.

28

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

DATA DIMENSIONALITY

HIERARCHICAL SUBSPACE SAMPLING
SINGULAR VALUE DECOMPOSITION

Figure 12: Efficiency of Reduction with
Increasing Dimensionality (projection of
T20.I20.D100K)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

10

20

30

40

50

60

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

DATA SIZE (Number Of Records)

Figure 13: Efficiency of Reduction with Increas-
ing Database Size (T20.I20.Dx)

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

DATA DIMENSIONALITY

HIERARCHICAL SUBSPACE SAMPLING
SINGULAR VALUE DECOMPOSITION

Figure 14: Efficiency of Reduction with
Increasing Dimensionality (projection of
T15.I15.D100K)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

10

20

30

40

50

60

70

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

DATA SIZE (Number Of Records)

Figure 15: Efficiency of Reduction with Increas-
ing Database Size (T15.I15.Dx)

29

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35
P

E
R

C
E

N
T

A
G

E
 O

F
 (

U
N

R
E

D
U

C
E

D
)

D
A

T
A

 A
C

C
E

S
S

E
D

AVERAGE ERROR

NN with subspace Tree
NN with SVD

Figure 16: Pruning Performance for Approxi-
mate Nearest Neighbor Search (32-d color his-
tograms)

0 50 100 150 200 250
10

20

30

40

50

60

70

RESPONSE QUERY SIZE

P
E

R
C

E
N

T
A

G
E

 E
S

T
IM

A
T

IO
N

 E
R

R
O

R

SIMPLE RANDOM SAMPLING
ENSEMBLE BASED APPROACH

Figure 17: Effectiveness of Subspace Biased
Sampling for Selectivity Estimation (32-d color
histograms)

the hierarchical subspace sampling technique performed more effectively. This is because of the

(almost) linear scalability of the subspace sampling technique with respect to data dimensionality,

whereas the SVD method had worse than quadratic scalability with increasing dimensionality. We

have also illustrated the scalability of the subspace sampling technique with increasing data set

size in Figures 13 and 15 respectively. In this case, we used a 100-dimensional projection of the

data sets T20.I20.D“x” and T15.I15.D“x” respectively. Here the value of x was varied in order to

control the database size. It is clear that the subspace sampling technique scales almost linearly

with database size. In fact in Figure 15, the subspace sampling approach scales slightly sublinearly

with database size. The straightforward sampling approach is the key to the tremendous efficiency

of the dimensionality reduction method.

5.3 Applications to Approximate Nearest Neighbor Search and Selectivity Es-
timation

We applied the subspace sampling method for approximate nearest neighbor search on the 32-d

and 64-d color histogram data sets. A direct application of the branch and bound method [25] on

the R-Tree structure leads to 100% of the data being accessed in each case. This is because of the

high dimensionality of the problem which is outside the reach of normal index structures. However,

a fairer comparison would be to combine SVD with the nearest neighbor indexing technique in

order to present the results. We used the R-Tree structure to index a data set which was reduced

using SVD, but with similar average error as the reduced data created by the subspace sampling

30

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0

5

10

15

20

25

30
P

E
R

C
E

N
T

A
G

E
 O

F
 (

U
N

R
E

D
U

C
E

D
)

D
A

T
A

 A
C

C
E

S
S

E
D

AVERAGE ERROR

NN with Subspace Tree
NN with SVD

Figure 18: Pruning Performance for Approxi-
mate Nearest Neighbor Search (64-d color his-
tograms)

40 60 80 100 120 140 160 180 200 220
0

10

20

30

40

50

60

70

80

RESPONSE QUERY SIZE

P
E

R
C

E
N

T
A

G
E

 E
S

T
IM

A
T

IO
N

 E
R

R
O

R

SIMPLE RANDOM SAMPLING
ENSEMBLE BASED APPROACH

Figure 19: Effectiveness of Subspace Biased
Sampling for Selectivity Estimation (64-d color
histograms)

technique. In this case, the performance improved mainly because of the reduced data set size,

whereas 100% of the index (on the reduced data) continued to be accessed in most cases. The results

are illustrated in Figures 16 and 18. On the Y -axis of both figures, we have presented the results

as a percentage of the unreduced data size, for consistency in comparison of the two methods. In

the case of the 32-dimensional data set, the hierarchical subspace tree accessed between 0.9% and

2% of the data for all ranges tested. For the case of the 64-dimensional data set, the hierarchical

subspace index tree accessed between 0.5% to 5% of the original data set size. The improvement

of the subspace tree technique was both because of more effective pruning and the advantages of a

reduced representation. Typically, between 60 − 90% of the (reduced) data was pruned during the

branch and bound search. On the other hand, in the case of the R-Tree structure, most of the data

was accessed in almost all cases. Most of the reduction was obtained from the SVD compression.

Unlike the R-Tree which used axis-parallel rectangles in characterizing the nodes of the partitions,

the arbitrary hyperplanes of the subspace sampling technique provided tight bounds which helped

in effective pruning during the nearest neighbor search procedure.

We also tested the ensemble-based approach for selectivity estimation on the 32-d and 64-d color

histogram data sets. The queries were all range queries in which we intersected 10% on the ranges

on two randomly picked dimensions. For the 64-dimensional case, simple random sampling is the

most realistic alternative [13] for effective selectivity estimation. In Figures 17 and 19, we have

illustrated the performance of the ensemble-based approach on the 32-d and 64-d color histogram

data sets respectively. In each case, we used a representation factor of 3% and a maximum di-

31

mensionality of qmax = 2 for the ensemble-based estimator. Both approaches were implemented so

that they required the same amount of storage space. In Figures 17 and 19, we have illustrated

the estimation accuracy on the same queries for both methods. It is clear that the ensemble-based

approach performs significantly more effectively than the simple random sampling procedure, es-

pecially for queries with small responses. Since the estimation of queries with small responses is

the most inaccurate for most selectivity estimators, the overall robustness of the ensemble system

was significantly better. The reason for this improvement was two-fold: (1) Since the histogram

component of the ensemble was built in a lower dimensional space, it was more compact. There-

fore, a greater amount of selectivity information could be stored in the same amount of space. (2)

The primary reason for the effectiveness of the ensemble approach was its ability to decompose the

data depending upon its natural degree of difficulty and use suitably optimized approaches for each

of the portions. This generic approach can be leveraged to good use in a number of other high

dimensional problems. We are currently exploring the use of this technique for high dimensional

classification.

6 Conclusions and Summary

In this paper, we discussed the novel technique of hierarchical subspace sampling, a method for

effective high dimensional data reduction. As indicated by the empirical results, the hierarchical

subspace sampling technique is both effective and efficient and can achieve a clear advantage over

widely used dimensionality reduction techniques such as SVD. The technique shows the behavior

of improved reduction ratios with increasing database size. Since subspace sampling methods such

as those discussed in [1] concentrate on (globally) sampling the dimensions rather than the points,

they do not exhibit this behavior. In addition, the technique shows almost linear scalability of

running time with increasing database size and dimensionality. This results in an approach which

is significantly more efficient than SVD for data sets of higher dimensionality. The reason for the

efficiency is rooted in its straightforward sampling approach, while retaining the power of finding

local subspaces of appropriate dimensionality in which to represent the data. The local subspaces

are found more effectively for larger database sizes, as a result of which the reduction ratio improves

with increasing database size. The hierarchical subspace sampling method creates a reduced rep-

resentation on which techniques such as nearest neighbor search and selectivity estimation can be

applied directly without requiring an initial phase of reconstruction. This results in an extremely

32

efficient solution to these problems. Therefore, the locality specific approach to subspace sampling

is not only valuable for data reduction, but also reveals important local subspace properties of the

data, which can be leveraged in a wide variety of applications.

References

[1] D. Achlioptas. Database-friendly Random Projections. ACM PODS Conference, 2001.

[2] C. C. Aggarwal. Hierarchical Subspace Sampling: A Unified Framework for High Dimensional

Data Reduction, Selectivity Estimation, and Nearest Neighbor Search. ACM SIGMOD Confer-

ence, 2002.

[3] C. C. Aggarwal, P. S. Yu. Finding Generalized Projected Clusters in High Dimensional Spaces.

ACM SIGMOD Conference, 2000.

[4] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.

VLDB Conference, 1994. Proceedings of the ACM SIGMOD Conference, 2000.

[5] S. Babu, M. Garofalakis, R. Rastogi. SPARTAN: A Model-Based Semantic Compression for

Massive Data Tables. ACM SIGMOD Conference, 2001.

[6] L. Brieman. Bagging Predictors. Machine Learning, 24:123-140, 1996.

[7] N. Beckman, H.-P. Kriegel, R. Schneider, B. Seeger. The R*-Tree: An Efficient and Robust

Method for Points and Rectangles. Proceedings of the ACM SIGMOD Conference. 322–331,

1990.

[8] E. Bingham, H. Mannila. Random Projection in Dimensionality Reduction: Applications to

Image and Text Data. ACM KDD Conference Proceedings, 2001.

[9] K. Chan, W. Fu. Efficient Time Series Matching with Wavelets. ICDE Conference, 1999.

[10] K. Chakrabarti, S. Mehrotra. Local Dimensionality Reduction: A New Approach to Indexing

High Dimensional Spaces. VLDB Conference, 2000.

[11] A. Deshpande, M. Garofalakis, R. Rastogi. Independence is Good: Dependency-Based His-

togram Synopses for High-Dimensional Data. ACM SIGMOD Conference, 2001.

33

[12] C. Faloutsos, K.-I. Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualiza-

tion of Traditional and Multimedia Datasets. ACM SIGMOD Conference, 1995.

[13] D. Gunopulos, G. Kollios, V. Tsotras, C. Domeniconi. Approximating Multi-Dimensional Ag-

gregate Range Queries over Real Attributes. SIGMOD Conference, 2000.

[14] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. Proceedings of the

ACM SIGMOD Conference, 47–57, 1984.

[15] P. Indyk, R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of

Dimensionality. ACM STOC Proceedings, pages 604-613, 1998.

[16] H. V. Jagadish, J. Madar, R. Ng. Semantic Compression and Pattern Extraction with Fascicles.

VLDB Conference, 1999.

[17] W. Johnson, J. Lindenstrauss. Extensions of Lipschitz mapping into a Hilbert space. Confer-

ence in modern analysis and probability, pages 189-206, American Math Society, 1984.

[18] I. T. Jolliffee. Principal Component Analysis, Springer-Verlag, New York, 1986.

[19] E. Keogh, S. Chu, M. Pazzini. Ensemble-index: A New Approach to Indexing Large Databases.

ACM SIGKDD Conference, 2001.

[20] S. Berchtold, D. A. Keim, H.-P. Kriegel: The X-Tree: An Index Structure for High-Dimensional

Data. VLDB Conference, 1996.

[21] K.-I. Lin, H. V. Jagadish, C. Faloutsos. The TV-tree: An Index Structure for High Dimensional

Data. VLDB Journal, 3 (4), pages 517–542, 1992.

[22] D. A. Keim, M. Heczko. Wavelets and their Applications in Databases. ICDE Conference,

2001.

[23] E. J. Keogh, K. Chakrabarti, M. Pazzini, S. Mehrotra. Dimensionality Reduction for Fast

Similarity Search in Large Time Series Databases, KAIS, 3(3): 263-286, 2000.

[24] E. J. Keogh, K. Chakrabarti, M. Pazzini, S. Mehrotra. Locally Adaptive Dimensionality Re-

duction for Indexing Large Time Series Databases. ACM SIGMOD Conference, 2001.

[25] N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries. Proceedings of the ACM

SIGMOD Conference, pages 71–79, 1995.

34

[26] C. H. Papadimitriou, P. Raghavan, H. Tamaki, S. Vempala. Latent Semantic Indexing: A

Probabilistic Analysis. ACM PODS Conference, 1998.

[27] V. Poosala, Y. Ioannidis. Selectivity Estimation without the Attribute Value Independence

Assumption. VLDB Conference, 1997.

[28] V. Poosala, Y. Ioannidis, P. Haas, E. Shekita. Improved Histograms for Selectivity Estimation

of Range Predicates. ACM SIGMOD Conference, 1996.

[29] K. V. Ravi Kanth, D. Agrawal, A. Singh. Dimensionality Reduction for Similarity Searching

in Dynamic Databases. SIGMOD Conference, 1998.

[30] S. T. Roweis, L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding.

Science, Vol 290, pp. 2323-2326, Dec 2000.

[31] J. B. Tenenbaum, V. Silva, J. C. Langford. A Global Geometric Framework for Nonlinear

Dimensionality Reduction. Science, Vol 290, Dec 2000.

[32] D. Wu, D. Agrawal, A. Abbadi. A Comparison of DFT and DWT based Similarity Search

in Time Series Databases, Proceedings of the 9th International Conference on Information and

Knowledge Management, 2000.

[33] J. Ziv. A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE Transaction

on Information Theory, 23(3):337-343, 1977.

35

