
RC23290 (W0408-028) August 6, 2004
Computer Science

IBM Research Report

Stateless Application-Level Multicast for Dynamic Group
Comunication

George Popescu, Zhen Liu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Stateless application-level multicast for dynamic group communication

George Popescu and Zhen Liu
IBM T.J. Watson Research Center

{popescu, zhenl}@ us.ibm.com

Abstract

Group communication in large-scale interactive

applications such as real-time conferencing and
collaboration, networked virtual environments (e.g.
massively multi-player games) requires efficient, low-
overhead group communication mechanisms. In this
paper we consider the application-level (or end-system)
multicast and propose a stateless group communication
mechanism together with its tree building algorithms.
Stateless multicast reduces the control signaling of
dynamic multicast groups linearly with the group size.
To support interactive applications involving a large
number of dynamic multicast groups, the application
level multicast uses stateless forwarding within clusters
of network nodes and hierarchical aggregation of
multicast group membership. We show that dynamic tree
construction achieve low computation overhead with a
controlled degradation of the end-to-end data path
performance.

1. Introduction

Group communication services have been
successfully implemented in virtual private networks and
local area networks for several decades. However lack of
IP-supported multicast mechanisms and quality of
service (QoS) support has prevented large-scale group
communication applications from being deployed on the
Internet. Recent work addresses these limitations by
using application-level multicast on network overlays [5]
composed of end-systems and possibly forwarding
proxies. A review of recent work on group
communication services using application-level multicast
is presented in [7].

Among network group communication applications,
distributed interactive applications (DIA), such as
network virtual environments (massive multiplayer
online games) [9], real-time conferencing, are the most
sensitive to the quality of service provided by the
network infrastructure [10]. Interactivity - a measure of

application quality - is dictated by the end-to-end latency
between participants [13].

In addition, control overhead due to the dynamics of
group membership is an important design consideration
in large DIA’s. Indeed, the participants of a DIA act as
senders and receivers in several multicast groups [11].
The tradeoff between efficiency of (application-level)
multicast schemes and the control of these dynamic
groups has big impact in the overall group
communication performance. One common approach to
cope with this issue is to group participants according to
the communication needs (which will also be referred to
as participant’s communication interest in this paper) and
to construct distribution trees for each multicast group.
Scaling to a large number of dynamic groups dispersed in
a large network overlay requires multicast solutions with
low control overhead.

The proto-typical network architecture of a large-
scale distributed interactive system consists of distributed
servers that control data forwarding to dynamic groups of
end-system (clients) [9]. These are in fact network
overlays where multicast groups use simple star topology
while group management is distributed among a fixed set
of control nodes. Such architectures have limited
scalability and restrict group membership dynamics. Data
distribution for interactive applications has multiple
(conflicting) goals: dynamic grouping of participants
according to their communication interest, efficient data
path construction to guarantee end-to-end network
latency and reduction of signaling overhead generated by
changes in participant’s group membership. The
multicast-grouping problem [4] [15] addresses the
clustering of overlay participants according to the
commonality of their communication interest to reduce
the amount of unwanted data (wasted communication
bandwidth) received at each participant.

Application-level multicast solutions proposed in
[1][5][8][12] are relevant to data path construction in
distributed interactive applications. Application level
multicast algorithms presented in [5] are designed for
static group membership, where the overhead of control
signaling is small. Distributed data path construction

1

using Delaunay triangulation [8] and delay based
clustering [12] increases network overlay scalability, but
do not optimize data path quality (end-to-end delay).
Real-time issues in the design of overlay networks for
large-scale distributed systems are addressed in [1].
However the network overlay construction is optimized
for streaming applications and do not consider the large
signaling overhead specific to distributed interactive
applications involving a large number of multicast
groups.

We propose a stateless group communication
mechanism along with algorithms for efficient data path
control in large-scale distributed interactive applications.
Participants contribute resources (CPU, bandwidth) to
form an overlay network. The overlay is composed of
end-systems (peer nodes) and proxies. We shall
designate some of these as control nodes that perform the
control functions of the group membership. Many of
them are proxies practically speaking. Network overlay
clustering can achieve scalability at the expense of a
reduced multicast routing efficiency. Network nodes are
clustered based on network proximity (round trip time)
using distributed algorithms [8]. Each cluster is assigned
a controller – an overlay node with higher
communication capacity. Controllers monitor the
network state information of network nodes whithin the
cluster. The controllers may be organized in a hierarchy
[6] or using distributed hashing [14].

Multicast groups are constructed by grouping
participants according to their communication interest.
Efficient application level multicast tree construction
uses network information (communication capacity, RTT
between network nodes) monitored by the overlay
controllers. Such information is easily available in a
distributed interactive application which uses timestamps
for each transmitted network packet [11]. Frequent
interest changes of participating nodes require
regrouping and rebuilding of multicast communication
trees dynamically. Thus, state-based group
communication will result in large control overhead in
distributed interactive applications. This motivates our
use of a stateless multicast protocol, in which data is
forwarded to next hop nodes encoded in an application
level multicast header. The reduction in control signaling
is obtained at the expense of increased header processing
at overlay peer nodes. The stateless protocol uses
efficient multicast tree encoding to reduce the overall
bandwidth and CPU utilization at forwarding peer nodes.
In addition, resilience to node failures can be achieved
using on-the-fly tree repair at forwarding nodes in the
multicast tree. Each control node indexes a subset of
multicast groups and controls only the peer nodes in its
network proximity. The interest registration is symmetric
in the sense that senders and receivers need only to

register their communication interest to a parent node in
the hierarchy. The control nodes aggregate the
communication interest of network cluster nodes to
reduce the amount of control signaling for dynamic
group membership changes.

The paper is organized as follows. In Section 2 we
present the mechanism and various implementations of
stateless peer forwarding multicast. In Section 3, we
propose a hierarchical approach for group membership
management and the corresponding multicast tree
construction algorithms. The evaluation of data
distribution using stateless multicast is presented in
Section 4. In Section 5 we discuss related work in the
literature. Finally, in Section 6 we provide concluding
remarks.

2. Stateless peer forwarding multicast

The stateless peer-forwarding multicast we propose

here uses an application level header containing an
encoding of IP addresses of all multicast group members.
The source constructs the multicast tree and transmits the
encoded multicast header with each data packet. Peer
nodes process (decode) the header to determine the next
hops and construct new headers for each data packet.
The encoding of the multicast tree requires little
additional overhead (compared to simply listing node
addresses) but gives forwarding nodes control of the data
path. Forwarding peer nodes can modify part of the
multicast tree to achieve resilience to node failure and to
adapt to forwarding capacity fluctuations of peer nodes.

Two header encoding/processing methods are
described in the next section. The first method constructs
the multicast header by sequentially entering the
addresses of nodes visited during per level traversal of
the multicast tree. The second method uses preorder
traversal and reduction of the multicast header at each
forwarding node.

2.1 Multicast header encoding/decoding

2.1.1 Per level header encoding. The per-level
encoding method constructs the multicast headers by
concatenating the sequence of node out-degree (number
of children) with the sequence of receiver addresses, both
obtained during a per level traversal of the multicast tree.
The first entry of the encoded header is the position in
the tree of the current node, counted from the root during
per level tree traversal. The node out-degree sequence
for the tree shown in Figure 1 is: 1,2,1,2,2,1,3 (the sender
forward to n1 which is the root of the multicast tree).

The forwarding peer node find the next hop addresses
by reading the number of next hop nodes from the fanout

2

sequence and locating the position of the first child of the
current node in the encoded header. The number of next
hop nodes is indicated by the current node entry in the
fanout sequence. The position of the first next hop node
is obtained by summing the fanout of all nodes prior to
current node entry in the fanout sequence. At node n[k]
(k indicate node position in a per level tree traversal) the
multicast header is <k><1,2,1,2,2,1,3,…> <address[n1],
...>. Let s[k] be the k-th entry in the fanout sequence of
the tree encoding. The addresses of the next hop nodes
are the s[k+1]successive IP addresses in the address

sequence, starting from the ∑
=

k

i

is
1

)(entry. The header

construction algorithm using per-level header encoding is
shown Table I.

New multicast headers are computed for each next
hop of the current forwarding node. The header size
decreases at each forwarding node in the multicast tree,
reducing the overhead of the application level
forwarding. The first entry of each new header is the
position of the next hop node in the address list. The rest
of the header is copied from the current node starting
from the address of the first child node. Next the new
header insert the addresses of all nodes following the
current one in the per level tree traversal sequence.

Table I: Per level header encoding/decoding

a) per-level header encoding algorithm

b) header processing algorithm

2.1.2 Header encoding using preorder tree traversal.
This method constructs the multicast header by encoding
the pre-order traversal of the multicast tree. The header
contains the address of the node preceded by a code
indicating its tree-level (the root is at level 0). Tree-level
codes followed by node addresses are entered in the
multicast header during the recursive traversal of the
tree.

Figure 1: Tree encoding/ processing: the sub-trees of the
pre-order method, marked in red, are contained in the
header transmitted at n2 and n3 and in green at n4, n5
and n6

The header is processed at each forwarding node
such that only the nodes in the sub-tree rooted at the
current node are kept, with the tree-level code adjusted
correspondingly (see Figure 1). The next hop nodes of
the current peer are identified by the value of their tree-
level code. Finding the next hops requires a complete
search of the multicast header. The sub-trees
corresponding to the next hops are the sequence of nodes
between two occurrences of tree-level code
corresponding to the next hop nodes. The length of the
header and the amount of processing per hop decreases

1) Start at the root node;
root.levet=1; seqeunce_header=null;
addr_header=null; current_node = root;
2) enqueue the current_node
3) While (queue not empty)
{dequeue current_node

Insert (current_node.IP_addr) in addr_header;
Insert(current_node.fanout) in
sequence_header;
count=0;

 while (count < current_node.fanout)
 {enqueue current_node.child[count];

count++;}
}
4) concatenate (root.level, sequence_header,
addr_header)

1) k=header[0]; nb_nodes=header[k+1]; m=0;
for(j=0;j<nb_nodes; j++) new_header[j]=null;

2) while(header[k] != separator)
{ m+= header[k+1]; k++;}
 i=0; pos = k+addr_size;
3) while (i<nb_nodes)
{for(p=0;p<addr_size;p++)
new_header[i].addr[p]
=header[pos+addr_size*i+p]
new_header[i].header[0]=m+i; i++;
Copy the encoding sequence from position
corresponding to current node+1 to
new_header[i].header
Copy from the current group to end of the header to
new_header[i].header
}

3

as the packet reaches nodes closer to tree leaves. The
header encoding and processing algorithms are shown in
Table II.

Table II: Pre-order encoding/decoding

a) Pre-order tree encoding

b) header processing

2.2 Analysis of header processing algorithms

The header encoding/decoding methods presented in

the previous section offer different trade-offs between the
header overhead (the node forwarding capacity required
for transmission of application level header) and the
computation effort required at forwarding nodes. The
encoding overhead is in both cases less than 25% of the
space required for multicast node addresses. The
overhead is smaller for per-level traversal (~N/2 where N
is the number of peer nodes in the group) than for the
preorder method (~N). The preorder traversal achieves
the smallest total overhead by transmitting only the sub-
tree rooted at the each forwarding node.

The analysis of stateless multicast for an overlay with
N nodes, each with fanout m gives (][log Nl m=):

1

1

1
1 1

1

5 5(1) ()

5 (1) 5((1) () /(1))

l
k l k l

k

l
k l k l l

k

m m l m Overhead preorder

m m l m m m m

−
−

=

−
− + +

=

= − < <

− = − − − −

∑

∑

 (1)

for the total overhead of the preorder method and:
2 2 15 /(1) () 5() /(1)l lm m Overhead per level m m+− < − < −

 (2)
for the per level traversal.

The total overhead was defined as the sum of
multicast headers length at all forwarding peer nodes in
the tree. The ratio between the total overhead of preorder
and per-level traversal method varies as 1/)1(−−≈ lml

(NNm m /)1]([log −≈) with the number of nodes in the

multicast tree - overhead savings for the preorder grows
exponential with tree depth. The average overhead
reduction per forwarding node between preorder
traversal and per level traversal is proportional to the tree
depth.

The computation effort at forwarding nodes is
composed of header search and next hops header
creation. On a given application level multicast tree, the
difference in computation effort between two header
processing methods is dominated by the search for the
next hop addresses. The pre-order method scans the
entire application level header at each node in the
distribution tree, while the per-level traversal stops at the
next level after the current forwarding node. The

difference in computation effort: 1l km − − (where l is the
depth of the entire tree and k is the depth of the current
node), decreases exponentially with the depth of the node
in the tree. Per-level method requires less computation
effort at nodes closer to the source. Since pre-order
reduces the overhead exponentially with the depth of the
tree, it is preferred for large multicast groups composed
of nodes with small fanout. For small groups with high
fanout nodes the per-level method results in a smaller
header computation load. This encoding is more
advantageous when nodes act as forwarding proxies for
several small multicast groups.

2.3 Signaling overhead reduction for
stateless multicast

We estimated the overhead of leaving and joining a

group of N nodes when using a stateless group
communication protocol vs. a statefull multicast method
(where the state of the multicast group is kept at each
node in the overlay). The overhead of leave/join for the
stateless group communication is assumed constant and
is used as a reference. The leave overhead of a statefull
method depends on the tree construction method; the
least expensive – promoting a leaf node in place of the
leaving node requires three times the signaling load of
the stateless multicast. Another method, which produces
better trees with a small amount of signaling, promotes
the children on the longest branch from the leaving node.

Start at root node: node = root; root.label=0;
Traverse_node(node)
{Visit_node(node);
If (no children) return;
while(node has children)
{child.label=node.label+1;
traverse_node(child)}
}
Visit_node (node)
{ insert node. label;
insert node.addr;}

1. k=0; p=0;
2. while (Node[p].label != terminator)
 { if (Node[p].label = = 1)

{next_hop[k] = Node[p].addr;
Insert Node[p] into header[k];
k++;}

 while(Node[p].label != 1)
 { Node[p].label--;
 Insert Node[p] into header[k];

 p++;}
 }

4

The worst case for the signaling – a complete tree –
requires moving up all longest branch nodes from the
current leaving node to the leaf level. The signaling cost
for a node at level k in the tree is 1+− kl where l is the
depth of the tree; in average the leave requires

)),(1(1 lmO ε++ assuming that a node leaves with the

same probability from any position in the tree. The join
overhead however is much larger since it may require a
complete re-building of the tree. At worst the insertion of
the node (for the algorithms that uses a sorted list of
nodes) at parent k will require signaling all the remaining
nodes starting from the k+1. Assuming the node can be
inserted with the same probability in any position in the
tree, the average signaling overhead is linear with the
number of nodes in the tree. The join and leave overhead
above was computed for a single multicast group; the
overhead grows linearly with the number of multicast
groups.

3. Dynamic group membership control

Distributed interactive applications are characterized

by high dynamics of client group membership, which
translates into high control overhead of multicast groups.
Stateless forwarding multicast presented in the previous
section limits the size of the multicast group to tens of
members in order to reduce the impact of the application
header overhead. In addition, the efficient construction of
distribution trees requires that control information
(client’ s communication interest, forwarding capacity
and network delay information) is available at the tree-
building node.

We propose in this section group membership
management and multicast tree-building algorithms for
data distribution in large-scale distributed interactive
applications. Multicast groups are managed by a
hierarchy of overlay control nodes, which also control
data path quality. The network overlay is clustered in
cardinality bounded network clusters managed by cluster
leader/control nodes, which constructs local multicast
trees and perform multicast header encoding. The cluster
leader nodes keep control information (multicast group
membership) and per node network data (node
forwarding capacity, delay measurement) for all end-
systems in a cluster. Per node network information is
registered at cluster leader/control nodes in the bootstrap
phase, when nodes join the overlay. We present in the
following the hierarchical communication interest
aggregation and the tree construction methods for group
communication using stateless multicast.

The stateles forwarding multicast is particularly
suited for distributed interactive applications. A proto-
typical distributed interactive application has an average

multicast group size of tens of participants [9]; for
groups smaller than 50 participants, the overhead of
stateless forwarding is less than 20%. In addition, the
size of the multicast groups can be controlled by the
application; larger size multicast groups can be
controlled by clustering participants with in cardinality
bounded groups.

Node communication interest is signaled to the
control nodes using group join/leave messages. Control
nodes aggregate the group membership information by
substituting local cluster group membership lists with
their own network identifier (e.g. IP address). The
multicast group information indexed at overlay control
nodes is dynamic: control nodes insert (when receiving
joins on new topics) and remove (when there is no
receiver left in the group) group states. The leave
messages are propagated in the control hierarchy only
when the node is the last, among the set of nodes indexed
at the control node, leaving the group; similarly, the join
messages are propagated in the control hierarchy only
when the control node does not have other receivers for
the group indicated in the join message.

Each controller constructs application level multicast
trees for a segment of the data path that contain its
siblings and peer (end-system) child nodes. The end-to-
end path is composed of multiple segments from several
application level multicast trees. Controllers keep the
state information needed for construction of application
level multicast trees, while the rest of overlay nodes
(end-system, forwarding proxies) act as simple
forwarders. Each forwarding node has a message
processor, which implements the forwarding and tree
processing algorithms presented in section two.

3.1 Tree construction algorithms for
stateless multicast

In the previous section we argued that group

membership dynamics requires distributed control of the
data path; each control node builds per group sub-trees
containing only the subset of nodes in a network cluster.
The overlay network is first partitioned by clustering
nodes based on network distance such that available
forwarding capacity is optimally distributed among the
clusters. Data path between multicast group members is
delay-bounded within each cluster using efficient tree
construction algorithms; cluster leader (control) nodes
perform data forwarding on source-based trees
constructed with sibling control nodes only. End-to-end
data path between multicast group participants is
therefore concatenated from several delay bounded
overlay segments. With this restriction, the end-to-end

5

delay constraints require bounding the maximum delay of
each sub-tree rooted at control peer nodes.

We propose in the following algorithms for
construction of overlay multicast trees composed of
cluster leader/control nodes with high forwarding
capacity and peer nodes (end-systems) with small
forwarding capacity. Network information necessary for
tree building is available at cluster leader nodes. Tree
construction uses a weighted distance metric that
combines the node distance from the source and node
fanout. The distance is normalized to the maximum
distance from the source while the fanout is normalized
to the maximum fanout among the receiver nodes. The
distance from the source to the current node C is:

(,) 1* (,) / max((,))

2 * (()) /)

d C S w C S C S

w F f C F

= ∆ ∆ +
−

 (3)

where),(SC∆ is the delay between the current node

and the source and F is the maximum fanout among the
nodes in the multicast group.

We consider two cases: network distance relative to
cluster leader nodes and forwarding capacity of the peer
nodes is known; the network delays between any pair of
nodes (or an estimate of network delay) within the cluster
and node forwarding capacity is available at cluster
leader/control nodes.

In the first method of constructing the multicast trees
- closest node - peer nodes forward to the “closest” node
(computed using a combined delay/capacity metric) in
the same multicast group. The algorithm first orders the
nodes according to the weighted distance metric and
subsequently add nodes to the last inserted parent in the
order of decreasing distance; the weighted distance
metric favor nodes with high capacity over closer nodes
(using delay only) with low capacity.

The second and third algorithms use network delay
information is available using either direct measurement
– O(n2) with number of nodes in the network cluster - or
through positioning network nodes in a high-dimensional
network plane – O(n) with the number of cluster nodes.
The distance on the overlay from the source is computed
with:

(()) 2

1
0

0 (()) 1

(()) ((,)

() [,]

card Tr k
k k
i i

i

k k
card Tr k

C

Tr k d n n

Tr k n n path of traversal

of T tree from the root to node k

−

+
=

−

∆ =

=

∑
�

 (4)

A measure for evaluating tree quality is the maximum
delay from the source:

)),((max)(
2))((

0
1∑

−

=
+=∆

kTrcard

i

k
i

k
i

k
nndTcM (5)

Denote the tree built with n nodes Tc(n), f(k): fanout
of node k and c(k): current number of children of node k.

The first strategy is to look for a parent node among the
nodes already in the tree that is closest to the source on
the delay path from the source. The closest_parent
algorithm is presented in Table III.a. The complexity of
the algorithm is O(NLogN) for node ordering and O(N2)
for the tree construction (worst case analysis: N(N+1)/2).

A minimum_distance_link algorithm that selects the
minimum distance between the nodes with available
fanout currently inserted in the tree and the unattached
nodes will result in optimal tree construction in case all
nodes have identical capacity. In the case nodes have
different forwarding capacities, the algorithm uses the
combined distance metric, promoting nodes with higher
capacity at the top of the tree. The algorithm is shown in
the figure Table III.b.

The minimum_distance_link algorithm builds trees
with maximum delay smaller than the closest_parent
algorithm when the nodes in the overlay have similar
fanout. The complexity of the algorithm is O(N3); the
worst case analysis gives :

2 (1) / 2 (1)(2 1) / 6N N N N N− − − − (6)

for an overlay of N nodes.

Table III: Tree construction algorithms

a) Closest parent algorithm

1. Sort nodes n(k), k=1:N in the order of increasing
weighted distance d(n(k), S) ;
 i=1; list=NULL; 0))((=∆ parentnTr ;

2. while(i<N)
 { min∆ = max_val; parent=0;

 insert(parent, list); position=Head(list);
 while(position=advance(list, position))
 {k=retrieve(list, position);
))(),(())((inkndknTrTr +∆=∆ ;

 if (Tr∆ < min∆)
 { min∆ = Tr∆ ; parent = k;}

 }
 insert n(i) as child of n(parent);
 insert(i, list); c(parent)++;
 if (c(parent)==f(parent))
 remove(parent, list);

))(),(())(())((parentnindparentnTrinTr +∆=∆

i++;
 }

6

b) Minimum distance link algorithm

4. Simulation results

 We used the GT-ITM topology simulator [3] to

evaluate the performance of stateless multicast on an
overlay composed of high fanout cluster leader nodes
and end-system (peer) nodes. The multicast group
contained a total of 100 nodes selected from a transit-
stub topology. The topology has one transit domain of 20
nodes with 10 stub domains per transit node. Each stub
domain contains an average of 10 nodes. Cluster leader
nodes with an average forward capacity five to ten times
larger than that of peer nodes were placed in the transit
domain. Peer nodes with identical forwarding capacity
were selected at random (uniformly distributed) from the
stub domains. Simulation results were averaged over ten
overlays obtained by fixing the source node and the
cluster leader nodes and randomly selecting the peer
nodes. The shortest path distance between any pair of
overlay nodes was computed for each overlay.

To analyze the performance of stateless multicast on
a hierarchical overlay we evaluated the following
metrics:

1. multicast tree delay stretch: the ratio of
maximum delay between the source and a receivers
computed on the multicast tree and the delay from the
source to furthest node on the direct path, and

2. cluster leader nodes utilization ratio: the ratio
between the forward capacity of cluster leader nodes

used for forwarding in the multicast group and the
capacity required to unicast data from the source.

The first experiment recorded the delay stretch when

the number of cluster leader nodes (with capacity five
times larger than the end-system nodes) increases
between 1% and 8% of the total number of nodes. The
results in Figure 2 show the improvement in delay stretch
for closest parent and minimum distance link vs. closest
node method.

1 2 3 4 5 6 7 8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

cluster leader nodes

D
el

ay
 s

tr
et

ch

Multicast tree delay stretch

Legend

+ Closest node

o Closest parent

x Minimum distance link

Figure 2: The delay stretch vs number of cluster leader
nodes

The delay stretch gain of closest_parent and

minimum_distance_link over closest_node method
increases with the number clusters; however it is less
than 50%, even when the cluster leader nodes have
enough forwarding capacity to unicast to all peer nodes.
The minimum_distance_link outperforms the other
algorithms especially when the number of clusters is
small. However its performance is close to that of the
closest_parent when the number of clusters is large. As
expected, the delay stretch decreases with the number of
cluster leader nodes; with enough forwarding capacity at
cluster leader nodes to unicast to all peer nodes, the
added overlay delay stretch decreases to zero (data is
forwarded on the shortest paths from the source to every
node in the multicast tree) and the choice of tree building
method has less impact on the quality of the data path.

Figure 3 shows the variation of delay stretch with the
utilization of cluster leader nodes. Without the
information between any two nodes the delay between
parent and child node can be as large as the diameter of
the cluster they belong to, increasing the delays between
the nodes on the longest path in the multicast tree.

1. Construct parent and unattached node lists
plist=null; clist=null; j=1; parent=0;
insert(parent, list);

 for (i=1; i<N; i++) insert(i,clist);
2. while (j<N)
{ min∆ = max_val;
while (position=advance(plist,position))
k=retrieve(list, position)
 while(pos=advance(pos, clist))

i=retrieve(pos, clist);
{))(),(())((inkndknTrTr +∆=∆ ;

 if (Tr∆ < min∆)
 { min∆ = Tr∆ ;
 parent = k;child=i;}
}

 insert n(child) as child of n(parent);
 insert(child,plist);remove(child,clist);
 c(parent)++;
 if (c(parent)==f(parent))
 remove(parent,plist);

))(),(())(())((parentnchildndparentnTrchildnTr +∆=∆
 j++;
 }

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

CL forwarding capacity utilization

Multicast tree delay stretch

D
el

ay
 s

tr
et

ch

Legend

+ Closest node

o Closest parent

x Minimum distance link

Figure 3: The delay stretch – aggregate cluster leader
node utilization

Closest parent and minimum distance link are more

efficient methods for constructing delay minimized
multicast trees; using only 80% cluster leader forwarding
capacity they achieve virtually no end-to-end maximum
delay increase. The minimum distance link and closest
parent can use only to 60% aggregate cluster leader
forwarding capacity and degrade the delay stretch with
less than 40%. When forwarding is concentrated at few
cluster leader nodes, the closest parent method achieves
comparable end-to-end performance with
minimum_distance_link with smaller – O(N2)- tree
building complexity.

The second experiment measured the delay stretch
with the increase of forwarding capacity available at
cluster leader nodes (Figure 4).

6 8 10 12 14 16 18
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Average CL nodes fanout

D
el

ay
 s

tr
et

ch

Multicast tree delay stretch

Legend

+ Closest node

o Closest parent

x Minimum distance link

Figure 4: The delay stretch vs. average forward capacity
of cluster leader nodes

The overlay consists of five cluster leader nodes each
with forwarding capacity between three and nine times
the forwarding capacity of end-system nodes. Both
closest parent and minimum distance link achieve 15%
improvement over the closest node method. Also when
comparing to the first experiment, we conclude that the
number of clusters (cluster leader nodes) has a larger
impact on the maximum end-to-end delay than an
increase in cluster leader node forwarding capacity

5. Related work

Several multicast protocols for networked group

communication have been proposed recently. The small
group multicast protocol [2] (and other Xcast protocols)
also encapsulates the receiver addresses in the packet
header. However these protocols relay on network
support to route data to the destination, their efficiency
being dependent on the underlying network support. The
stateless multicast protocol we propose allows more
flexibility in the design of control and routing path at the
expense of small degradation in routing efficiency. The
quality of the end-to-end data path can be optimized
using network and application level metrics; in contrast
the small group multicast protocols rely on the quality of
service mechanisms provided by the underlying network.

Tree construction algorithms for real-time
applications have been proposed in [1]. The tree
construction is optimized for minimizing the average
latency, not the maximum latency from the source. This
formulation of the delay problem apply for video-
distribution applications which minimize buffering at
nodes in the multicast tree, but not for collaborative
applications where the real-time constraints are related to
the maximum end-to-end delay between nodes in the
multicast group. While organizing the control overlay to
reduce the amount of signaling required for node join
and leave, OMNI protocol is designed for video on
demand applications, where the amount of signaling is
much smaller than in distributed interactive applications
considered here.

6. Conclusion

We propose in this paper a stateless group

communication mechanism along with algorithms for
efficient data path control in distributed interactive
applications. The overlay organization is hierarchical:
each control node manages a cluster of peer nodes
assigned based on network proximity.

The stateless protocol uses efficient multicast tree
encoding to reduce the overall bandwidth and CPU
utilization at forwarding peer nodes. We show that tree

8

construction algorithms achieve scalability and low
overhead with a controlled degradation of the end-to-end
data path performance on a hierarchical overlay
composed of high forwarding capacity nodes and end-
system nodes. In addition, stateless multicast reduces
control signaling (node join and leave) proportional to
the size of the multicast group. The reduction in control
signaling is obtained at the expense of increased header
processing at overlay peer nodes.

References

[1] S. Banerjee, C. Kommareddy, K. Kar, B.
Bhattacharjee, S. Khuller, “Construction of an Efficient
Overlay Multicast Infrastructure for Real-time
Applications,” Proceedings of IEEE Infocom, April
2003.

[2] R. Boivie, N. Feldman, C. Metz: On the Wire - Small
Group Multicast: A New Solution for Multicasting on the
Internet. IEEE Internet Computing 4(3), 2000, pp. 75-79.

[3] K. Calvert, E. Zegura, and S. Bhattacharjee, “How to
model an Internetwork”, in Proc. of Infocom, 1996, pp.
594-602.

[4] T. Chang, G. Popescu, C. Codella , “Scalable and
Efficient Update Dissemination for Interactive
Distributed Applications,” ICDCS 2002, pp. 143-152.

[5] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang, "A
case for end system multicast," in Proceedings of the
ACM Sigmetrics 2000, June 2000.

[6] Y. Chawathe, S. McCanne, and E. Brewer, “RMX:
Reliable Multicast for Heterogeneous Networks,” in
Proceedings of the IEEE Infocom ’ 00, Tel-Aviv, Israel,
March 2000, pp. 795-804.

[7] El-Sayed, A., V. Roca, L Mathy, “A survey of
Proposals for an Alternative Group Communication
Service, “ IEEE Network, Jan/Feb 2003.

[8] J. Liebeherr, M Nahas, W. Si, “Application Layer
Multicasting with Delaunay Triangulation Overlays”,
IEEE Journal on Selected Areas in Communications,
Vol.20, No.8, October 2002.

[9] Macedonia, M., M. Zyda, D. Pratt, P. Barham, and S.
Zeswitz. “NPSNET: A Network Software Architecture
For Large Scale Virtual Environments.” In Presence:
Teleoperators and Virtual Environments, 3(4), 1994, pp.
265-287.

[10] Popescu, G., C. Codella, "An Architecture for QoS
Data Replication in Network Virtual Environments",
Proceedings of IEEE VR2002, March 2002, pp 41-48.

[11] Pullen, J.M. Wood, D.C. “Network technology and
DIS”, Proceedings of the IEEE , Volume: 83 , Issue 8 ,
Aug. 1995, pp.1156 – 1167.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “Application level multicast using Content-
Addressable Network”, Proc. of 3rd Int. Workshop on
Network Group Communication (NGC 2001), London,
UK, 2001, pp. 14-29.

[13] Singhal, S., and M. Zyda. Networked Virtual
Environments, New York, ACM Press, Addison-Wesley,
1999.

[14] Stoica I. R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Content-Addressable
Network”, Proceedings of the ACM SIGCOMM 2001,
San Diego, CA, USA, August 2001, pp. 149-160.

[15] Wong, T., R. Katz, S. McCanne, “An evaluation of
preference clustering in large scale multicast
applications,” Proceedings of Infocom 2000, pp. 451-
460.

9

