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Abstract 
 
Group communication in large-scale interactive 

applications such as real-time conferencing and 
collaboration, networked virtual environments (e.g. 
massively multi-player games) requires efficient, low-
overhead group communication mechanisms. In this 
paper we consider the application-level (or end-system) 
multicast and propose a stateless group communication 
mechanism together with its tree building algorithms. 
Stateless multicast reduces the control signaling of 
dynamic multicast groups linearly with the group size. 
To support interactive applications involving a large 
number of dynamic multicast groups, the application 
level multicast uses stateless forwarding within clusters 
of network nodes and hierarchical aggregation of 
multicast group membership. We show that dynamic tree 
construction achieve low computation overhead with a 
controlled degradation of the end-to-end data path 
performance. 

 

1. Introduction 
 

Group communication services have been 
successfully implemented in virtual private networks and 
local area networks for several decades. However lack of 
IP-supported multicast mechanisms and quality of 
service (QoS) support has prevented large-scale group 
communication applications from being deployed on the 
Internet. Recent work addresses these limitations by 
using application-level multicast on network overlays [5] 
composed of end-systems and possibly forwarding 
proxies. A review of recent work on group 
communication services using application-level multicast 
is presented in [7].  

Among network group communication applications, 
distributed interactive applications (DIA), such as 
network virtual environments (massive multiplayer 
online games) [9], real-time conferencing, are the most 
sensitive to the quality of service provided by the 
network infrastructure [10]. Interactivity - a measure of 

application quality - is dictated by the end-to-end latency 
between participants [13].  

In addition, control overhead due to the dynamics of 
group membership is an important design consideration 
in large DIA’s. Indeed, the participants of a DIA act as 
senders and receivers in several multicast groups [11]. 
The tradeoff between efficiency of (application-level) 
multicast schemes and the control of these dynamic 
groups has big impact in the overall group 
communication performance. One common approach to 
cope with this issue is to group participants according to 
the communication needs (which will also be referred to 
as participant’s communication interest in this paper) and 
to construct distribution trees for each multicast group. 
Scaling to a large number of dynamic groups dispersed in 
a large network overlay requires multicast solutions with 
low control overhead. 

The proto-typical network architecture of a large-
scale distributed interactive system consists of distributed 
servers that control data forwarding to dynamic groups of 
end-system (clients) [9]. These are in fact network 
overlays where multicast groups use simple star topology 
while group management is distributed among a fixed set 
of control nodes. Such architectures have limited 
scalability and restrict group membership dynamics. Data 
distribution for interactive applications has multiple 
(conflicting) goals: dynamic grouping of participants 
according to their communication interest, efficient data 
path construction to guarantee end-to-end network 
latency and reduction of signaling overhead generated by 
changes in participant’s group membership. The 
multicast-grouping problem [4] [15] addresses the 
clustering of overlay participants according to the 
commonality of their communication interest to reduce 
the amount of unwanted data (wasted communication 
bandwidth) received at each participant.  

Application-level multicast solutions proposed in 
[1][5][8][12] are relevant to data path construction in 
distributed interactive applications. Application level 
multicast algorithms presented in [5] are designed for 
static group membership, where the overhead of control 
signaling is small. Distributed data path construction 
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using Delaunay triangulation [8] and delay based 
clustering [12] increases network overlay scalability, but 
do not optimize data path quality (end-to-end delay). 
Real-time issues in the design of overlay networks for 
large-scale distributed systems are addressed in [1]. 
However the network overlay construction is optimized 
for streaming applications and do not consider the large 
signaling overhead specific to distributed interactive 
applications involving a large number of multicast 
groups.  

We propose a stateless group communication 
mechanism along with algorithms for efficient data path 
control in large-scale distributed interactive applications. 
Participants contribute resources (CPU, bandwidth) to 
form an overlay network. The overlay is composed of 
end-systems (peer nodes) and proxies. We shall 
designate some of these as control nodes that perform the 
control functions of the group membership. Many of 
them are proxies practically speaking. Network overlay 
clustering can achieve scalability at the expense of a 
reduced multicast routing efficiency. Network nodes are 
clustered based on network proximity (round trip time) 
using distributed algorithms [8]. Each cluster is assigned 
a controller – an overlay node with higher 
communication capacity. Controllers monitor the 
network state information of network nodes whithin the 
cluster. The controllers may be organized in a hierarchy 
[6] or using distributed hashing [14].  

Multicast groups are constructed by grouping 
participants according to their communication interest. 
Efficient application level multicast tree construction 
uses network information (communication capacity, RTT 
between network nodes) monitored by the overlay 
controllers. Such information is easily available in a 
distributed interactive application which uses timestamps 
for each transmitted network packet [11]. Frequent 
interest changes of participating nodes require 
regrouping and rebuilding of multicast communication 
trees dynamically. Thus, state-based group 
communication will result in large control overhead in 
distributed interactive applications. This motivates our 
use of a stateless multicast protocol, in which data is 
forwarded to next hop nodes encoded in an application 
level multicast header. The reduction in control signaling 
is obtained at the expense of increased header processing 
at overlay peer nodes. The stateless protocol uses 
efficient multicast tree encoding to reduce the overall 
bandwidth and CPU utilization at forwarding peer nodes. 
In addition, resilience to node failures can be achieved 
using on-the-fly tree repair at forwarding nodes in the 
multicast tree. Each control node indexes a subset of 
multicast groups and controls only the peer nodes in its 
network proximity. The interest registration is symmetric 
in the sense that senders and receivers need only to 

register their communication interest to a parent node in 
the hierarchy. The control nodes aggregate the 
communication interest of network cluster nodes to 
reduce the amount of control signaling for dynamic 
group membership changes.  

The paper is organized as follows. In Section 2 we 
present the mechanism and various implementations of 
stateless peer forwarding multicast. In Section 3, we 
propose a hierarchical approach for group membership 
management and the corresponding multicast tree 
construction algorithms. The evaluation of data 
distribution using stateless multicast is presented in 
Section 4. In Section 5 we discuss related work in the 
literature. Finally, in Section 6 we provide concluding 
remarks. 

 

2. Stateless peer forwarding multicast 
 
The stateless peer-forwarding multicast we propose 

here uses an application level header containing an 
encoding of IP addresses of all multicast group members. 
The source constructs the multicast tree and transmits the 
encoded multicast header with each data packet. Peer 
nodes process (decode) the header to determine the next 
hops and construct new headers for each data packet. 
The encoding of the multicast tree requires little 
additional overhead (compared to simply listing node 
addresses) but gives forwarding nodes control of the data 
path. Forwarding peer nodes can modify part of the 
multicast tree to achieve resilience to node failure and to 
adapt to forwarding capacity fluctuations of peer nodes.  

Two header encoding/processing methods are 
described in the next section. The first method constructs 
the multicast header by sequentially entering the 
addresses of nodes visited during per level traversal of 
the multicast tree. The second method uses preorder 
traversal and reduction of the multicast header at each 
forwarding node.  

 

2.1 Multicast header encoding/decoding  
 
2.1.1 Per level header encoding. The per-level 
encoding method constructs the multicast headers by 
concatenating the sequence of node out-degree (number 
of children) with the sequence of receiver addresses, both 
obtained during a per level traversal of the multicast tree. 
The first entry of the encoded header is the position in 
the tree of the current node, counted from the root during 
per level tree traversal. The node out-degree sequence 
for the tree shown in Figure 1 is: 1,2,1,2,2,1,3 (the sender 
forward to n1 which is the root of the multicast tree). 

The forwarding peer node find the next hop addresses 
by reading the number of next hop nodes from the fanout 

2



sequence and locating the position of the first child of the 
current node in the encoded header. The number of next 
hop nodes is indicated by the current node entry in the 
fanout sequence. The position of the first next hop node 
is obtained by summing the fanout of all nodes prior to 
current node entry in the fanout sequence. At node n[k] 
(k indicate node position in a per level tree traversal) the 
multicast header is <k><1,2,1,2,2,1,3,…> <address[n1], 
...>. Let s[k] be the k-th entry in the fanout sequence of 
the tree encoding. The addresses of the next hop nodes 
are the s[k+1]successive IP addresses in the address 

sequence, starting from the ∑
=

k

i

is
1

)( entry.   The header 

construction algorithm using per-level header encoding is 
shown Table I. 

New multicast headers are computed for each next 
hop of the current forwarding node. The header size 
decreases at each forwarding node in the multicast tree, 
reducing the overhead of the application level 
forwarding. The first entry of each new header is the 
position of the next hop node in the address list. The rest 
of the header is copied from the current node starting 
from the address of the first child node. Next the new 
header insert the addresses of all nodes following the 
current one in the per level tree traversal sequence.  

 
Table I: Per level header encoding/decoding 

 

 
a) per-level header encoding algorithm 

 
b) header processing algorithm 

 
2.1.2 Header encoding using preorder tree traversal. 
This method constructs the multicast header by encoding 
the pre-order traversal of the multicast tree. The header 
contains the address of the node preceded by a code 
indicating its tree-level (the root is at level 0). Tree-level 
codes followed by node addresses are entered in the 
multicast header during the recursive traversal of the 
tree.  
 

 
Figure 1: Tree encoding/ processing: the sub-trees of the 
pre-order method, marked in red, are contained in the 
header transmitted at n2 and n3 and in green at n4, n5 
and n6 
 

The header is processed at each forwarding node 
such that only the nodes in the sub-tree rooted at the 
current node are kept, with the tree-level code adjusted 
correspondingly (see Figure 1). The next hop nodes of 
the current peer are identified by the value of their tree-
level code. Finding the next hops requires a complete 
search of the multicast header. The sub-trees 
corresponding to the next hops are the sequence of nodes 
between two occurrences of tree-level code 
corresponding to the next hop nodes. The length of the 
header and the amount of processing per hop decreases 

1) Start at the root node;  
root.levet=1; seqeunce_header=null;  
addr_header=null; current_node = root; 
2) enqueue the current_node  
3) While (queue not empty)  
{dequeue current_node  

Insert (current_node.IP_addr) in addr_header; 
Insert(current_node.fanout) in  
sequence_header;  
count=0; 

    while (count < current_node.fanout) 
 {enqueue  current_node.child[count];  

count++;} 
} 
4) concatenate (root.level, sequence_header, 
addr_header) 

1) k=header[0]; nb_nodes=header[k+1]; m=0;  
for(j=0;j<nb_nodes; j++) new_header[j]=null; 

 
2) while(header[k] != separator) 
{ m+= header[k+1]; k++;} 
 i=0;  pos = k+addr_size;  
3) while (i<nb_nodes)  
{for(p=0;p<addr_size;p++) 
new_header[i].addr[p] 
=header[pos+addr_size*i+p] 
new_header[i].header[0]=m+i; i++;  
Copy the encoding sequence from position 
corresponding to current node+1 to 
new_header[i].header 
Copy from the current group to end of the header to 
new_header[i].header 
}  
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as the packet reaches nodes closer to tree leaves. The 
header encoding and processing algorithms are shown in 
Table II. 

Table II:  Pre-order encoding/decoding 

 
a) Pre-order tree encoding 

 

 
b) header processing 

 

2.2 Analysis of header processing algorithms 
 
The header encoding/decoding methods presented in 

the previous section offer different trade-offs between the 
header overhead (the node forwarding capacity required 
for transmission of application level header) and the 
computation effort required at forwarding nodes. The 
encoding overhead is in both cases less than 25% of the 
space required for multicast node addresses. The 
overhead is smaller for per-level traversal (~N/2 where N 
is the number of peer nodes in the group) than for the 
preorder method (~N). The preorder traversal achieves 
the smallest total overhead by transmitting only the sub-
tree rooted at the each forwarding node.  

The analysis of stateless multicast for an overlay with 
N nodes, each with fanout m gives ( ][log Nl m= ): 
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for the total overhead of the preorder method and: 
2 2 15 /( 1) ( ) 5( ) /( 1)l lm m Overhead per level m m+− < − < −

                                 (2) 
for the per level traversal.  

The total overhead was defined as the sum of 
multicast headers length at all forwarding peer nodes in 
the tree. The ratio between the total overhead of preorder 
and per-level traversal method varies as 1/)1( −−≈ lml  

( NNm m /)1]([log −≈ ) with the number of nodes in the 

multicast tree - overhead savings for the preorder grows 
exponential with tree depth.  The average overhead 
reduction per forwarding node between preorder 
traversal and per level traversal is proportional to the tree 
depth.  

The computation effort at forwarding nodes is 
composed of header search and next hops header 
creation. On a given application level multicast tree, the 
difference in computation effort between two header 
processing methods is dominated by the search for the 
next hop addresses. The pre-order method scans the 
entire application level header at each node in the 
distribution tree, while the per-level traversal stops at the 
next level after the current forwarding node. The 

difference in computation effort: 1l km − −  (where l is the 
depth of the entire tree and k is the depth of the current 
node), decreases exponentially with the depth of the node 
in the tree. Per-level method requires less computation 
effort at nodes closer to the source. Since pre-order 
reduces the overhead exponentially with the depth of the 
tree, it is preferred for large multicast groups composed 
of nodes with small fanout. For small groups with high 
fanout nodes the per-level method results in a smaller 
header computation load. This encoding is more 
advantageous when nodes act as forwarding proxies for 
several small multicast groups. 

 

2.3 Signaling overhead reduction for 
stateless multicast 

 
We estimated the overhead of leaving and joining a 

group of N nodes when using a stateless group 
communication protocol vs. a statefull multicast method 
(where the state of the multicast group is kept at each 
node in the overlay). The overhead of leave/join for the 
stateless group communication is assumed constant and 
is used as a reference. The leave overhead of a statefull 
method depends on the tree construction method; the 
least expensive – promoting a leaf node in place of the 
leaving node requires three times the signaling load of 
the stateless multicast. Another method, which produces 
better trees with a small amount of signaling, promotes 
the children on the longest branch from the leaving node. 

Start at root node:  node = root; root.label=0; 
Traverse_node(node) 
{Visit_node(node);  
If (no children) return; 
while(node has children) 
{child.label=node.label+1; 
traverse_node(child)} 
} 
Visit_node (node) 
{ insert node. label;  
insert node.addr;} 

1.  k=0; p=0; 
2. while (Node[p].label != terminator) 
       { if (Node[p].label = = 1) 

{next_hop[k] = Node[p].addr;  
Insert Node[p] into header[k];  
k++;} 

 while(Node[p].label != 1) 
         { Node[p].label--; 
                      Insert Node[p] into header[k]; 

          p++;} 
       } 
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The worst case for the signaling – a complete tree – 
requires moving up all longest branch nodes from the 
current leaving node to the leaf level.  The signaling cost 
for a node at level k in the tree is 1+− kl  where l is the 
depth of the tree; in average the leave requires 

)),(1(1 lmO ε++  assuming that a node leaves with the 

same probability from any position in the tree. The join 
overhead however is much larger since it may require a 
complete re-building of the tree. At worst the insertion of 
the node (for the algorithms that uses a sorted list of 
nodes) at parent k will require signaling all the remaining 
nodes starting from the k+1. Assuming the node can be 
inserted with the same probability in any position in the 
tree, the average signaling overhead is linear with the 
number of nodes in the tree. The join and leave overhead 
above was computed for a single multicast group; the 
overhead grows linearly with the number of multicast 
groups.    

 

3. Dynamic group membership control 
 
Distributed interactive applications are characterized 

by high dynamics of client group membership, which 
translates into high control overhead of multicast groups. 
Stateless forwarding multicast presented in the previous 
section limits the size of the multicast group to tens of 
members in order to reduce the impact of the application 
header overhead. In addition, the efficient construction of 
distribution trees requires that control information 
(client’ s communication interest, forwarding capacity 
and network delay information) is available at the tree-
building node.  

We propose in this section group membership 
management and multicast tree-building algorithms for 
data distribution in large-scale distributed interactive 
applications. Multicast groups are managed by a 
hierarchy of overlay control nodes, which also control 
data path quality. The network overlay is clustered in 
cardinality bounded network clusters managed by cluster 
leader/control nodes, which constructs local multicast 
trees and perform multicast header encoding. The cluster 
leader nodes keep control information (multicast group 
membership) and per node network data (node 
forwarding capacity, delay measurement) for all end-
systems in a cluster. Per node network information is 
registered at cluster leader/control nodes in the bootstrap 
phase, when nodes join the overlay. We present in the 
following the hierarchical communication interest 
aggregation and the tree construction methods for group 
communication using stateless multicast. 

The stateles forwarding multicast is particularly 
suited for distributed interactive applications. A proto-
typical distributed interactive application has an average 

multicast group size of tens of participants [9]; for 
groups smaller than 50 participants, the overhead of 
stateless forwarding is less than 20%. In addition, the 
size of the multicast groups can be controlled by the 
application; larger size multicast groups can be 
controlled by clustering participants with in cardinality 
bounded groups.  

Node communication interest is signaled to the 
control nodes using group join/leave messages. Control 
nodes aggregate the group membership information by 
substituting local cluster group membership lists with 
their own network identifier (e.g. IP address). The 
multicast group information indexed at overlay control 
nodes is dynamic: control nodes insert (when receiving 
joins on new topics) and remove (when there is no 
receiver left in the group) group states. The leave 
messages are propagated in the control hierarchy only 
when the node is the last, among the set of nodes indexed 
at the control node, leaving the group; similarly, the join 
messages are propagated in the control hierarchy only 
when the control node does not have other receivers for 
the group indicated in the join message.  

Each controller constructs application level multicast 
trees for a segment of the data path that contain its 
siblings and peer (end-system) child nodes. The end-to-
end path is composed of multiple segments from several 
application level multicast trees. Controllers keep the 
state information needed for construction of application 
level multicast trees, while the rest of overlay nodes 
(end-system, forwarding proxies) act as simple 
forwarders. Each forwarding node has a message 
processor, which implements the forwarding and tree 
processing algorithms presented in section two.  

 

3.1 Tree construction algorithms for 
stateless multicast 

 
In the previous section we argued that group 

membership dynamics requires distributed control of the 
data path; each control node builds per group sub-trees 
containing only the subset of nodes in a network cluster. 
The overlay network is first partitioned by clustering 
nodes based on network distance such that available 
forwarding capacity is optimally distributed among the 
clusters. Data path between multicast group members is 
delay-bounded within each cluster using efficient tree 
construction algorithms; cluster leader (control) nodes 
perform data forwarding on source-based trees 
constructed with sibling control nodes only. End-to-end 
data path between multicast group participants is 
therefore concatenated from several delay bounded 
overlay segments. With this restriction, the end-to-end 

5



delay constraints require bounding the maximum delay of 
each sub-tree rooted at control peer nodes.  

We propose in the following algorithms for 
construction of overlay multicast trees composed of 
cluster leader/control nodes with high forwarding 
capacity and peer nodes (end-systems) with small 
forwarding capacity. Network information necessary for 
tree building is available at cluster leader nodes. Tree 
construction uses a weighted distance metric that 
combines the node distance from the source and node 
fanout. The distance is normalized to the maximum 
distance from the source while the fanout is normalized 
to the maximum fanout among the receiver nodes. The 
distance from the source to the current node C is: 

( , ) 1* ( , ) / max( ( , ))

2 * ( ( )) / )

d C S w C S C S

w F f C F

= ∆ ∆ +
−

                (3) 

where ),( SC∆  is the delay between the current node 

and the source and F is the maximum fanout among the 
nodes in the multicast group.  

We consider two cases: network distance relative to 
cluster leader nodes and forwarding capacity of the peer 
nodes is known; the network delays between any pair of 
nodes (or an estimate of network delay) within the cluster 
and node forwarding capacity is available at cluster 
leader/control nodes.  

In the first method of constructing the multicast trees 
- closest node - peer nodes forward to the “closest” node 
(computed using a combined delay/capacity metric) in 
the same multicast group. The algorithm first orders the 
nodes according to the weighted distance metric and 
subsequently add nodes to the last inserted parent in the 
order of decreasing distance; the weighted distance 
metric favor nodes with high capacity over closer nodes 
(using delay only) with low capacity.  

The second and third algorithms use network delay 
information is available using either direct measurement 
– O(n2) with number of nodes in the network cluster - or 
through positioning network nodes in a high-dimensional 
network plane – O(n) with the number of cluster nodes. 
The distance on the overlay from the source is computed 
with:  

( ( )) 2

1
0

0 ( ( )) 1

( ( )) ( ( , )

( ) [ , ]

card Tr k
k k
i i

i

k k
card Tr k

C

Tr k d n n

Tr k n n path of traversal

of T tree from the root to node k

−

+
=

−

∆ =

=

∑
�

             (4) 

A measure for evaluating tree quality is the maximum 
delay from the source:  

)),((max)(
2))((

0
1∑

−

=
+=∆

kTrcard

i

k
i

k
i

k
nndTcM                (5) 

Denote the tree built with n nodes Tc(n), f(k): fanout 
of node k and c(k): current number of children of node k. 

The first strategy is to look for a parent node among the 
nodes already in the tree that is closest to the source on 
the delay path from the source. The closest_parent 
algorithm is presented in Table III.a. The complexity of 
the algorithm is O(NLogN) for node ordering and O(N2) 
for the tree construction (worst case analysis: N(N+1)/2).  

A minimum_distance_link algorithm that selects the 
minimum distance between the nodes with available 
fanout currently inserted in the tree and the unattached 
nodes will result in optimal tree construction in case all 
nodes have identical capacity. In the case nodes have 
different forwarding capacities, the algorithm uses the 
combined distance metric, promoting nodes with higher 
capacity at the top of the tree. The algorithm is shown in 
the figure Table III.b. 

The minimum_distance_link algorithm builds trees 
with maximum delay smaller than the closest_parent 
algorithm when the nodes in the overlay have similar 
fanout. The complexity of the algorithm is O(N3); the 
worst case analysis gives : 

2 ( 1) / 2 ( 1)(2 1) / 6N N N N N− − − −                           (6) 

for an overlay of N nodes.  
 

Table III:  Tree construction algorithms 

 
a) Closest parent algorithm 

 

1. Sort nodes n(k), k=1:N in the order of increasing 
weighted distance d(n(k), S) ; 
 i=1; list=NULL; 0))(( =∆ parentnTr ; 

2. while(i<N) 
 { min∆ = max_val; parent=0; 

 insert(parent, list); position=Head(list); 
 while(position=advance(list, position)) 
 {k=retrieve(list, position); 
 ))(),(())(( inkndknTrTr +∆=∆ ; 

         if ( Tr∆ < min∆ ) 
  { min∆ = Tr∆ ; parent = k;} 

 } 
 insert n(i) as child of  n(parent); 
 insert(i, list); c(parent)++; 
 if ( c(parent)==f(parent)) 
 remove(parent, list); 

))(),(())(())(( parentnindparentnTrinTr +∆=∆  

i++; 
 } 
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b) Minimum distance link algorithm 

 

4. Simulation results 
 
     We used the GT-ITM topology simulator [3] to 

evaluate the performance of stateless multicast on an 
overlay composed of high fanout cluster leader nodes 
and end-system (peer) nodes. The multicast group 
contained a total of 100 nodes selected from a transit-
stub topology. The topology has one transit domain of 20 
nodes with 10 stub domains per transit node. Each stub 
domain contains an average of 10 nodes. Cluster leader 
nodes with an average forward capacity five to ten times 
larger than that of peer nodes were placed in the transit 
domain. Peer nodes with identical forwarding capacity 
were selected at random (uniformly distributed) from the 
stub domains. Simulation results were averaged over ten 
overlays obtained by fixing the source node and the 
cluster leader nodes and randomly selecting the peer 
nodes. The shortest path distance between any pair of 
overlay nodes was computed for each overlay. 

To analyze the performance of stateless multicast on 
a hierarchical overlay we evaluated the following 
metrics: 

1. multicast tree delay stretch: the ratio of 
maximum delay between the source and a receivers 
computed on the multicast tree and the delay from the 
source to furthest node on the direct path, and 

2. cluster leader nodes utilization ratio: the ratio 
between the forward capacity of cluster leader nodes 

used for forwarding in the multicast group and the 
capacity required to unicast data from the source.  
 
The first experiment recorded the delay stretch when 

the number of cluster leader nodes (with capacity five 
times larger than the end-system nodes) increases 
between 1% and 8% of the total number of nodes. The 
results in Figure 2 show the improvement in delay stretch 
for closest parent and minimum distance link vs. closest 
node method.  
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Figure 2: The delay stretch vs number of cluster leader 
nodes 

 
The delay stretch gain of closest_parent and 

minimum_distance_link over closest_node method 
increases with the number clusters; however it is less 
than 50%, even when the cluster leader nodes have 
enough forwarding capacity to unicast to all peer nodes. 
The minimum_distance_link outperforms the other 
algorithms especially when the number of clusters is 
small. However its performance is close to that of the 
closest_parent when the number of clusters is large. As 
expected, the delay stretch decreases with the number of 
cluster leader nodes; with enough forwarding capacity at 
cluster leader nodes to unicast to all peer nodes, the 
added overlay delay stretch decreases to zero (data is 
forwarded on the shortest paths from the source to every 
node in the multicast tree) and the choice of tree building 
method has less impact on the quality of the data path. 

Figure 3 shows the variation of delay stretch with the 
utilization of cluster leader nodes. Without the 
information between any two nodes the delay between 
parent and child node can be as large as the diameter of 
the cluster they belong to, increasing the delays between 
the nodes on the longest path in the multicast tree.  

 

1. Construct parent and unattached node lists 
plist=null; clist=null; j=1; parent=0; 
insert(parent, list); 

  for (i=1; i<N; i++) insert(i,clist); 
2. while (j<N) 
{ min∆ = max_val; 
while (position=advance(plist,position)) 
k=retrieve(list, position) 
 while(pos=advance(pos, clist)) 

i=retrieve(pos, clist); 
{ ))(),(())(( inkndknTrTr +∆=∆ ; 

         if ( Tr∆ < min∆ ) 
  { min∆ = Tr∆ ;  
  parent = k;child=i;} 
} 

 insert n(child) as child of  n(parent); 
 insert(child,plist);remove(child,clist); 
 c(parent)++; 
 if ( c(parent)==f(parent)) 
 remove(parent,plist); 

))(),(())(())(( parentnchildndparentnTrchildnTr +∆=∆
 j++; 
         } 
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Figure 3: The delay stretch – aggregate cluster leader 
node utilization 

 
Closest parent and minimum distance link are more 

efficient methods for constructing delay minimized 
multicast trees; using only 80% cluster leader forwarding 
capacity they achieve virtually no end-to-end maximum 
delay increase. The minimum distance link and closest 
parent can use only to 60% aggregate cluster leader 
forwarding capacity and degrade the delay stretch with 
less than 40%. When forwarding is concentrated at few 
cluster leader nodes, the closest parent method achieves 
comparable end-to-end performance with 
minimum_distance_link with smaller – O(N2)- tree 
building complexity. 

The second experiment measured the delay stretch 
with the increase of forwarding capacity available at 
cluster leader nodes (Figure 4).  
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Figure 4: The delay stretch vs. average forward capacity 
of cluster leader nodes 

The overlay consists of five cluster leader nodes each 
with forwarding capacity between three and nine times 
the forwarding capacity of end-system nodes. Both 
closest parent and minimum distance link achieve 15% 
improvement over the closest node method. Also when 
comparing to the first experiment, we conclude that the 
number of clusters (cluster leader nodes) has a larger 
impact on the maximum end-to-end delay than an 
increase in cluster leader node forwarding capacity 

 

5. Related work 
 
Several multicast protocols for networked group 

communication have been proposed recently. The small 
group multicast protocol [2] (and other Xcast protocols) 
also encapsulates the receiver addresses in the packet 
header. However these protocols relay on network 
support to route data to the destination, their efficiency 
being dependent on the underlying network support. The 
stateless multicast protocol we propose allows more 
flexibility in the design of control and routing path at the 
expense of small degradation in routing efficiency. The 
quality of the end-to-end data path can be optimized 
using network and application level metrics; in contrast 
the small group multicast protocols rely on the quality of 
service mechanisms provided by the underlying network.  

Tree construction algorithms for real-time 
applications have been proposed in [1]. The tree 
construction is optimized for minimizing the average 
latency, not the maximum latency from the source. This 
formulation of the delay problem apply for video-
distribution applications which minimize buffering at 
nodes in the multicast tree, but not for collaborative 
applications where the real-time constraints are related to 
the maximum end-to-end delay between nodes in the 
multicast group. While organizing the control overlay to 
reduce the amount of signaling required for node join 
and leave, OMNI protocol is designed for video on 
demand applications, where the amount of signaling is 
much smaller than in distributed interactive applications 
considered here. 

 

6. Conclusion 
 
We propose in this paper a stateless group 

communication mechanism along with algorithms for 
efficient data path control in distributed interactive 
applications. The overlay organization is hierarchical: 
each control node manages a cluster of peer nodes 
assigned based on network proximity.  

The stateless protocol uses efficient multicast tree 
encoding to reduce the overall bandwidth and CPU 
utilization at forwarding peer nodes. We show that tree 
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construction algorithms achieve scalability and low 
overhead with a controlled degradation of the end-to-end 
data path performance on a hierarchical overlay 
composed of high forwarding capacity nodes and end-
system nodes. In addition, stateless multicast reduces 
control signaling (node join and leave) proportional to 
the size of the multicast group. The reduction in control 
signaling is obtained at the expense of increased header 
processing at overlay peer nodes.  
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