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Abstract 
Telematics services in cars (like navigation, cellular 
telephone, internet access) are becoming increasingly 
popular, but they may distract drivers from their main 
driving tasks and negatively affect driving safety.  
This paper addresses some aspects of voice user 
interface in cars, as a mechanism to increase driver 
safety. Voice control becomes more efficient in 
reducing driver distraction if drivers can speak 
commands in a natural manner rather than having to 
remember one or two variants supported by the system.  
In this paper we discuss some ways to increase 
naturalness. Computers in cars are usually not very 
powerful due to cost considerations. Low CPU 
resources are a limiting factor for embedded speech 
solutions. Another aspect of this paper is a recently 
introduced novel solution for using a speech interface to 
reduce driver drowsiness and prevent a driver from 
falling asleep. All driver activities in cars (driving, 
talking over telephone, controlling Telematics devices, 
etc.) contribute to driver workload.  Designing 
workload management in a user interface is a difficult 
task. In our paper we analyze some aspects of this 
problem. Finally, we introduce the idea of a distributed 
user interface between cars. It is well known that the 
safety of a driver depends not only on the driver himself 
but on the behavior of other drivers nearby. Therefore 
sharing some information about other cars and driver 
conditions could lead to increased driving safety. For 
example, if a driver in a nearby car is listening to an e-
mail message or has had a high number of traffic 
accidents in the past, this “heightened risk” information 
could be sent anonymously to the workload manager in 
another car.  The workload manager would then adjust 
risk factors in its safety assessment of the environment . 
In response to the heightened risk caused by the 
offending car,  this workload manager may prevent the 
telephone from ringing or interrupt a dialog between the 
driver and a car system in other, nearby cars who are at 
higher risk because of the nearby “offending” car.  

1. Introduction 
Studies of road safety found that human error was the 
sole cause in more than half of all accidents  (see for 
example, [16]. One of the reasons why humans commit 
so many errors lies in the inherent limitation of human 
information processing ([7]). With the increase in 
popularity of  Telematics services in cars (like 
navigation, cellular telephone, internet access) there is 

more information that drivers need to process and more 
devices that drivers need to control  that might 
contribute to additional driving errors.  This paper is 
devoted to a discussion of these and other aspects of 
driver safety. 

2. Voice control interface 
One of the ways to address driver safety concerns is to 
develop an efficient system that relies on voice instead 
of hands to control Telematics devices.  It has been 
shown in various experiments that well designed voice 
control interfaces can reduce a driver’s distraction 
compared with manual control situations (see for 
example [14] or [5]). One of the ways to reduce a 
driver’s cognitive workload is to allow the driver to 
speak naturally when interacting with a car system (e.g. 
when playing voice games, issuing commands via 
voice).    It is difficult for a driver to remember a 
complex speech command menu (e.g. recalling specific 
syntax, such as "What is the distance to JFK?" or "Or 
how far is JFK?" or "How long to drive to JFK?" etc.).  
This fact led to the development of Conversational 
Interactivity for Telematics (CIT) speech systems at 
IBM Research..  CIT speech systems can significantly 
improve a driver-vehicle relationship and contribute to 
driving safety.  But the development of full fledged 
Natural Language Understanding  (NLU) for CIT is a 
difficult problem that typically requires significant 
computer resources that are usually not available in 
local computer processors that car manufacturers 
provide for their cars. To address this, NLU components 
should be located on a server that is accessed by cars 
remotely or NLU should be downsized to run on local 
computer devices (that are typically based on embedded 
chips). Some car manufacturers see advantages in using 
upgraded NLU and speech processing on the client in 
the car,  since remote connections to servers are not 
available everywhere, can have delays, and are not 
robust. Our department is developing a “quasi-NLU” 
component - a “reduced” variant of NLU that can be run 
in CPU systems with relatively limited resources. It 
extends concepts described in the paper [3]. In our 
approach, possible variants for speaking commands are 
kept in special grammar files (one file for each topic or 
application). When the system gets a voice response, it 
searches through files (starting with the most relevant 
topic). If it finds an appropriate command in some file, 
it executes the command. Otherwise the system 
executes other options that are defined by a Dialog 
Manager (DM) . The DM component is a rule based 
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sub-system that can interact with the  car and external 
systems (such as weather forecast services, e-mail 
systems, telephone directories,  etc.)  and a driver to 
reduce task complexity for the NLU system. The 
following are examples of conversations between a 
driver and DM that illustrate some of tasks that an 
advanced DM should be able to perform: 
1. Ask questions (via a text to speech module) to 
resolve ambiguities: 
- (Driver) Please, plot a course to Yorktown 
- (DM) Within Massachusetts? 
- (Driver) No, in New York 
2. Fill in missing information and remove 
ambiguous references from context: 
- (Driver) What is the weather forecast for 
today? 
- (DM) Partly cloudy, 50% chance of rain 
- (Driver) What about Ossining? 
- (DM) Partly sunny, 10% chance of rain 
(The DM assumes that the driver means Yorktown, NY,  
from the earlier conversational context. Also, when the 
driver asks the inexplicit question “What about 
Ossining?”  it assumes that the driver is still asking 
about weather.) 
3. Manage failure and provide contextual, 
failure- dependent help and actions  
-       (Driver) When will we get there? 
-       (DM) Sorry, what did you say? 
-       (Driver) I asked when will we get there. 
 
The quality of this “quasi-NLU”  module depends on 
how well phrases in files cover multiple ways to speak 
commands. It is difficult to collect sufficient data that 
fully represents all possible ways that users might 
interact with a CIT system. No matter how large the 
data collection is, some users will produce some phrases 
that are not represented in the collected data nor in 
grammars that are developed from this data. Currently 
this issue is addressed by a convenient user interface 
that is provided by a research prototype of a CIT 
framework, that allows users to easily add new phrases  
and commands if they find that the system  
does not understand the phrases they are using.  Fig. 1 
shows a snapshot of an interface that allows users to 
write new phrases and commands.  The CIT interface is 
a special case of a general interactivity system that is 
developed in the ViaScribe speech interactive 
framework ([2]). A high view of the architecture of the 
CIT framework is shown in Fig. 2, in which Speech 
Engines (SE), Text To Speech (TTS), audio 
capturing/recording engines and some of the other 
components have been developed using C/C++. Various 
Dialog Managers (DM) have been developed using 
Java. The communication is provided by an Engine 
Manager component that is designed as a message bus, 
to which other parts of the framework can be connected. 
A workload manager (WM) receives sensor data from 
CIT Dashboard and other data and provides means to 
calculate cognitive weights. In the future, the problem 

of instantaneous data collection could be dealt 
systematically by creating a learning transformation 
system (LT).  Examples of LT tasks are as follows:   
• Monitor driver and passenger actions in the 
car’s internal and external environments across a 
network;  
• Extract and record the Driver Safety Manager 
relevant data in databases;  
• Generate and learn patterns from stored data; 
• Learn from this data how Safety Driver 
Manager components and driver behavior could be 
improved and adjusted to improve Driver Safety 
Manager performance and improve driving safety. 
  
In particular, LT should be able to modify NLU 
components, such as files which include typical phrases 
that are linked with commands.  For example, LT could 
add new phrases to NLU files that it finds from some 
drivers’ dialogs or from more sophisticated automatic 
language models and NLU processors.  If the number of 
phrases in some file become very large (which might 
lead to increased speech recognition error rates), then 
LT could split files by topics and adapt or create new 
grammars for domains related to such created topics. 
Examples of some technology that can be used for such 
topic identification are provided in [9]. When a 
sufficient number of phrases has accumulated, then 
statistical language models can be created from these 
corpora and augmented with grammar-based processors. 
A wide range of known mechanisms may be employed 
to promote interactions of LT with drivers, such as 
disclosed in [10] .   On the other hand, the adaptation of 
Safety Driver Manager components (e.g. NLU, speech 
recognition, language models) related to similarities 
between users may also be carried out in any of a wide 
range of suitable methods, including those described in 
[11]  and [12]. 
 

3. Embedded speech recognition 
 
Car computers are usually not very powerful due to cost 
considerations. The growing necessity of the 
conversational interface demands significant advances 
in processing power on the one hand, and speech and 
natural language technologies on the other. In particular, 
there is significant need for a low-resource speech 
recognition system that is robust, accurate, and efficient. 
An example of a low-resource system that is executed 
by a 50 DMIPS processor, augmented by 1 MB or less 
of DRAM can be found in [2]. In what follows we give 
a brief description of the IBM embedded speech 
recognition system that is based on the paper [4]. 
Logically a speech system is divided into three primary 
modules: the front-end, the labeler and the decoder. 
When processing speech, the computational workload is 
divided approximately equally among these modules.  
In this system the front-end computes standard 13-
dimensional mel-frequency cepstral coefficients 
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(MFCC) from 16-bit PCM sampled at 11.025 KHz. 
Front-End Processing Speech samples are partitioned 
into overlapping frames of 25 ms duration with a frame-
shift of 15 ms. A 15 ms frame-shift instead of the 
standard 10 ms frame-shift was chosen since it reduces 
the overall computational load significantly without 
affecting the recognition accuracy. Each frame of 
speech is windowed with a Hamming window and 
represented by a 13 dimensional MFCC vector. We 
empirically observed that noise sources, such as car 
noise, have significant energy in the low frequencies 
and speech energy is mainly concentrated in frequencies 
above 200 Hz. The 24 triangular mel-filters are 
therefore placed in the frequency range [200Hz - 5500 
Hz], with center frequencies equally spaced in the 
corresponding mel-frequency scale. Discarding the low 
frequencies in this way improves the robustness of the 
system to noise. The front-end also performs adaptive 
mean removal and adaptive energy normalization to 
reduce the effects of channel and high variability in the 
signal levels respectively. The labeler computes first 
and second differences of the 13-dimensional cepstral 
vectors, and concatenates these with the original 
elements to yield a 39-dimensional feature vector. The 
labeler then computes the log likelihood of each feature 
vector according to observation densities associated 
with the states of the system's HMMs. This computation 
yields a ranked list of the top 100 HMM states. 
Likelihoods are inferred based upon the rank of each 
HMM state by a table lookup ([1]). The sequence of 
rank likelihoods is then forwarded to the decoder. The 
system uses the familiar phonetically-based, hidden 
Markov model (HMM) approach. The acoustic model 
comprises context-dependent sub-phone classes 
(allophones). The context for a given phone is 
composed of only one phone to its left and one phone to 
its right. The allophones are identified by growing a 
decision tree using the context-tagged training feature 
vectors and specifying the terminal nodes of the tree as 
the relevant instances of these classes. Each allophone is 
modeled by a single-state Hidden Markov Model with a 
self loop and a forward transition. The training feature 
vectors are poured down the decision tree and the 
vectors that collect at each leaf are modeled by a 
Gaussian Mixture Model (GMM), with diagonal 
covariance matrices to give an initial acoustic model. 
Starting with these initial sets of GMMs several 
iterations of the standard Baum-Welch EM training 
procedure are run to obtain the final baseline model. In 
our system, the output distributions on the state 
transitions are expressed in terms of the rank of the 
HMM state instead of in terms of the feature vector and 
the GMM modeling the leaf. The rank of an HMM state 
is obtained by computing the likelihood of the acoustic 
vector using the GMM at each state, and then ranking 
the states on the basis of their likelihoods.  The decoder 
implements a synchronous Viterbi search over its active 
vocabulary, which may be changed dynamically. Words 
are represented as sequences of context-dependent 

phonemes, with each phoneme modeled as a three-state 
HMM. The observation densities associated with each 
HMM state are conditioned upon one phone of left 
context and one phone of right context only. A 
discriminative training procedure was applied to 
estimate the parameters of these phones. MMI training 
attempts to simultaneously (i) maximize the likelihood 
of the training data given the sequence of models 
corresponding to the correct transcription, and (ii) 
minimize the likelihood of the training data given all 
possible sequences of models allowed by the grammar 
describing the task . The MMI estimation process that 
was used in this work is described in [6] and [15]. In  
2001 , speech evaluation experiments yields 
improvement from 20% to 40% relatively depending on 
testing conditions  (e.g. 7.6% error rate for  0 speed and 
10.1% for 60 mph).  

4. Driver drowsiness prevention – 
Artificial Passenger 
Fatigue causes more than 240,000 vehicular accidents 
every year.  Currently, drivers who are alone in a 
vehicle have access only to media such as music and 
radio news which they listen to passively.  Often these 
do not provide sufficient stimulation to assure 
wakefulness.  Ideally, drivers should be presented with 
external stimuli that are interactive to improve their 
alertness. Driving, however, occupies the driver’s eyes 
and hands, thereby limiting most current interactive 
options. Among the efforts presented in this general 
direction, the invention [8]  suggests fighting 
drowsiness by detecting drowsiness via speech 
biometrics and, if needed, by increasing arousal via 
speech interactivity. When the patent was granted in 
May 22, 2001, it received favorable worldwide media 
attention.  It became clear from the numerous press 
articles and interviews on TV, newspaper and radio that 
Artificial Passenger was perceived as having the 
potential to dramatically increase the safety of drivers 
who are highly fatigued. It is a common experience for 
drivers to talk to other people while they are driving to 
keep themselves awake. The purpose of Artificial 
Passenger part of the CIT project at IBM is to provide a 
higher level of interaction with a driver than current 
media, such as CD players or radio stations, can offer.  
This is envisioned as a series of interactive modules 
within Artificial Passenger, that increase driver 
awareness and help to determine if the driver is losing 
focus. This can include both conversational dialog and 
interactive games, using voice only.  The scenarios for 
Artificial Passenger currently include: quiz games, 
reading jokes, asking questions, and interactive books. 
In the Artificial Passenger (ArtPas) paradigm, the 
awareness-state of the driver will be monitored, and the 
content will be modified accordingly.  Drivers 
evidencing fatigue, for example, will be presented with 
more stimulating content than drivers who appear to be 
alert.  This could enhance the driver experience, and 
may contribute to safety. 
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5. Workload Manager The Artificial Passenger interaction is founded on the 
concept of psychological arousal. Most well known 
emotion researchers agree that arousal (high, low) and 
valence (positive, negative) are the two fundamental 
dimensions of emotion.  Arousal reflects the level of 
stimulation of the person as measured by physiological 
aspects such as heart rate, cortical activation, and 
respiration.  For someone to be sleepy or fall asleep, 
they have to have a very low level of arousal.  There is a 
lot of research into what factors increase psychological 
arousal since this can result in higher levels of attention, 
information retention and memory.   We know that 
movement, human voices and faces (especially if larger 
than life), and scary images (fires, snakes) increase 
arousal levels.  We also know that speaking and 
laughing create higher arousal levels than sitting quietly.  
Arousal levels can be measured fairly easily with a 
biometric glove (from MIT), which glows when arousal 
levels are higher (reacts to galvanic skin responses such 
as temperature and humidity).  The following is a 
typical scenario involving Artificial  Passenger: 

In this section we provide a brief analysis of the design 
of the workload management that is a key component of 
driver Safety Manager (see Fig. 3). An object of the 
workload manager is to determine a moment-to-moment 
analysis of the user's cognitive workload.  It 
accomplishes this by collecting data about user 
conditions, monitoring local and remote events, and 
prioritizing message delivery. There is rapid growth in 
the use of sensory technology in cars. These sensors 
allow for the monitoring of driver actions (e.g. 
application of brakes, changing lanes), provide 
information about local events (e.g. heavy rain),  and 
provide information about driver characteristics (e.g. 
speaking speed, eyelid status).  There is also growing 
amount of distracting information that may be presented 
to the driver (e.g. phone rings, radio, music, e-mail etc.) 
and actions that a driver can perform in cars via voice 
control. The relationship between a driver and a car 
should be consistent with the information from sensors. 
The workload manager should be designed in such a 
way that it can integrate sensor information and rules on 
when and if distracting information is delivered. This 
can be designed as a “workload representational 
surface”.  One axis of the surface would represent stress 
on the vehicle and another, orthogonally distinct axis, 
would represent stress on the driver.  Values on each 
axis could conceivably run from zero to one. Maximum 
load would be represented by the position where there is 
both maximum vehicle stress and maximum driver 
stress, beyond which there would be “overload”. The 
workload manager is closely related to the event 
manager that detects when to trigger actions and/or 
make decisions about potential actions. The system uses 
a set of rules for starting and stopping the interactions 
(or interventions). It controls interruption of a dialog 
between the driver and the car dashboard (for example, 
interrupting a conversation to deliver an urgent message 
about traffic conditions on an expected  driver route).   
It can use answers from the driver and/or data from the 
workload manager relating to driver conditions, like 
computing how often the driver answered correctly and 
the length of delays in answers, etc.  It interprets the 
status of a driver’s alertness, based on his/her answers 
as well as on information from the workload manager. It 
will make decisions on whether the driver needs 
additional stimuli and on what types of stimuli should 
be provided (e.g. verbal stimuli via speech applications 
or physical stimuli such as a bright light, loud noise, 
etc.) and whether to suggest to a driver to stop for rest. 
The system permits the use and testing of different 
statistical models for interpreting driver answers and 
information about driver conditions.  The driver 
workload manager is connected to a driving risk 
evaluator that is an important component of the Safety 
Driver Manager. The goal of the Safety Driver Manager 
is to evaluate the potential risk of a traffic accident by 
producing measurements related to stresses on the 
driver and/or vehicle, the driver’s cognitive workload, 

 
 
Imagine, driver “Joe” returning home after an extended 
business trip during which he had spent many late 
nights.  His head starts to nod … 
 
ArtPas:   Hey Joe, what did you get your 
daughter for her birthday? 
Joe (startled):   It’s not her birthday! 
ArtPas: You seem a little tired.  Want to play a game? 
Joe:   Yes. 
ArtPas:  You were a wiz at “Name that Tune” 
last time.  I was impressed.  Want to 
try your hand at trivia? 
Joe:     OK. 
ArtPas:  Pick a category: Hollywood Stars, 
Magic Moments or Hall of Fame? 
Joe:   Hall of Fame. 
ArtPas:  I bet you are really good at this.  Do 
you want the 100, 500 or 1000 dollar 
level? 
Joe:     500 
ArtPas:  I see. Hedging your bets are you? 
 
By the time Joe has answered a few questions and has 
been engaged with the dynamics of the game, his 
activation level has gone way up.  Sleep is receding to 
the edges of his mind. If Joe loses his concentration on 
the game (e.g. does not respond to the questions which 
Artificial Passenger asks) the system will activate a 
physical stimulus (e.g. verbal alarm).  The Artificial 
Passenger can detect that a driver does not respond 
because his concentration is on the road and will not 
distract the driver with questions.  On longer trips the 
Artificial Passenger can also tie into a car navigation 
system and direct the driver to a local motel or hotel. 
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environmental factors, etc.  The important input to the 
workload manager is provided by the situation manager 
whose task is to recognize critical situations.  It receives 
as input various media (audio, video, car sensor data, 
network data, GPS, biometrics) and as output it 
produces a list of situations. Situations could be simple, 
complex or abstract.  Simple situations could include, 
for instance:  a dog locked in a car; a baby in a car; 
another car approaching; the driver’s eyes are closed; 
car windows are closed; a key is left on a car seat; it is 
hot in a car; there are no people in a car; a car is located 
in New York City; a driver has diabetes; a driver is on 
the way home. Complex situations could include, for 
example:  a dog locked is locked in a car AND it is hot 
in a car AND car windows are closed; a baby is in a car 
AND there are no people in a car; another car is 
approaching AND the driver is looking in the opposite 
direction; a key is left on a car seat AND a driver is in 
the midst of locking a car; the driver is diabetic AND 
has not taken a medicine for 4 hours. Abstract situations 
could include, for example:  Goals: get to work, to 
cleaners, to a movie. Driver preferences: typical routes, 
music to play, restaurants, shops. Driver history: 
accidents, illness, visits. Situation information can be 
used by different modules such as workload, dialog and 
event managers; by  systems that learns driver 
behavioral patterns, provide driver distraction detection, 
and prioritize message delivery. For example, when the 
workload manager performs a moment-to-moment 
analysis of the driver's cognitive workload, it may well 
deal with such complex situations as the following: 
Driver speaks over the phone AND the car moves with 
high speed AND the car changes lanes; driver asks for a  
stock quotation AND presses brakes AND it is raining 
outside; another car approaches on the left AND the 
driver is playing a voice interactive game. 
The dialog manager may well at times require 
uncertainty resolution involving complex situations, as 
exemplified in the following verbal query by a driver: 
“How do I get to Spring Valley Rd?”  
Here, the uncertainty resides in the lack of an expressed 
(geographical) state or municipality.  The uncertainty 
can be resolved through situation recognition; for 
example, the car may be in New York State already 
(that is defined via GPS) and it may be known that the 
driver rarely visits other states.  The concept associated 
with learning driver behavioral patterns can be 
facilitated by a particular driver’s repeated routines, 
which provides a good opportunity for the system’s 
“learning” habitual patterns and goals. So, for instance, 
the system could assist in determining whether drivers 
are going to pick up their kids in time by, perhaps, 
reordering a path from the cleaners, the mall, the 
grocery store, etc.    

6. Privacy and social aspects 
Addressing privacy concerns: The safety driver 
manager framework should be designed such that it will 
be straightforward for the application designers to 

protect the end user’s privacy.  This should include 
encryption of the message traffic from the vehicle, 
through a carrier's network, and into the service 
provider’s secure environment, such that the driver’s 
responses cannot be intercepted.  This can be achieved 
through the use of IBM WebSphere Personalization 
Server or Portal Server, allowing the end user an 
interface to select options and choices about the level of 
privacy and/or the types of content presented.  An 
example of such an option is the opportunity for drivers 
to be informed about the existence of the Artificial 
Passenger capability, with clear instructions about how 
to turn it off if they opt not to use it. 
Addressing social concerns: The safety driver manager 
is being developed to enable service providers to 
enhance the end user’s driving experience, and the 
system will be designed to ensure that it has this desired 
effect. The social impact of the system will be managed 
by making sure that users clearly understand what the 
system is, what the system can and cannot do, and what 
they need to do to maximize its performance to suit their 
unique needs.  For example, in the Artificial Passenger 
paradigm the interaction can be customized to suit the 
driver’s conversational style, sense of humor, and the 
amount of “control” that he/she chooses to leave to the 
Artificial Passenger system (e.g., some drivers might 
find it disconcerting if the Artificial Passenger system 
opens the window for them automatically; others might 
find this a key feature.).  The system will include a 
learning module that detects and records customer 
feedback, e.g. if a driver does not laugh at certain type 
of jokes, then that type will not be presented.  Positive 
feedback in one area (football scores from a driver’s 
home town) leads to additional related content (baseball 
scores from the same town, weather, etc.).  The social 
concerns associated with Artificial Passenger can be 
addressed by allowing the users to specify their desires 
and requirements through the subscriber management 
tools. 
A general approach to privacy, social and legal issues in 
Telematics can be found in [13]. Some elements of this 
approach (e.g. Privacy Manager, Insurance) are 
reflected in Fig. 3. 

7. Distributive user interface between cars 
The safety of a driver depends not only on the driver 
himself but on the behavior of other drivers near him. 
Existing technologies can attenuate the risks to a driver 
in managing his/her own vehicle, but they do not 
attenuate the risks presented to other drivers who may 
be in “high risk” situations, because they are near or 
passing a car where the driver is distracted by playing 
games, listening to books or engaging in a telephone 
conversation.  It would thus appear  helpful at times to 
inform a driver about such risks associated with drivers 
in other cars. In some countries, it is required that 
drivers younger than 17 have a mark provided on their 
cars to indicate this.  In Russia (at least in Soviet times), 
it was required that deaf or hard of hearing drivers 
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announce this fact on the back of the window of his or 
her car.  There is, then, an acknowledged need to 
provide a more dynamic arrangement to highlight a 
variety of potentially dangerous situations to drivers of 
other cars and to ensure that drivers of other cars do not 
bear the added responsibility of discovering this 
themselves through observation, as this presents its own 
risks.  Information about driver conditions can be 
provided from sensors that are located in that car. The 
following are examples of the information about drivers 
that can affect driver conditions:  
- mood  (angry, calm, laughing, upset) 
- physical conditions (tired, drowsy, sick, has 
chronic illnesses that can affect driving – like diabetes) 
- attention (looking on a road or navigation map 
in a car, talking to a baby in a back sit, talking over 
telephone, listening to e-mail) 
- driver profile (number of traffic accidents, 
age). 
There can be several ways to assess this information . 
Driver overall readiness for safe driving can be 
evaluated by a safety manager in his/her car. It can be 
ranked by some metrics (e.g. on a scale from 1 to 5 ) 
and this evaluation can then be sent to the driver safety 
managers in nearby cars. Another way is that a driver 
manager in one car has access to information to a driver 
profile and from sensors in other cars. This second 
method allows individual car drivers to customize their 
priorities and use personal estimators for driving risks 
factors. For example, some one who is more worried 
about young drivers may request that this information 
be provided to his/her driver safety manager rather than 
an overall estimation of risk expressed as a single 
number. If a driver safety manager finds that there is 
additional risk associated with driver behavior in a car 
located nearby, it may prevent a telephone ringing or 
interrupt a dialog between the driver and a car system if. 
It can also advise someone who is calling a driver that 
that driver is busy and should not be disturbed at this 
time. The information can be sent anonymously to the 
driver safety manager in another car and this manager 
would then adjust the risk factor in its estimation of the 
surrounding environment for this car. This allows the 
system to address privacy concerns that drivers may 
have. One can also offer reduced insurance payments to 
a driver if s/he agrees to disclose information to other 
cars. Employers of fleet tracks may be particularly 
interested in this approach since it allows reduction in 
traffic accidents.  

8. Conclusion 
In the paper we suggested that such important issues 
related to a driver safety, such as controlling Telematics 
devices and drowsiness can be addressed by a special 
speech interface. This interface requires interactions 
with workload, dialog, event, privacy, situation and 
other modules. We showed that basic speech 
interactions can be done in a low-resource embedded 
processor and this allows a development of a useful 

local component of Safety Driver Manager. The 
reduction of conventional speech processes to low –
resources processing was done by reducing a signal 
processing and decoding load in such a way that it did 
not significantly affect decoding accuracy and by the 
development of quasi-NLU principles.  We observed 
that an  important application like Artificial Passenger 
can be sufficiently entertaining for a driver with 
relatively little dialog complexity requirements – 
playing simple voice games with a vocabulary 
containing a few words.  Successful implementation of 
Safety Driver Manager would allow use of various 
services in cars (like reading e-mail, navigation, 
downloading music titles etc.) without compromising a 
driver safety.  Providing new services in a car 
environment is important to make the driver 
comfortable and it can be a significant source of 
revenues for Telematics. We expect that novel ideas in 
this paper regarding the use of speech and distributive 
user interfaces in Telematics will have a significant 
impact on driver safety and they will be the subject of 
intensive research and development in forthcoming 
years at IBM and other laboratories. 
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