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Abstract

This paper describes a motion adaptive indexing scheme for efficient evaluation of moving contin-
ual queries (MCQs) over moving objects. It uses the concept of motion-sensitive bounding boxes to
model moving objects and moving queries. These bounding boxes automatically adapt their sizes to
the dynamic motion behaviors of individual objects. Instead of indexing frequently changing object
positions, we index less frequently changing motion sensitive bounding boxes, where updates to the
bounding boxes are needed only when objects move across the boundaries. This helps decrease the
number of updates to the indexes. More importantly, we use predictive query results to optimistically
precalculate query results, decreasing the number of searches on the indexes. Motion-sensitive bound-
ing boxes are used to incrementally update the predictive query results. Our experiments show that
the proposed motion adaptive indexing scheme is efficient for the evaluation of moving continual range
queries.

1 Introduction

With the continued advances in mobile computing and positioning technologies, such as GPS [11], location

management has become an active area of research. Several research efforts have been made to address

the problem of indexing moving objects or moving object trajectories to support efficient evaluation of

continual spatial queries. Our focus in this paper is on moving continual queries over moving objects

(MCQs for short). There are two major types of MCQs − moving continual range queries and moving

continual k-Nearest Neighbor queries.

MCQs have different applications such as environmental awareness, object tracking and monitoring,

and location-based services. Here is an example moving continual query MCQ1: “Give me the positions

of those customers who are looking for taxi and are within 5 miles (of my location at each instant of time

or at an interval of every minute) during the next 20 minutes”, posted by a taxi driver marching on the

road. The focal object of MCQ1 is the taxi on the road.
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Different specializations of MCQs can result in interesting classes of MCQs. One is called moving

continual queries over static objects, where the target objects are still objects in the query region. An

example of such a query is MCQ2: “Give me the locations and names of the gas stations offering gasoline

for less than $1.2 per gallon within 10 miles, during the next half an hour” posted by a driver of a moving

car, where the focal object of the query is the car on the move and the target objects are gas stations

within 10 miles with respect to the location of the car. Another interesting specialization is so called static

continual query over moving objects, where the queries are posed with static focal objects or without focal

objects. An example query is MCQ3: “Give me the list of AAA vehicles that are currently on service

call in downtown Atlanta (or 5 miles from my office location), during the next hour”. Note that these

specializations of MCQs are computationally easier to evaluate. Our focus in this paper is the evaluation

of MCQs in their most general form, such as like MCQ1.

Efficient evaluation of MCQs is an important issue in both mobile systems and moving object tracking

systems. Research on evaluating range queries over moving object positions has so far focused on static

continual range queries [13, 7, 3]. A static continual range query specifies a spatial range together with a

time interval and tracks the set of objects that locate within this spatial region over the given time period.

The result of the query changes as the objects being queried move over time. Although similar, a moving

continual range query exhibits some fundamental differences when compared to a static continual range

query. A moving continual range query has an associated moving object, called the focal object of the

query [5]; the spatial region of the query moves continuously as the query’s focal object moves. Moving

continual queries introduce a new challenge in indexing, mainly due to the highly dynamic nature of both

queries and objects.

Due to frequent updates to the index structures, traditional indexing approaches built on moving object

positions do not work well [13, 7]. In order to tackle this problem, several researchers have introduced

alternative approaches based on the idea of indexing the parameters of the motion functions of the moving

objects [8, 14, 18, 1]. They effectively alleviate the problem of frequent updates to the indexes, as the

indexes need to be updated only when the parameters change. These approaches mostly are based on

R-tree-like structures and produce time parameterized minimum bounding rectangles that enlarge con-

tinuously [14, 18, 13]. As a consequence of enlarged bounding rectangles, the search performance can

deteriorate over time and the index structures may need to be reconstructed periodically [13, 14]. As far

as update costs are concerned, approaches based on time parameterized rectangles [14, 18] can provide

excellent performance. However, they are not sufficient for processing MCQs. This is because they do not

support incremental re-evaluation of queries and the continual nature of these queries dictates that the
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same queries must be re-evaluated at frequent intervals. Thus, a need is recognized to have a new method

that can evaluate these MCQs incrementally.

In this paper, we describe a motion-adaptive indexing (MAI) scheme for efficient processing of moving

continual queries over moving objects. It uses the concept of motion-sensitive bounding boxes (MSBs) to

model both moving objects and moving queries. Instead of indexing frequently changing object positions,

we index less frequently changing object and query MSBs, where updates to the bounding boxes are

needed only when objects and queries move across the boundaries of their boxes. This helps decrease the

number of updates performed on the indexes. However, the main use of MSBs is to facilitate incremental

processing of MCQs. We provide two techniques to reduce the costs of query re-evaluation and search

on the MSB indexes. First, we optimistically precalculate query results and incrementally maintain

such predictive query results under the presence of object motion changes. MSBs are used to control

the amount of precomputation to be performed for calculating the predictive query results and to decide

when the results need to be updated. Second, we support motion adaptive indexing. We automatically

adapt the sizes of MSBs to the changing moving behaviors of the corresponding individual objects. By

adapting to moving object behavior at the granularity of individual objects, the moving queries can be

evaluated faster by performing fewer IOs.

The proposed motion-adaptive indexing scheme is independent of the underlying spatial index structures

by design. Any spatial index method, such as an R-tree, can be used to index the MSBs.

The MAI approach can also be extended to the evaluation of moving continual k-nearest neighbor

queries. However, due to space limitation, we focus on moving continual range queries in this paper.

In [6], the concepts of guaranteed safe radius and optimistic safe radius were introduced to extend MAI

for evaluating moving continual kNN queries.

Our experimental results show that the motion adaptive indexing scheme is efficient for the evaluation

of both moving continual range queries and moving continual k-nearest neighbor (kNN) queries [6]. We

report a series of experimental performance results for different workloads including scenarios based on

skewed object and query distribution, and demonstrate the effectiveness of our motion adaptive indexing

scheme through comparisons with other alternative indexing approaches.

2 Related Work

Research on moving object indexing can be broadly divided into two categories, based on (1) the current

positions of the moving objects and (2) the trajectories of the moving objects. Our work belongs to the first

category. A recent study dealing with the problem of indexing and querying moving object trajectories
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can be found in [12]. Continual queries are used as a useful tool for monitoring frequently changing

information [19, 10]. In the spatial databases domain, continual queries are employed for continually

querying moving object positions. Most of the work on continual queries over moving object positions

is either on static continual queries over moving objects [13, 7, 8, 3, 15, 23, 24] or on moving continual

queries over static objects [17, 16].

In [13], velocity constrained indexing and query indexing (Q-index) has been proposed for efficient

evaluation of static continual range queries. The same problem is studied in [7], however the focus is on in-

memory structures and algorithms. In [14], TPR-tree, an R-tree based indexing structure, is proposed for

indexing the motion parameters of moving objects by using time parameterized rectangles and answering

queries using this index. TPR∗ tree, an extension of TPR tree optimized for queries that look into future

(predictive), is described in [18]. In [2], efficient query evaluation techniques for nearest neighbor (k = 1)

and reverse nearest neighbor queries are developed for moving queries over moving objects. Work on

moving continual queries over static objects focuses on continuous k-nearest neighbor (CNN) evaluation.

An algorithm for precalculating k-nearest neighbors with a line segment representing the continuous motion

of an object, is described in [17]. Note that even though TPR-related indexes [14, 18, 2] support moving

queries, these moving queries are predefined regions in the spatial-temporal domain. They are not the

moving continual queries discussed in this paper. None of them has addressed the problem of moving

continual queries over moving objects.

The concept of moving continual queries is to some extent similar to Dynamic Queries (DQ) [9]. A

dynamic query is defined as a temporally ordered set of snapshot queries in [9]. This is a low level definition

as opposed to our definition of moving continual queries which is more declarative and is defined from

users’ perspective. The work done in [9] indexes the trajectories of the moving objects and describes

how to efficiently evaluate dynamic queries that represent predictable or non-predictable movement of an

observer. They also describe how new trajectories can be added when a dynamic query is actively running.

Their assumptions are in line with their motivating scenario, which is to support rendering of objects in

virtual tour-like applications. Our work focuses on real-time evaluation of moving queries in real-world

settings, where the trajectories of the moving objects are unpredictable and the queries can potentially

be associated with moving objects inside the system. An important feature of our approach is its motion

adaptiveness, allowing the query evaluation to be optimized according to dynamic motion behavior of the

objects.

In [15], a two-level architecture is proposed, where there exist location preprocessors between the moving

objects and the database. The location updates are propagated to the database only when the objects
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Query Types System Properties
Moving Q Static Q Moving Q Incremental Predictive Index Motion

Static O Moving O Moving O Evaluation Query Results Independence Adaptation

MAI • • • • • • •
DQ [9] • • •

CNN [17] • ◦ 1

Q-index [13] • • •
TPR [14] • • 2

Table 1: Comparison of motion-adaptive index with existing approaches

cross boundaries of their hash buckets, which are fixed. The database is aware of only the hash buckets

and does not know exact positions of objects within the buckets. Some queries has to be propagated to

location preprocessors that has the exact information. In [3] and [5], two-level architectures that push the

location filtering to mobile units were described.

Table 1 summarizes the comparison of our MAI approach with some of the existing approaches. Our

approach is most universal in handling various types of continual queries and has many desirable system

properties, such as incremental evaluation of queries and motion adaptation.

3 The System Model

3.1 Basic Concepts

We denote the set of moving or still objects as O, where O = Om ∪Os and Om ∩Os = ∅. Om denotes the

set of moving objects and Os denotes the set of still objects. We denote the set of moving or static queries

as Q, where Q = Qm ∪ Qs and Qm ∩ Qs = ∅. Qm denotes the set of moving continual range queries and

Qs denotes the set of static continual range queries. Since we focus on moving continual queries in this

paper, from now on we use moving queries and moving continual queries interchangeably.

Moving Objects − We describe a moving object om ∈ Om by a quadruple: 〈io, �p, �v, ap〉. Here, io

is the unique object identifier, �p = (px, py) is the current position of the moving object where px is its

position in the x-dimension and py is its position in the y-dimension, �v = (vx, vy) is the current velocity

vector of the object, and ap is a set of properties about the object. A still object can be modeled as a

special case of moving objects where the velocity vector is set to zero, ∀os ∈ Os, os.�v = (0, 0).

Moving Queries − We describe a moving query qm ∈ Qm by a quadruple: 〈iq, io, r, f〉. Here, iq is

the unique query identifier, io is the object identifier of the focal object of the query, r defines the shape

of the spatial query region bound to the focal object of the query, and f is a Boolean predicate, called
1CNN has per result time intervals, not per object
2TPR tree only supports moving queries with predefined paths
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filter, defined over the properties (ap) of the target objects of the query. Note that, r can be described

by a closed shape description such as a rectangle or a circle. This closed shape description also specifies

a binding point, through which it is bound to the focal object of the query. In the rest of the paper

we assume that a moving continual query specifies a circle as its range with its center serving as the

binding point and we use r to denote the radius of the circle. A static spatial continual range query can

be described as a special case where the queries either have no focal objects or the focal object is a still

object. Namely, ∀qs ∈ Qs, qs.io = null ∨ qs.io ∈ Os.

3.2 Motion Modeling and Update

In the rest of this section we describe motion modeling and motion update generation, which provides the

foundation for predictive query results and motion sensitive bounding boxes.

Motion Modeling − Modeling motions of the moving objects for predicting their positions is a

commonly used method in moving object indexing [21, 8]. In reality a moving object moves and changes

its velocity vector continuously. Motion modeling uses approximation for prediction. Concretely, instead

of reporting their position updates each time they move, moving objects report their velocity vector and

position updates only when their velocity vectors change and this change is significant enough. In order to

evaluate moving queries in between the last update reporting and the next update reporting, the positions

of the moving objects are predicted using a simple linear function of time. Given that the last received

velocity vector of an object is �v, its position is �p and the time its velocity update was recorded is t, the

future position of the object at time t + ∆t can be predicted as �p + ∆t ∗ �v.

Prediction-based motion modeling decreases the amount of information sent to the query processing

engine by reducing the frequency of position reporting from each moving object. Furthermore, it allows

the system to optimistically precompute future query results. We below briefly describe how the moving

objects generate and send their motion updates to the server where the query evaluation is performed.

Motion Update Generation − In order for the moving objects to decide when to report their velocity

vector and position updates, they need to periodically compute if their velocity vectors have changed

significantly. Concretely, at each time step a moving object samples its current position and calculates

the difference between its current position and its position as predicted based on the last motion update it

reported to the server. In case this difference is larger than a specified threshold, say ∆D, the new motion

function parameters are relayed to the server. The tradeoffs between the inaccuracy introduced due to

motion modeling and the savings in terms of number of updates generated, is controlled by the parameter

∆D. However, we do not discuss considerations with respect to the setting of ∆D in this paper. An
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extensive study of motion update policies and their tradeoffs is given in [22].

4 Efficient Evaluation of Range MCQs

In this section we describe the motion adaptive indexing scheme for efficient processing of moving range

queries over moving objects.

4.1 Motion Sensitive Bounding Boxes

Motion sensitive bounding boxes (MSBs) can be defined for both moving queries and moving objects.

Given a moving object om, its associated MSB is calculated by extending the position of the object along

each dimension by α(om) times the velocity of the object in that direction. Given a moving query qm,

MSB of the moving query is calculated by extending the minimum bounding box of the query along each

dimension by β(qm) times the velocity of the focal object of the query in that direction (See Figure 1 for

illustrations).

Let Rect(l, m) denote a rectangle with l and m as any two end points of the rectangle that are on the

same diagonal. Let sign(�x) denote a function over a vector �x, which replaces each entry in �x with its sign

(+1 or -1). Then we define the MSB for a moving object o and the MSB for a moving query q with focal

object of as follows:

∀o ∈ Om, MSB(o) = Rect(o.�p, o.�p + α(o) ∗ o.�v)

∀q ∈ Qm, MSB(q) = Rect(of .�p − q.r ∗ sign(q.�v),

of .�p + β(q) ∗ q.�v + q.r ∗ sign(q.�v)

q
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Figure 1: MSBs

For each moving query, its MSB is calculated

and used in place of the query’s spatial region

in the query-based MSB index, referred to as

the Indexmsb
q . Similarly, for each moving object,

its MSB is calculated and used in place of the

object’s position and we refer to such an object-

based MSB index as the Indexmsb
o .

An important feature of indexing motion

sensitive boxes of moving objects and moving

queries is the fact that an MSB is not updated unless the query’s spatial region or the object’s posi-
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tion exceeds the borders of its motion sensitive bounding box. When this happens, we need to invalidate

the MSB. As a result, a new MSB is calculated and the Indexmsb
q or the Indexmsb

o is updated. This

approach reduces the number of update operations performed on the spatial indexes and thus decreases

the overall cost of updating the spatial indexes (Indexmsb
o and Indexmsb

q ).

It is crucial to note that, using MSBs does not introduce any inaccuracy in the query results, because

we store the motion function of the object or the query together with its MSB inside the spatial index.

Furthermore, MSBs provide the following three advantages: (1) As opposed to approaches that alter

the implementation of traditional spatial indexes for decreasing the update cost [14, 13], motion sensitive

bounding boxes require almost no significant change to the underlying spatial index implementation. (2)

They form a natural basis for deciding for which objects to precalculate query results with respect to a

query (see Section 4.3). (3) By performing size adaptation at the granularity of individual objects, they

lead to significant reductions in IO cost (see Section 4.4).

4.2 Predictive Query Results on Per Object Base

It is well known that one way of saving IO and improving efficiency of evaluating moving queries is to

precalculate future results of the continual queries. This approach has been successfully used in the context

of continual moving kNN queries over static objects [17]. Most of existing approaches to precalculating

query results associate a time interval to each query that specifies the valid time for the precalculated

results. One problem with per query based prediction in the context of moving queries over moving

objects is the fact that a change on the motion function of anyone of the moving objects may cause the

invalidation of some of the precalculated results. This motivates us to introduce predictive query results

where the prediction is conducted on per-object basis.

Given a query, its predictive query result differs from a regular query result in the sense that each

object in the predictive query result has an associated time interval indicating the time period in which

the object is expected to be included in the query result. We denote the predictive query result of query

q ∈ Q by PQR(q). Each entry in a predictive query result takes the form 〈o, [ts, te]〉. We call the entry

associated with object o ∈ O in PQR(q) the predictive query result entry of object o with regard to query

q, and the interval [ts, te] associated with object o the valid prediction time interval of the predictive query

result entry.

Calculating the valid prediction time intervals is done as follows. Given a static continual range query

and a moving object with its motion function, it is straight forward to calculate the intersection points of

the query’s spatial region and the ray formed by the moving object’s trajectory (See case I in Figure 2).
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static query

moving object

static object

moving query

moving query

moving object

o1

time t0

time t0+a

time t0+b

case I case II case III

q1

Figure 2: Calculating Intervals

Similarly, to calculate the intersection point of a moving query and a moving or non-moving object

(assuming that we only consider moving queries with circle shaped spatial regions), we need to solve a

quadratic function of time. Formally, let q ∈ Q be a query with focal object of ∈ Om, and o ∈ O be

an object, and let Dist(a, b) denote the Euclidean distance between the two points a and b. We can

calculate the time interval in which the object o is expected to be in the result set of query q by solving

the formula: Dist(of .�p + t ∗ of .�v, o.�p + t ∗ o.�v) ≤ qm.r. Figure 2 illustrates three different cases that arise

in the calculation of prediction time interval for each per-object based predictive query result entry.

The predictive query results are precalculated on per object basis and predictive query result entries

are correct unless the motion function of the focal object of a query or the motion function of the moving

object associated with the query result entry have changed within the valid prediction time interval. As

a result, there are two key questions to answer in order to effectively use the predictive query results in

evaluating MCQs:

Prediction − For each moving query, should we perform prediction on all moving objects? If not, how

to determine for which objects we should do prediction?

Obviously we should not perform prediction for objects that are far away from the spatial region of the

query within a period of time, as the predicted results are less likely to hold until those objects reach to

the proximity of the query.

Invalidation − When and how to update the predictive results?

This can be referred to as the invalidation policy for per-object based prediction. The predictive query

results may be invalid and thus need to be updated when the motion function of a moving query or the

motion function of a moving object changes. In addition, the predictive results may require to be refreshed

when the objects in the predictive query results have moved away from the proximity of the query or when
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o3
o4

q1
o1

at time t0
o2 and o3 are subject to Res(q1)

PQR(q1) = {(o2,[t0+a, t0+b])}

o2

o3

o4

q1o1

at time t1
o2 and o4 are subject to Res(q1)

PQR(q1) = {(o2,[t0+a, t0+b]), 

                   (o4,[t1+c, t1+d])}

Figure 3: An illustration of how PQRs integrate with MSBs

the objects that did not participate in the prediction have entered the proximity of the query.

4.3 Determining PQRs Using MSBs

MSBs are used to effectively determine for which objects we should perform result prediction with respect

to a query. Concretely, for a given query, objects whose MSBs intersect with the query’s MSB are

considered as potential candidates of the query’s predictive result. Figure 3 gives an illustration of how

predictive query results integrate with motion sensitive bounding boxes. Consider the moving query q1

with its query MSB and four moving objects o1, o2, o3 and o4 as shown in Figure 3. In the figure, o1 is

the focal object of query q1 and the other three moving objects o2, o3 and o4 are associated with their

object MSBs. At time t0 only objects o2 and o3 are subject to query q1’s PQR, as their MSBs intersect

with the query’s MSB. However the valid prediction time interval of object o3 with regard to query q1 is

empty because there is no such time interval during which o3 is expected to be inside the query result of

q1. Thus object o3 should not be included in the PQR of query q1. At some later time t1, object o2 and

query q1 remain inside their MSBs. However objects o3 and o4 have changed their MSBs. As a result,

objects o2 and o4 become potential candidates of query q1’s PQR at time t1. Since o2 has not changed

its MSB, it remains included in q1’s PQR. By applying the valid prediction time interval test on o4, we

obtain a non-empty time interval with respect to q1, during which o4 is expected to be included in the

query result. Thus o4 is added into the PQR of q1.

4.4 Motion Adaptive Indexing

In this subsection, we describe motion-adaptive indexing as a query evaluation technique that integrates

the ideas and mechanisms presented so far for efficient processing of moving queries over moving objects.
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4.4.1 Processing Moving Queries: An Overview

The evaluation of moving queries is performed through multiple query evaluation steps executed periodi-

cally with regular time intervals of Ps (scan period) seconds. We build two spatial MSB indexes, Indexmsb
o

for the objects and Indexmsb
q for the queries. Indexmsb

o stores MSBs of the objects accompanied by the

associated motion functions as data. Static objects have point MSBs. Similarly, Indexmsb
q stores the

MSBs of the queries accompanied by the associated motion functions of the focal objects of the queries

and their radiuses as data. Static queries have MSBs equal to their minimum bounding rectangles and

they do not have associated motion functions.

We create and maintain two tables, a moving object table and a moving query table. They store

information regarding the moving objects and moving queries. The static queries and static objects are

included in the spatial MSB indexes but not in the two tables. The periodic evaluation is performed by

scanning these tables at each query evaluation step and performing updates and searches on the spatial

indexes as needed in order to incrementally maintain the query results as objects and the spatial regions

of the queries move.

Moving Object Table (MOT ): An MOT entry is described as (io, iq, �p, �v, t, Bmsb, Pcm, Vch) and stores

information regarding a moving object. Here, io is the moving object identifier, iq is the query identifier

of the moving query whose focal object’s identifier is io, iq is null if no such moving query exists, �p is the

last received position, �v is the last received velocity vector of the moving object, t is the timestamp of

the motion updates (�p and �v) received from the moving object, Bmsb is the MSB of the moving object,

Pcm is an estimate on the period of constant motion (described later in Section 4.5) of the object and Vch

is a Boolean variable indicating whether the object has changed its motion function since the last query

evaluation step.

Moving Query Table (MQT ): An MQT entry is described as (iq, �p, �v, r, t, Bmsb, Pcm, Vch) and stores

information regarding a moving query. Here, iq is the moving query identifier, �p and �v are the last received

position and the last received velocity vector of the query’s focal object respectively, t is the timestamp

of the motion updates (�p and �v) received from the focal object, r is the radius of the moving query’s

spatial region, Bmsb is the MSB of the moving query, Pcm is an estimate on the period of constant

motion (described later in Section 4.5) of the object and Vch is a Boolean variable indicating whether

the focal object has changed its motion function since the last query evaluation step or not. Note that

the information in MQT is to some extent redundant with respect to MOT . However the redundant

information is required during the moving query table scan. Without redundancy we will need to look
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them up from the moving object table, which is quite costly.

The MOT and MQT table entries are updated whenever new motion updates are received from the

moving objects. The effect of a motion update is reflected on the query results when the next periodic

query evaluation step is performed. Assuming that moving objects decide whether they should send new

motion updates or not at every Pmu seconds (called the motion update time period), one of our aims is

to perform a single query evaluation step in less that Pmu seconds in order to provide fresh query results,

i.e. having Ps ≤ Pmu. At each query evaluation step, we need to perform query table scan and object table

scan. The scan algorithms presented in the next subsection describe how these two tasks are performed.

4.4.2 The Scan Algorithms

At each query evaluation step, two scans are performed. The first scan is on the moving object table,

MOT , and the second scan is on the moving query table, MQT . The aim of the MOT scan is to update the

Indexmsb
o and to incrementally update some of the query results by performing searches on the Indexmsb

q .

The aim of the MQT scan is to update the Indexmsb
q and to recalculate some of the query results by

performing searches on the Indexmsb
o .

MOT Scan − During the MOT scan, when processing an entry we first check whether the associated

object of the entry has invalidated its MSB (using �p,�v, t, and Bmsb) or changed its motion function

since the last query evaluation period (based on Vch). If none of these has happened, we proceed to the

next entry without performing any operation on the spatial MSB indexes. Otherwise we first update

the Indexmsb
o . In case there is an MSB invalidation, a new MSB is calculated for the object and the

Indexmsb
o is updated. The α value used for calculating the new MSB is selected adaptively, using |�v| and

Pcm (See Section 4.5 for further details). If there has been a motion function change, the data associated

with the entry of the object’s MSB in the Indexmsb
o is also updated. Once the Indexmsb

o is updated,

two searches are performed on the Indexmsb
q . First, using the old MSB of the object, the Indexmsb

q is

searched and all the queries whose MSBs intersect with the old MSB of the object are retrieved. The

object is then removed from the results of those queries (if it is already in). Then a second search is

performed with the newly calculated MSB of the object and all queries whose MSBs intersect with the

new MSB of the object are retrieved. For all those queries, result prediction is performed against the

object. Lastly, the query result entries obtained from the prediction with non-empty time intervals are

added into their associated query results.

MQT Scan − During the MQT scan, when processing a query entry we first check whether the

associated query of the entry has invalidated its MSB (using �p,�v, r, t, and Bmsb) or its focal object
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has changed its motion function since the last query evaluation step (based on Vch). If none of these

has happened, we proceed to the next entry without performing any operation on the spatial indexes.

Otherwise we first update the Indexmsb
q . In case there is an MSB invalidation, a new MSB is calculated

for the query and the Indexmsb
q is updated. The β value used for calculating the new MSB is selected

adaptively, using |�v| and Pcm (See Section 4.5 for details). If there has been a motion function change,

the data associated with the entry of the query’s MSB in the Indexmsb
q is also updated. Once the

Indexmsb
q is updated, a single search is performed on the Indexmsb

o with the newly calculated MSB of the

query. All objects whose MSBs intersect with the new query MSB are retrieved. For all those objects,

result prediction is performed against the query. The predictive query result entries with non-empty time

intervals are added into the query result and all old query results are removed.

Note that after the MOT scan all results are correct for the queries whose MSBs are not invalidated

and their focal objects have not changed their motion function. For queries that have invalidated their

MSBs or whose focal objects have changed their motion functions, the query results are recalculated

during the MQT scan. Therefore, all of the query results are up to date after the MQT scan, given that

MOT scan is performed first.

4.5 Adaptive Parameter Selection

The α and β parameters used for calculating MSBs can be set based on the motion behavior of the

objects, in order to achieve more efficient query evaluation. There are two important characteristics of

object motions: (a) the speed of the object and (b) the period of constant motion of the object, Pcm (i.e. the

length of the time period it takes for the motion function to change). For instance, for a query whose focal

object changes its motion function frequently, it may not be a good idea to perform too much prediction,

thus β value for this query’s MSB should be kept smaller. However, for an object with high speed, a small

α value may not be appropriate, as it may cause frequent MSB invalidations. As a result, it is important

to design a motion-adaptive method that can set the values of α and β parameters adaptively. The Pcm

entries in the MOT and MQT tables, that are used for the purpose of adaptive parameter selection, are

updated using a simple weighted running average based on the interarrival times of the position updates

received from the moving objects.

4.5.1 Analytical Model for IO Estimation

We develop an analytical model for estimating the IO cost of performing query evaluation, i.e. the

two scans performed at each query evaluation step. This model is used as the guide to build an off-line
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Ps scan period
Pcm period of constant motion
No number of objects
Nmo number of moving objects
Nq number of queries
Nmq number of moving queries
Rmq average moving query radius
Lsq average static query side length
|�v| average moving object speed
A area of the region of interest
α MSB parameter for objects
β MSB parameter for queries

Table 2: Symbols and their meanings

computed αβTable, giving the best α and β values for different value pairs of speed and period of constant

movement of a moving object. Table 2 lists some of the symbols used and their meanings.

Let Amo denote the average area of a moving object motion sensitive bounding box and Amq denote

the average area of a moving query motion sensitive bounding box. Then, assuming that the x and y

components of the velocity vector are equal, based on the definition of MSBs, we have:

Amo ≈ (α ∗ |�v|/
√

2)2 and Amq ≈ (β ∗ |�v|/
√

2 + 2 ∗ Rmq)2

Let Ao denote the average size of the object bounding boxes stored in the Indexmsb
o (static object’s

are assumed to have a box with zero area) and Aq denote the average size of the query bounding boxes

stored in the Indexmsb
q . Then, we have:

Ao ≈ Amo ∗ Nmo

No
and Aq ≈ 1

Nq
∗ (Amq ∗ Nmq + L2

sq ∗ (Nq − Nmq))

Given this information, the following four quantities can be analytically derived based on well studied

R-tree cost models [20]: node IO cost during the processing of (1) an object table entry for updating

the Indexmsb
o , Cu

o ; (2) an object table entry for searching the Indexmsb
q , Cs

o ; (3) a query table entry for

updating the Indexmsb
q , Cu

q ; (4) a query table entry for searching the Indexmsb
o , Cs

q .

Let Nvc
o denote the expected value of the number of distinct objects causing velocity change events

during one scan period and Nvc
q denote the expected value of the number of distinct queries causing

velocity change events during one scan period. If Ps/Pcm < 1, only some of the moving objects will cause

velocity change events. Hence,
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Nvc
o ≈ Nmo ∗ min(1,

Ps

Pcm
) and Nvc

q ≈ Nvc
o ∗ Nmq

Nmo

Let N bi
o denote the expected value of the number of objects causing box invalidations during one scan

period and N bi
q denote the expected value of the number of queries causing box invalidations during one

scan period. Then, we have:

N bi
o ≈ min(

Ps

α
, 1) ∗ Nmo and N bi

q ≈ min(
Ps

β
, 1) ∗ Nmq

Let Nmot denote the expected value of the number of entries in the object table that requires processing

and Nmqt denote the expected value of the number of entries in the query table that requires processing.

Assuming that an object causes a velocity change event independent of whether it has caused an MSB

invalidation event and similarly a query focal object causes a velocity change event independent of whether

the query has caused an MSB invalidation, we have:

Nmot ≈ Nvc
o + N bi

o − N bi
o ∗ Nvc

o

Nmo
and Nmqt ≈ Nvc

q + N bi
q − N bi

q ∗ N bi
q

Nmq

Finally, the total IO cost for the periodic scan, Cio, can then be calculated, considering that for an

entry of MOT that requires processing, an update on the Indexmsb
o and two searches on the Indexmsb

q

are needed and for an entry of MQT that requires processing, an update on the Indexmsb
q and a search

on the Indexmsb
o are needed, as follows:

Cio = Nmot ∗ (Cu
o + 2 ∗ Cs

o) + Nmqt ∗ (Cu
q + Cs

q ) (1)

4.5.2 Building and Using the αβTable

The cost function developed in this section has a global minimum that optimizes the IO cost of the query

evaluation. We build an off-line computed αβTable, which gives the optimal α and β values for different

value pairs of object speed (�v) and period of constant motion (Pcm), calculated using the cost function we

have developed. We implement the αβTable as a 2D matrix, whose rows correspond to different object

speeds and columns correspond to different periods of constant motion and the entries are optimal (α, β)

pairs. Recall Section 4.4, when we calculate the MSBs of moving objects and moving queries, we already

have the estimates on periods of constant motion and speeds of all moving objects including the focal
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Parameter Default value / Range
area of the 500000 sq. miles

region of interest
number of objects 50000 / [50K,200K]

percentage of 50
moving objects

number of queries 5000 / [2.5K,20K]
percentage of 50 / [0,100]

moving queries
moving query {5, 4, 3, 2, 1} miles

range distribution with Zipf param 0.6
static query side {8, 7, 5, 4, 2} miles
range distribution with Zipf param 0.6

period of mean 5 minutes
constant motion geometrically distributed
moving object between 0-150 miles/hour

speed uniformly random
scan period 30 seconds

motion update 30 seconds
time period

Table 3: System Parameters

objects of the moving queries. We can decide the best α and β values to use during MSB calculation

by performing a single lookup from the off-line computed αβTable. We provide results on the effect of

adaptive parameter selection in Section 5.3.

5 Experimental Results

This section describes five sets of implementation based experiments, which are used to evaluate our solu-

tion. The first set of experiments compares the performance of motion adaptive indexing against various

existing approaches. The second set of experiments illustrates the advantages of adaptive parameter se-

lection. The third set of experiments studies the effect of skewed data and query distribution on query

evaluation performance. The fourth set of experiments analyzes the scalability of the proposed approach

with respect to queries with varying sizes of spatial regions, varying percentages of moving queries, and

varying number of objects. Finally the fifth set of experiments present the effectiveness of the motion

adaptive approach to evaluating moving continual kNN queries over moving objects.

5.1 System Parameters and Setup

In the experiments presented in the rest of the paper, the parameters take their default values listed in

Table 3, when not specified otherwise. Based on the default values, 50% of the objects are moving and
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Figure 5: Query evaluation node IO

the remaining 50% are static. Similarly, 50% of the queries are moving and the remaining 50% are static.

Moving queries are assigned range values from the list {5, 4, 3, 2, 1}(in miles) using a Zipf distribution with

parameter 0.6. Static queries are assigned query side range values from the list {8, 7, 5, 4, 2} (in miles)

using a Zipf distribution with parameter 0.6.

The default object density is taken in accordance with previous work [13, 14]. Objects and queries are

randomly distributed in the area of interest, except in Section 5.4 where we consider skewed distributions.

Objects that belong to different classes with strictly varying movement behaviors are considered in Sec-

tion 5.3. The paths followed by the objects are random, i.e. each time a motion function update occurs, a

random direction and a random speed are chosen. The object speeds are selected from the range (0, 150]

(in miles/hour) uniformly at random. Table 3 gives details of other important system parameters. We

vary the values of many system parameters to study their effects on the performance.

For R∗-trees a 101 node LRU buffer is used with 4KB page size. Branching factor of the internal tree

nodes is 100 and the fill factor is 0.5. Relative merits of our techniques shown in the rest of the section are

also valid under scenarios with large buffer sizes (which effectively makes it a main memory algorithm),

however we do not report those results. All experiments are performed using R∗-trees, except that in

Section 5.4 a static grid based spatial index implementation is used for comparison purposes.

We compare the performance of motion adaptive indexing against various existing approaches, in terms

of query evaluation time and node IO counts. The approaches used for comparison are: Brute Force (BF ),

Object-only Indexing (OI), Query-only Indexing (QI), Object and Query Indexing (OQI), Motion Adaptive

Indexing (MAI), and Object Indexing with MSBs (OIB). The Brute Force calculation is performed by

scanning through the objects. During the scan, all queries are considered against each object in order to
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calculate the results. The OI approach uses an object index which is updated when objects move 3 and

searched periodically in order to evaluate the query results. The QI approach uses a query index that is

updated when queries move and searched when new object positions are received in order to update the

query results incrementally. OQI is a stripped down version of MAI without MSBs and PQRs. OIBs

is similar to pure object-only indexing, except that the motion sensitive boxes are used instead of object

positions in the spatial index (without the PQRs).

5.2 Performance Comparison

Figure 4 plots the total query evaluation time for fixed number of objects (50K) with varying number

of queries (2.5K to 20K). The horizontal line in the figure represents the scan period. We consider a

query evaluation scheme as acceptable when the total query evaluation time is less than the scan period.

Note that the scan period, Ps, is set to be equal to the motion update time period Pmu in this set of

experiments. Figure 5 plots the query evaluation node IO count for the same setup. The node IO is

divided into four different components. These are: (a) node IO due to object index update, (b) node

IO due to object index search, (c) node IO due to query index update and (d) node IO due to query

index search. Each component is depicted with a different color in Figure 5. Several observations can be

obtained from Figure 4 and Figure 5.

First, the approaches with an object index that is updated for all moving objects, do not perform well

when the number of queries is small. This is clear from the poor performances of OI and OQI for 2.5K

queries, as shown in Figure 4. The reason is straightforward. The cost of updating the object index

dominates when the number of queries is small. This can also be observed by the object index update

component of the OI in Figure 5. However, there are also significant costs for searching the object index

for the OI approach. These costs dominate the total IO cost when the number of queries is large (see the

case of 20K queries in Figure 5). This points out an important fact, although it is possible to reduce the

cost of updating the object index (for instance by using a TPR-tree based object index [14, 18]), MAI still

performs significantly better than such an object index based approach.

Second, the approaches with a query index that is searched for large number of objects, do not perform

well for large number of queries. This is clear from the poor performances of QI and OQI for 20K queries,

as shown in Figure 4. This is due to the fact that, the cost of searching the query index dominates when

the number of queries is large. This can also be observed by the query index search component of the QI

in Figure 5. Note that, for small number of queries node IO count for QI appears as 0, because the query
3Although update efficient object indexes exist [14, 18], we show that their use does not change our conclusions for large

or moderate number of queries, in which case search cost dominates
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index fits into the LRU buffer.

Third, the brute force approach performs relatively good compared to OQI and slightly better compared

to OI, when the number of queries is small (2.5K), as shown in Figure 4. Obviously BF does not scale

with the increasing number of queries, since the computational complexity of the brute force approach is

O(No ∗Nq) where No is the total number of objects and Nq is the total number of queries. Although OQI

seems to be a consistent loser when compared to other indexing approaches, it is interesting to note that

the motion adaptive indexing is built on top of it and performs better than all other approaches.

Finally, it is worth noting that only MAI manages to provide good enough performance to satisfy

Ps ≤ Pmu under all conditions. MAI provides around 75-80% savings in query evaluation time under all

cases when compared to the best competing approach except OIB. OIB performs reasonably well, but

fails to scale well with increasing number of queries when compared to the proposed MAI approach.

5.3 Effect of Adaptive Parameter Selection

In order to illustrate the advantage of adaptive parameter selection, we compare motion adaptive indexing

against itself with static parameter selection. For the purpose of this experiment, we introduce three

different classes of moving objects with strictly different movement behaviors. The first class of moving

objects change their motion functions frequently (avg. period of constant motion 1 minute) and move slow

(max. speed 20 miles/hour). The second class of moving objects possess the default properties described

in Section 5.1. The third class of moving objects seldom change their motion functions (avg. period of

constant motion 30mins) and move fast (max. speed 300 miles/hour). In order to observe the gain from

adaptive parameter selection, we set the α and β parameters to the optimal values obtained for moving

objects of the second class for the non-adaptive case.

Figure 6 plots the time and IO cost of query evaluation for MAI and static parameter setting version

of MAI. The x-axis represents the object class distributions. Hence, 1:1:1 represents the case where the

number of objects belonging to different classes are the same. Along the x-axis we change the number of

objects belonging to the second class. 1:0.25:1 represents the case where the number of objects belonging

to the first class and the number objects belonging to the third class are both 4 times the number of

objects belonging to the second class. Dually, 1:4:1 represents the case where the second class cardinality

is 4 times the other two class cardinalities. Total query evaluation times are depicted as lines in the figure

and their corresponding values are on the left y-axis. The node IO counts are depicted as an embedded

bar chart and their corresponding values are on the right y-axis. There are two important observations

from Figure 6.
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Figure 6: Performance gain due to adaptive parameter selection

First, we notice that the adaptive parameter selection has a clear performance advantage. This is clearly

observed from Figure 6, which shows significant improvement provided by motion adaptive indexing over

static parameter setting in both query evaluation time and node IO count.

Second, it is important to note that the objects belonging to the first class or the third class cannot

be ignored even if their numbers are small. Even for 1:4:1 distribution, where the second class of objects

is dominant, we see a significant improvement with MAI. Note that objects belonging to the first and

the third class are expensive to handle. The first class of objects are expensive, as they cause frequent

motion updates which in turn causes more processing during MOT and MQT scans. The third class

of objects are also expensive, as they cause frequent MSB invalidation which instigates more processing

during MOT and MQT scans. The fact that both query evaluation time and node IO count are declining

along the x-axis shows that it is obviously more expensive to handle the first and the third class of objects.

5.4 Effect of Data and Query Skewness

Our experiments up to now have assumed uniform object and query distribution. In this section we conduct

experiments with skewed data and query distributions. We model skewness using two parameters, number

of hot spots (Nh) and scatter deviation (d). We pick Nh different positions within the area of interest

randomly, which correspond to hot spot regions. When assigning an initial position to an object, we first

pick a random hot spot position from the Nh different hot spots and then place the object around the

hot spot position using a normally distributed distance function on both x and y dimensions with zero
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mean and d standard deviation. Scatter deviation d is set to 25 miles in all experiments and the number

of hot spots is varied to experiment with different skewness conditions. Queries also follows the same

distribution with objects.

We also experiment with different spatial indexing mechanisms. We have implemented a static grid

based spatial index, backed up by a B+-tree with z-ordering [4]. The optimal cell size of the grid is

determined based on the workload. The motivation for using a static grid is that, with frequently updated

data it may be more profitable to use a statically partitioned spatial index that can be easily updated.

Actually, previous work done for static range queries over moving objects [7] has shown that using a static

grid outperforms most other well known spatial index structures for in-memory databases. With this

experiment we also investigate whether a similar situation exists in secondary storage based indexing in

the context of MCQs.
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Figure 7: Effect of data and query skewness on performance

Figure 7 plots the total query evaluation time as a function of number of hot spots for different spatial

index structures used for Indexmsb
o and Indexmsb

q . Note that the smaller the number of hot spots, the

more skewed the distribution is. Figure 7 shows that decreasing the number of hot spots exponentially

increases the query evaluation scan time. But even for Nh = 5, the query evaluation time does not exceed

the query evaluation period. Figure 7 also shows that R∗-tree performs the best under all conditions.
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5.5 Scalability Study

In this section we study the scalability of the proposed solution with respect to the varying size of query

ranges, the varying percentage of moving queries over the total number of spatial queries, and the varying

total number of objects. We first measure the impact of the query range and the moving query percentage

on the query evaluation performance. We use the range factor (rf ) to experiment with different workloads

in terms of different query ranges. The query radius and query side length parameters given in Section 5.1

are multiplied by the range factor rf in order to alter the size of query regions. Note that multiplying the

range factor by two in fact increases the area of the query range by four.

0 10 20 30 40 50 60 70 80 90 100
5.5

6

6.5

7

7.5

8

8.5

percentage of moving queries (%)

to
ta

l q
u

er
y 

ev
al

u
at

io
n

 t
im

e 
(s

)

range factor=0.5
range factor=1.0
range factor=1.5
range factor=2.0

Figure 8: Effect of query range and moving query percentage on performance

Figure 8 plots the total query evaluation scan time as a function of moving query percentage for different

range factors. As shown in Figure 8, the scalability in terms of moving query percentage is extremely

good. The slope of the query evaluation time function shows good reduction with increasing percentage

of moving objects. Increasing the range factor shows roughly linear increase on the query evaluation time.

In Figure 9 we study the effect of the number of objects on the query evaluation performance. Fig-

ure 9 plots the total query evaluation time as a function of number of objects for different spatial index

structures used for Indexmsb
o and Indexmsb

q . The number of queries is set to its default value of 5K. From

Figure 9 we observe a linear increase in scan time with the increasing number of objects, where the R∗-tree

implementation of Indexmsb
o and Indexmsb

q show better scalability with increasing number of objects than

the static grid implementation for the similar reason discussed before.
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Figure 9: Effect of number of objects on performance

6 Conclusion

We presented a system and a motion-adaptive indexing scheme for efficient processing of moving continual

queries over moving objects. We reported a series of experimental performance results for different work-

loads and demonstrated the effectiveness of our motion adaptive indexing scheme through comparisons

with other alternative indexing mechanisms.
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