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ABSTRACT
The integrated circuit manufacturing process has inevitable
imperfections and fluctuations that result in ever-growing
systematic and random variations in the electrical parame-
ters of active and passive devices fabricated. The impact of
such variations on various aspects of chip performance has
been the subject of numerous recent papers, and techniques
for analyzing and dealing with such variability -broadly la-
beled design for manufacturability are emerging as the next
hot topic in this area [18].

The focus of much of the current work in this area has
been on timing, but it is also well known that modern in-
tegrated circuits are very heavily power limited and that
static (leakage) and dynamic power have emerged as first
class design objectives. This means that the same level of
investment is going to be needed in order to characterize,
analyze and optimize for power and its variability as has
been the case for timing.

In the timing area, there has been a major recent push
for Statistical Static Timing which promises to combine the
convenience and efficient of static timing analysis with accu-
rate models of physical and environmental variability that
account for both temporal and spatial sources of correla-
tion in the parameters that control timing. The outcome of
this effort is to be a tool that allows the designer to make
(timing) yield vs. performance trade-offs and design opti-
mization for robustness.

Critical to achieving the goal above is the knowledge of
the sources, magnitudes, as well as spatial and temporal
sources of correlation in the various parameters that model
the sources of physical and environmental variability. This
is a problem that is far from solved, and is the subject of
this work.

In this paper, we review the various sources of variability
that impact circuit performance -with a special emphasis
on timing and on power. We then propose the notion of
Model to Hardware correlation, defined as the set of activi-
ties that are implemented to characterize, model and simu-
late the behavior of a design in order to insure predictability
of manufacturing results.

1. PROCESS VARIABILITY
Recently, statistical static timing analysis (STA) has been

proposed as probably the only viable methodology for han-
dling process variability of high performance large digital
integrated circuits [2, 3, 4, 5, 6]. In Statistical STA, models
of the timing variability of all gates and wires in a digi-
tal integrated circuit are used to predict the variability in
the resulting design performance. These variability models
must typically account for various sources and distributional
assumptions of parametric variability. Statistical STA re-
search has focused on the propagation and correlation of
variability through these models and ultimately to the over-
all cycle time and timing margin of a design.

1.1 Physical vs. Environmental Variability
As we examine this phenomena further, we find that the

sources of timing or delay variability can be categorized into
(a) physical and (b) environmental types:

• Physical sources include lithography-induced system-
atic and random variations in critical device dimen-
sions such as transistor length and width [7], as well
as wire and via width. They also include random
phenomena like the impact of discrete doping place-
ment on MOSFET threshold voltage [8], and system-
atic phenomena like inter-layer dielectric thickness vari-
ations with layout density [9]. By and large, these
sources of variability are constant with respect to time.

• Environmental sources of variation include power sup-
ply noise [14, 24], temperature variation [22, 23] across
the die due to uneven power dissipation, and line-to-
line coupling between neighboring wires[15]. These
sources are time dependent and have a large range
of temporal time constants that range from the pico-
second for line-to-line coupling to the milli-second for
temperature effects.

Both the environmental and physical sources of variation
are function of the details of the design implementation. For
example, device dimension variations due to lithography are
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a strong function of local layout detail, while power supply
variations are clearly a function of the placement and power
grid design. This means that the assessment of the impact
of these sources is difficult to achieve without knowledge of
the specifics of the design. This has profound implications
on the applicability of statistical STA in the context of a
realistic design flow.

1.2 Spatial and Temporal Variability Distri-
bution

In addition to the physical/environmental breakdown, para-
metric variability also exhibits spatial and temporal distri-
bution properties that are important from a modeling and
analysis point of view [10, 11]. Spatial variations are of-
ten caused by wafer-level phenomena that cause the value
of some parameter to depend on the location of the chip
within the wafer (we will examine this aspect of variability
again in the next section).

Spatial variations can be caused by environmental sources
of variation. For example, varied levels of power density
across the chip will cause a variation in temperature across
the die, change the electrical parameters of MOSFETs and
wires, and hence impact the delay and other important per-
formances such as leakage [19]. Note that this type of spatial
variation is naturally a within-die phenomena.

Spatial variations can also be caused by physical phenom-
ena that occur within-die (as opposed to the within-wafer
example above). An excellent example of such a phenomena
is inter-layer dielectric thickness variation with layout shape
density due to chemical-mechanical polishing [9].

It has been observed [12, 13] that these within-die vari-
ations are significantly more difficult to deal with than the
more tradition die-to-die variations which are typically ac-
commodated using worst-case corners.

The temporal distribution of variations has a variety of
time constants ranging from the design’s clock cycle -for phe-
nomena like line-to-line coupling, to months or even years
of time for some reliability-related phenomena like electro-
migration. The challenge of characterizing and predicting
the effect of such temporal variations lies in the need to de-
lineate the various phenomena in such a manner that they
can be analyzed effectively and separately. For example, if
one wanted to analyze the impact of line-to-line coupling
at the same time as the impact of L di/dt package induced
noise, one would have to carefully examine the temporal
relationship between the system clock and the overall res-
onance between the chip and package in order to find the
correct worst-case alignment to insure that these particular
sources of variability are correctly handled.

1.3 Random vs. Systematic Variability
We further differentiate variability into random and sys-

tematic components in relation to the manner in which it
occurs. A component of variability referred to as random is
not dependent on design details, although its impact may
very well be. Particulate contamination, and the resulting
defects it causes, is an example of a random source of vari-
ability [17]. Another example is threshold voltage variation
due to discrete doping effects [8].

Systematic variability refers to randomly distributed phe-
nomena the magnitude of which is highly correlated with
specific design details. One example might be the method-
ical difference between the deviation in channel length of

nested and isolated PolySilicon structures. Another exam-
ple would be the variation in power supply voltage across
the die due to changes in circuit type and activity across
the integrated circuit. A third example is the variation in
certain physical or electrical parameters across the wafer,
often causing specific sites on the wafer to have a higher
probability of failure than others.

In older technologies, systematic variability was domi-
nated by sources of variability related to wafer gradients and
environmental operation factors. In more recent technolo-
gies, within-die physical variability like variations in MOS-
FET channel length and in wiring dimensions have become
more important [21].

Note the link between the systematic and spatial charac-
terizations of variability, in the sense that one usually implies
the other.

1.4 Variability and Uncertainty
Thus far we have considered the sources (physical vs. en-

vironmental), distributions (spatial and temporal) as well as
type (random vs. systematic) of variability. The assumption
we made is that we have an essentially infinite amount of re-
sources and knowledge about each phenomena, and that we
are able to create a model for each source and type of vari-
ability and to analyze such a model in order to understand
its impact on design performance.

In reality, however, it is often the case that we do not have
sufficient knowledge about all phenomena. This can occur
because the phenomena is difficult to model, as is the case
-for example- with changes in MOSFET channel dimensions
with respect to layout practice and various resolution en-
hancement techniques commonly applies in sub-100nm tech-
nology nodes.

This can also occur, however, not because of the intrinsic
difficulty of generating a model for variability, but because
of staffing or other resource limitations. In such a situation,
a source of systematic variability may end up being treated
as if it were random, and we would refer to it instead as
an uncertainty. Broadly speaking, systematic sources would
be referred to as variability, while random sources would be
referred to as uncertainty.

An example of such a situation would be power supply
variations. If (a) the design of the chip and its power deliver
system (power grid, decoupling capacitors and package) is
available, and (b) if there exist sufficient engineering and
analysis resources in order to simulate the behavior of the
chip and the power delivery system; then one can confidently
predict the value of the power supply voltage at every point
in the design. Once the power supply voltage is known, it
can be taken into account when predicting -say- the timing
performance of the design, and suitable action -for example
resizing certain gates or wires- can be taken to insure that
the performance meets the requirements.

If -on the other hand- insufficient engineering resources ex-
ist, or perhaps earlier in the design cycle, insufficient knowl-
edge about the details of the design exist, then it is not
possible to predict the power supply voltage. In such a sit-
uation, the designer would have to revert to a worst case
analysis methodology where the desire is to simple bound

the effect of the relevant source of variability. The result
might be that the power supply noise is assumed to be in
some range -typically within 10% of the nominal value- and
the whole design is corrected for the worst-case condition.
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Obviously this results in over-design and can adversely im-
pact the competitiveness of a particular chip.

The message is that whenever a source of systematic vari-
ability is ignored, worst-cased, or under-analyzed, it is equiv-
alent to treating it as a source of random variability, thus
uncertainty. Uncertainty leads to over-design, while vari-
ability leads to just-enough design.

2. CHARACTERIZATION
Design for manufacturing in general, and Statistical Static

Timing Analysis in particular have an Achilles heal: Vari-
ability Characterization. Without robust accurate models
of parameter variations within die, across a wafer, and from
wafer to wafer, a statistical static timer is not capable of
correctly predicting the distribution of design performance,
and -in such cases- becomes little better than the more tra-
ditional corner-based simulation methodologies in wide cur-
rent industrial use. Furthermore, because of the relative
novelty of this field in the digital design area, relatively lit-
tle research is ongoing in support of future efforts.

The characterization of variability is inherently more dif-
ficult than that of the nominal or extreme behavior of the
manufacturing process. This is because of:

• The large amounts of data required to make estimates
of distributions and correlations amongst parameters.
Gathering such data requires significant investment
in design, silicon, and test/characterization resources.
Without an existing EDA (Electronic Design Automa-
tion) tool infrastructure to make sure of such charac-
terization, the return on such an investment may not
be sufficiently high to justify making it instead of in-
vesting in -say- improved process control.

• It is a fact that these variability distributions need to
be broken down across (a) the physical implementation
hierarchy: facility, lot, wafer, die, within die, and (b)
temporally in order to determine and correct trends, to
justify investment in design or process control policy
changes. This means that variability characterization
cannot be done once and once only, but needs to be
something that is done continuously and monitored
regularly.

• While corner or worst case analysis can be done sub-
stantially independently from the details of any one
design, many of the relevant phenomena for variabil-
ity require a deep understanding of design style and
thus become difficult in situations when -for example-
the design and fabrication groups are organizationally
separated, as would be the case for a typical fabless
design company using a silicon foundry.

2.1 Device Characterization
We commonly consider characterization to include the

generation of circuit simulation (e.g. SPICE [20]) models
of active and passive devices. This is an established area
of research and development which acts as the major in-
terface between the design and manufacturing area. There
exist numerous papers on extracting transistor model pa-
rameters from measured current vs. voltage and capacitance
vs. voltage curves [25, 26]. With technology scaling and the
corresponding rapid increase in the complexity of MOSFET
models [27], this task has been getting increasingly difficult

and in many cases the physical nature of model parameters
has had to be compromised in order to achieve better fits to
ever more complex device behavior [28].

The decreasing physical significance of device model pa-
rameters is very important in the context of modeling vari-
ability. If we consider that a model of the statistical behav-
ior of a device is to be create by generating the appropriate
probability density function description of the parameters
that define the model’s behavior, we would be led to the
fact that a physically significant statistical model would by
its nature result in a set of correlated model parameters
[29]. The complexity of current models and the lack of clear
physical interpretation or uniqueness of fitting parameters,
makes this task currently difficult and -unfortunately- get-
ting even harder as we scale technology further and have to
account for an ever increasing level of non-ideal behavior in
devices.

It is the author’s opinion that what is required here is a
careful analysis of the nominal vs. statistical errors asso-
ciated with a device model, and that the result of such an
analysis will be a radically simpler device model which may
lack accuracy for the nominal case, but exhibits the correct
statistical behavior and is therefore predictive from the point
of view of variability. The creation, characterization and de-
ployment of such a model is a difficult task because it also
involves the process characterization and circuit simulation
EDA community and -unless the model becomes rapidly ac-
cepted and standardized- will have difficulty replacing the
existing foundry / fabless design house interface.

2.2 Cell Level Characterization
In the early years of digital system design, it was suffi-

cient to model the delay of elements, so digital simulation
tools used step functions to represent signals. As technology
scaled and switching speeds increased, however, it became
increasingly necessary to take into account the transition
time of the signal. The simplest way of modeling the tran-
sition time is to change the model from a step to a ramp,
and this has been the state of digital design since the early
Eighties. This has resulted in a number of problems, an ex-
ample of which is that of threshold selection, which -when
not done properly- can lead to to negative delays [32]. Fur-
thermore, many of the deep-submicron phenomena (e.g. in-
ductive interconnect, coupled noise, power supply current)
are difficult or impossible to model accurately with the sim-
ple linear ramp model [30, 31].

The simplicity of the ramp approximation has several ad-
vantages: (1) it makes the task of building models for tim-
ing analysis easy, (2) it is conceptually easy to grasp and to
translate from the model parameters to a pictorial represen-
tation or to a Spice input specification, (3) it is information
dense in that two real numbers (delay, slope) and a boolean
(rising/falling) completely encapsulate the behavior of the
waveform in question. Characterizing these models simply
requires performing a number of circuit level simulations of
the cell in question varying the relevant variables; usually
these are the input waveform slope and the capacitive load
on the output. The resulting output waveform from each
of the simulations is processed in order to estimate it by a
ramp, and a table (which we will refer to as the timing table)
is thus generated that includes:

• The input waveform parameters (one or more slopes).
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• The output loading conditions (capacitance).

• The output waveform parameters (delay and slope).

From that point on, one can use either a table interpolation
technique to use the data directly in a timing analyzer, or
one can fit the observed behavior using analytical or regres-
sion formulas.

Nevertheless, extending this simple model to improve its
accuracy and in order to handle statistical variations is not
an easy task [33]. This is difficult because timing models
(a) have a fairly large amount of error in them that can
be up to 10% in certain cases, and (b) are typically not
parameterized with respect to physical and environmental
sources of variability.

Consider the error in timing models first. Such an er-
ror can occur if the table used to represent the behavior
of the circuit in question is not sufficiently dense to make
interpolation effective. It can also occur if the analytical
or regression formula used to fit the table is not capable of
exactly modeling the circuit’s behavior. In either case, the
error is likely to be systematic in that it will depend on the
region of operation. If the input to the timing model has
variability, and if the error is systematic, then it is not pos-
sible to distinguish variability in the output due to the input
from that due to the error.

Consider now the problem of parameterizing a timing
model with respect to various sources of physical and envi-
ronmental variability. Each time that a new source is added,
three things happen:

1. The number of simulations required to generate the
timing table increases. Depending on the type of sam-

pling used to generate the table, the increase may even
be exponential in nature!

2. The size of the resulting timing table increases. This
happens obviously because we are adding columns to
the table, but also because of the increase in the num-
ber of rows in the table due to the previous point. This
increase results in an increase in the computational re-
sources required to perform a timing analysis.

3. The potential for inaccuracy in the timing model in-
creases since we are attempting to model more depen-
dencies simultaneously.

All of these factors will make it more difficult for the industry
in general, and for the EDA timing tools in particular, to
adopt and support the use of variation-aware models.

It is the author’s opinion that we need to pay as much
attention to timing models as we do to the algorithms that
are currently being developed to perform statistical static
timing analysis. We must do the theoretical and practical
work needed to generate timing models with sufficient (a)
fidelity to allow distinguishing real variability from model
error, and (b) flexibility to allow modeling an ever larger
number of sources of potential variability; Only then will we
achieve the full potential of statistical STA.

3. IMPEDIMENTS AND CONCLUSIONS
Some of the major issues in variability modeling and char-

acterization are as follows:

1. The availability of within-die variability models is di-
rectly linked to the availability of characterization struc-
tures that span a full die or even a significant part of
a die. By its nature, such a structure would need to
(a) span a significant amount of area, (b) include a
large number of measurable devices, and therefore (c)
requires significant silicon and test resources in order
to measure and characterize. Designing such struc-
tures such that they mimic real circuit is crucial due to
the many source of variations that depend on detailed
implementation practices like device layout, intercon-
nect layer usage assignment, and power grid interac-
tion [16].

2. Tracking of manufacturing facility over time. Because
of the cost and complexity of variability characteriza-
tion, this activity often happens once only, perhaps
during the bring-up phase of the technology. This
means that these characterization often get etched in

stone and do not track the process as improvements
are made. The outcome is a gradual decrease in the
accuracy of the variability models with respect to hard-
ware. It is unfortunate that such drift typically hap-
pens exactly during the period in which process learn-
ing is providing improvements in overall variability.

3. Environmental sources of variability like power supply
noise and across-die temperature variations are impos-
sible to predict early in the design cycle because they
depend on global placement information that is avail-
able relatively late in the design cycle. Because of
this fact, these phenomena are often dealt with us-
ing traditional worst-case corner methodologies. The
ability to abstract early design information to predict
the variability in such environmental quantities will
become important for future design, especially since
power dissipation continues to increase and thus causes
ever larger within-die variability in these quantities.

Another major issue in variability modeling is the lim-
ited design, silicon, and characterization resources that can
be deployed to attack the problem. This economic reality
means that we must do a careful analysis of all these sources
of variability and attempt to find the correct balance of ef-
fort and required accuracy. Thus it is important to be able
to quickly get broad bounds on each of the sources in or-
der to insure that the appropriate level of modeling and
analysis investment is made in order to bound or worst-case
each component without undue pessimism. For example, at-
tempting to model -say- temperature variability across the
die may prove too costly for the amount of pessimism re-

moval that it provides. In such a case, a simple worst-case
bound based on the cooling capacity of the package and
heat-sink might suffice.

Finally, it is also important to have a first order under-
standing of the technology trends in each of these sources of
variability. This will allow the designer and CAD tool devel-
oper to anticipate future problem areas and plan new test
structures, develop models, or possible create work arounds
as needed.
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