
RC23309 (W0408-137) August 27, 2004
Computer Science

IBM Research Report

Sometimes You Need to See through Walls -
A Field Study of Application Programming Interfaces

Cleidson R. B. de Souza
Universidade Deferal do Pará
Departmento de Informática

Belém, PA, Brasil
and

University of California at Irvine

David Redmiles
University of California at Irvine

Department of Informatics
Irvine, CA

Li-Te Cheng, David Millen, John Patterson
IBM Research Division

One Rogers Street
Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Sometimes You Need to See Through Walls —
A Field Study of Application Programming Interfaces

Cleidson R. B. de Souza1,2 David Redmiles2 Li-Te Cheng3 David Millen3 John Patterson3
1Universidade Federal do Pará

Departmento de Informática

Belém, PA, Brasil

55-91-211-1405

cdesouza@ics.uci.edu

2University of California, Irvine

Department of Informatics

Irvine, CA, USA

1-949-824-3823

redmiles@ics.uci.edu

3IBM T. J. Watson Research Center

Collaborative User Experience Group

Cambridge, MA, USA

1-617-577-8500

{li-te_cheng, david_r_millen,
john_patterson}@us.ibm.com

ABSTRACT
Information hiding is one of the most important and influential
principles in software engineering. It prescribes that software
modules hide implementation details from other modules in order
to decrease the dependency between them. This separation also
decreases the dependency among software developers
implementing modules, thus simplifying some aspects of
collaboration. A common instantiation of this principle is in the
form of application programming interfaces (APIs). We
performed a field study of the use of APIs and observed that they
served many roles. We observed that APIs were successful indeed
in supporting collaboration by serving as contracts among
stakeholders as well as by reifying organizational boundaries.
However, the separation that they accomplished also hindered
other forms of collaboration, particularly among members of
different teams. Therefore, we think argue that API’s do not only
have beneficial purposes. Based on our results, we discuss
implications for collaborative software development tools.

Categories and Subject Descriptors
D.2.9 [Management]: D.2.11 [Software Architectures]: H.4.1
[Office Automation]: Groupware; H.5.3 [Group and
Organization Interfaces]: Computer-supported cooperative
work;

General Terms
Human Factors

Keywords
Interfaces, application programming interfaces, collaborative
software development, qualitative studies.

1. INTRODUCTION
Walls serve many useful purposes within a building. They create

private and quiet spaces, demark function, support special tasks,
protect against the environment, etc. In a work setting, an
individual office can facilitate certain kinds of solitary work just
as conference rooms can facilitate certain kinds of collaborative
work. But the same walls that create these useful spaces need
doors for people to enter and exit, as well as windows to connect
environments and support visual awareness [13]. In collaborative
software development, application programming interfaces
(APIs) act as walls facilitating many useful purposes. However, in
a field study we conducted on their use in software development,
we learned that the wall-like structure that APIs when interact
with some particular organizational settings create can lead to
some difficulties in collaboration. In terms of our metaphor, the
walls of APIs also require doors and widows. In particular, doors
and windows are needed to avoid breakdowns in communication
and coordination attributable to certain kinds of interdependencies
in collaborative software development [7] [20].

The field of software engineering has recognized some technical
problems created by interdependencies and developed tools,
approaches, and principles to deal with them. Configuration
management and issue-tracking systems are examples of such
tools, and the adoption of software development processes [8, 9]
exemplifies an organizational approach. One of the most
important and influential principles used to manage dependencies
is the idea of information hiding proposed by Parnas [29].
According to this principle, software modules should be both
“open (for extension and adaptation) and closed (to avoid
modifications that affect clients)” [24]. Information hiding aims to
provide a principle that guides the decomposition of a software
system into pieces (called modules) that decreases the
dependency (or coupling) between any two modules. By
following this principle, changes to one module do not severely
impact other modules. In addition to suggesting a division of
labor among the software engineers involved, this principle
motivates several mechanisms in programming languages that
provide flexibility and protection from changes, including data
encapsulation, interfaces, and polymorphism [24]. In particular,
separating interface specifications from their implementation is a
growing trend in software design [14]. Furthermore, interface
specifications are also helpful in the coordination of developers
working with different components:

Interface specifications play the well-known role of
helping to coordinate the work between developers of

1

different components. If the designers of two
components agree on the interface, then design of the
internals of each component can go forward relatively
independently. Designers of component A need not
know much about the design decisions made about
component B, so long as both sides honor their well-
specified commitments about how the two will hook
together. [15] [emphasis added]

Application programming interfaces (APIs) are a fairly common
example of interfaces supported by the underlying programming
language that allow one software component to access
programmatically another component [10]. They are commonly
used in the industry to divide collaborative and distributed
software development work, and are regarded as “the only
scalable way to build systems from semi-independent
components” [15].

This paper describes a field study of an organization’s usage of
APIs to understand how they facilitate the management of
interdependencies and therefore facilitate collaborative software
development. Our analysis found out that APIs support
collaboration by serving as contracts among stakeholders and by
reifying organizational boundaries. The separation that APIs
accomplished, however, hindered other forms of collaboration,
particularly among members of different teams. Therefore, we
think it is noteworthy to know that API’s do not only have
beneficial purposes.

The rest of the paper is organized as follows. The next section
describes the concepts behind APIs and explains their adoption by
industry. The reader familiar with this concept might skip this
section. Section 3 then presents the research site and methods
used in our study. Sections 4, 5, and 6 describe our findings of
how the organization and teams we studied go about developing,
using, and maintaining APIs. Mundane and expected observations
about collaboration using APIs are interpreted as “advantages,”
while exceptional uses or problems are interpreted as
disadvantages. Sections 7 and 8 respectively discuss the data
collected and the implications of our findings to the design of
collaborative environments, especially for software development.
Finally, conclusions and ideas for future work are presented.

2. APPLICATION PROGRAMMING
INTERFACES
An API is a well-defined interface, usually supported by the
underlying programming language, that allows one software one
software component to access programmatically another
component [10]. A more “formal” definition provided by the
Software Engineering Institute is the following [1]:

Application Programming Interface (API) is an older
technology that facilitates exchanging messages or data
between two or more different software applications. API is
the virtual interface between two interworking software
functions, such as a word processor and a spreadsheet. (…)
An API is the software that is used to support system-level
integration of multiple commercial-off-the-shelf (COTS)
software products or newly-developed software into
existing or new applications.

Although the definition above presents APIs as interfaces between
software applications, among professional software engineers the
term API is coming to mean any well-defined interface that
defines the service that one component, module, or application
provides to others software elements. In the rest of the text, we
will use the terms component, module and software applications
indistinctly, since they do not change the purpose of using APIs.

The word “interface” in the abbreviation is used to explicitly
indicate that APIs are constructs that exist in the boundaries of at
least two different software applications. For instance, the
Microsoft Windows API allows a program to access and use
resources of the underlying operating system such as file system,
scheduling of processes, and so on. Typically, in a programming
language such as Java, an API corresponds to a set of public
methods of classes and interfaces, and the associated
documentation (in this case, javadoc files). The two (or more)
applications that an API divides are often developed by different
teams, and hardly ever individuals.

APIs are largely adopted by industry because they support the
separation of interface from implementation, a growing trend in
software design [14]. The main advantage of this approach is the
possibility of separating modules into public (the API itself) and
private (the implementation of the API) parts so changes to the
private part can be performed without impacting the public one
and therefore minimizing the dependencies between these two
parts.

In the rest of the text, we adopt the terms API consumers and API
producers. API consumers are software developers who write
code with method calls to an API, and API producers are software
developers who write the API implementation.

An important aspect of any API is stability. A stable API is not
subject to frequent changes, therefore leveraging the promised
independence between API producers’ and consumers’ code.
Changes in the API itself require changes in the API consumers’
code because this code use services provided by the API. This
situation might become problematic if changes to the API happen
too often. Therefore, according to one software architect
interviewed, APIs “tend to be something well-thought out, and set
in stone,” so that they are regarded as contracts with the clients
(see section 4). As a result, API consumers expect that the API
will not change often, and if it does happen, they also expect that
these changes will not severely affect them. Recent work in
software engineering tries to provide advice on how to properly
change APIs so that the impact of those changes is minimized
[11] [14].

3. RESEARCH SITE AND METHODS
Our fieldwork was conducted in a software development company
named BSC (a pseudonym). BSC is one of the largest software
development companies in the United States with products
ranging from operating systems to software development tools,
including e-business and tailored applications. The project
studied, called MCW (another pseudonym), was responsible for
developing a client-server application that had not yet been
released during the period of the study. The project staff included
57 software engineers, user-interface designers, software
architects, and managers, who were divided into five different
teams, each one developing a different part of the application. The

2

teams are designated as follows: lead, client, server,
infrastructure, and test. The lead team was comprised of the
project lead, development manager, user interface designers, and
so on. The client team was developing the client side of the
application, while the server team was developing the server
aspects of the application. The infrastructure team was working in
the shared components to be used by both the client and server
teams. Finally, the test team was responsible for the quality
assurance of the product, testing the software produced by the
other teams.

The MCW project (including its teams) is part of a larger
company strategy focusing on software reuse. This strategy aims
to create software components (each one developed by a different
project) that can be used by other projects (teams) in the
organization. Indeed, the MCW project uses several components
provided by other projects, which means that members of the
MCW teams need to interact with other software developers in
other parts of the organization.

Regarding the data collection, we adopted non-participant
observation [23] and semi-structured interviews [26], which
involved the first author spending 11 weeks at the field site.
Among other documents, we collected meeting invitations,
product requests for software changes, and emails and instant
messages exchanged among the software engineers. We were also
granted access to shared discussion databases used by the
software engineers. All this information was used in addition to
field notes generated by the observations and interviews. We
conducted 15 semi-structured interviews with members of all four
sub-teams. The questions were designed to encourage the
participants to talk about their everyday work, including work
processes, problems, tools, collaboration and coordination efforts,
and so on. Interviews lasted between 35 and 90 minutes. All the
material collected has been analyzed using grounded theory
techniques [32]. The grounded theory approach calls for an
interplay between data gathering and analysis to develop an
understanding of what is going on in the field and, most
important, the reasons that explain what is going on. As the
fieldwork progresses, hypotheses are generated and tested and
modified according to the ongoing analysis of the data being
collected. During our fieldwork, we eventually realized the
fundamental role of APIs in the management of the
interdependencies. Accordingly, we collected more information
about this aspect in order to verify whether we had understood the
software developers’ work. Finally, the interviewees provided
feedback on our interpretation of the roles of APIs in the process.
This feedback was fundamental to improving our understanding
of their work.

4. THE CONTRACTUAL NATURE OF APIs
4.1 Advantages
At the time of the study, BSC had recently adopted a strategy of
developing reusable software components in which the concept of
APIs had an important role. The underlying idea is that each
software component would have a public and stable API through
which its consumers could access the set of services provided by
that component. APIs need to be public to allow other
components to access the services its underlying component
provides. They also need to be stable; that is, they cannot change
very often. Otherwise, the expected reduced coupling between

API consumers’ and producers’ code is not achieved. The
importance of APIs in the coordination of the software developers
was clearly recognized by members of the software development
team, who agreed, “APIs are the heart of the whole exercise.” As
a member of the server team confirmed:

 “Our only work is to make these APIs work … the
client team’s [work] is to consume the APIs and create
user interfaces.”

Each software component and its respective API were developed
by a different project team, and could be used by other projects
teams in the organization. Most projects implemented different
sets of services, therefore implementing different APIs.
Furthermore, despite their willingness to reuse software
components, different teams in the company developed different
software components that provided similar sets of services
because of reasons as implementation details, backward
compatibility, different architectures, and so on. In this case, all
these software components provide similar APIs. To guarantee
that APIs were consistent and that software components were
indeed reused, each project had a software architect responsible
for the specification of the APIs. Weekly meetings of the
organization’s software architects were used to monitor this work.

Despite these meetings, the organization had no formally
established process to create, implement, deploy, and maintain
APIs. In one of the meetings that we observed, developers from
different groups discussed the lack of recommendations by the
organization’s software architects on how to proceed when facing
such issues. As one developer pointed out: “All APIs need to look,
feel, and smell the same.” This lack of an established process had
already been identified by the software architects and was starting
to be discussed in the software architects’ weekly meetings.

Although there was no formal process, an informal process was
adopted by members of the MCW project. In this case, the
majority of the APIs were developed by the server team, who
provided services to be used by the client team. Each one of these
APIs was specified by the server software architect as necessary.
After an API was specified, it was discussed by all the interested
parties in a formal design review meeting. The following people
were invited to this meeting: the API consumers, the API
producers, and the test team that eventually would test the
software component functionality through this API. Another
purpose of this meeting was to guarantee that the API met the
requirements that the client team had and to make sure that API
consumers understood how to use it and that the test team knew
how to test it.

The API design review meeting exemplifies the first and foremost
important role of any API: to establish a defined interface among,
at least, two worlds. That is, APIs are contracts established
between two parties. As such, they allow each party to go about
doing its work without needing a huge deal of coordination
among them. During the design review meetings, API producers,
consumers, testers and other interested parties are all gathered
together to reach a consensus about how the API is going to look.
APIs are then negotiated. After this meeting, each party can work
independently because they all expect that the established contract
is going to be fulfilled. If, and when, this contract is broken,
several problems arise (see next section).

3

API review meetings are also “meeting points” for all software
developers interested in a particular API ” where all developers
would get to know each other. For instance, members of the test
team meet the developers who will implement the API. Later,
testers will email information to these API providers about how
the APIs are going to be tested, with the intent of avoiding minor
integration problems that could delay the development schedule.
It is important to mention now that often the implementation of an
API would not start right after these meetings. The meetings were
planned in advance before anyone would need services from these
APIs. However, changes in people’s roles and assignments during
the software development process eliminated this knowledge
about other software developers working in the same API. As we
discuss in section 6 this lack of knowledge eventually brings
coordination problems.

4.2 Disadvantages
The wide scope of the API design review meetings is problematic.
As one software engineer who was interviewed informed us: “The
larger the audience, the wider the type of questions.” In a similar
fashion, members of the server team reported that client team
developers want to understand too many implementation details
of the APIs, instead of focusing on the “big picture” and using the
meeting for clarification purposes only. The assumption of API
providers is that consumers do not need to be aware of the
implementation details of the API, everything else “behind” an
API did not need to be disclosed.

As with any other contract, an important feature of an API is its
stability, which means that APIs should not change often because
when they change, the API consumers’ code is affected as well. In
other words, the impact of changing an API is high because it
potentially leads to other changes in the source code. Despite that
realization and all the discussion that takes place during an API
design review meeting, APIs do change. This situation might be
more or less problematic, depending on the type and amount of
changes that occurr in the API. To minimize these problems, we
noted that the server team (the API producers), before changing
an API, met and negotiated these changes with the client team
(the API consumers). We also noticed that, on some occasions,
API consumers were notified about the changes, but these
changes were not delivered to them right away. Because of that,
API consumers were blocked because they needed this API to be
able to work. Similarly, sometimes the changes to an API were
not broadcast to the whole organization. Therefore, if there were
other API consumers using this API, they would not be notified
about them. A software engineer referred to this task of designing
while an API was being changed as “a total moving target.”

The instability of some APIs was so evident that in some cases
software engineers would ask questions such as: “Is the [name of
a particular API] changing?’ These questions were asked during
the weekly meetings before these developers started working in
the API, in order to avoid problems. It is important to notice that
this instability is aggravated because current software
development tools make it difficult to identify changes in APIs:
no current tools support API diffing, versioning, updating, and so
on. This lack of technological support makes these changes
expensive and painful for API consumers. This issue will be
discussed in section 8.

Note that software developers acknowledge that APIs need to
change, therefore recognizing the inevitable situation where the

API proposed in the design review is not the one being
implemented. According to one of the developers:

“ I’ve never seen a technical spec that describes
functional requirements that has been implemented
without changes.”

“while you’re developing code, everything can change.”

Despite that, developers reported problems with changes in the
APIs, and we observed several instances of complaints about this
instability. Indeed, software developers at this organization faced
a dilemma. They wanted to define APIs early in the process in
order to allow independent work. However, at the same time, they
wanted to avoid making the API unstable, which could be avoided
only by postponing the definition of this same API.

5. SUPPORTING INDEPENDENT WORK
5.1 Advantages
Once an API is approved in the design review meeting, a first
implementation is made available to its consumers through the
configuration management tool. As mentioned before, APIs are
interface specifications composed of sets of public classes,
interfaces and methods, and the associated documentation (in this
case, javadoc files). Besides these specifications, the software
architect provides a shallow implementation of the API for the
sole purpose of allowing the client team to immediately start
programming against this API. According to one software
architect:

“The first-pass delivery … is a shallow implementation,
just enough to start some work.”

Software developers would refer to these dummy
implementations as “local APIs,” in contrast to “remote APIs,”
which are the real APIs implemented by the server team.1 By
adopting the usage of local APIs, it is possible to separate the
work that each team needs to perform and temporarily remove
dependencies among them. In the MCW project, the client team
can start implementing against the local API while the server
team can start implementing the (real) remote API.

Periodically, API providers replace parts of this shallow API
implementation by their real implementation. For example, one
participant stated:

“When it [the implementation] is ready, I replace the
dummy code for the real implementation.”

The parts to be replaced are often based on the suggestions
provided by and the needs of the API consumers, according to the
planned schedule. However, in order to do that, it is necessary to
have knowledge about who are the API providers and consumers,
which did not happen all the time in the organization.

5.2 Disadvantages
Once the parties involved agreed upon the APIs and “local” APIs
are created, software development work proceeds independently.
However, our data shows that problems arise due to those local
APIs. Indeed, as reported by a software architect:

1 These APIs are called “remote” because when the application is
released, they will be located in a remote machine. Note that
“local” and “remote” APIs are the same; the unique distinction
between them is their implementation.

4

“This [the usage of dummy implementations] works to
some extent. But as you push further along
implementation dummy stuff starts not working. So, for
example, the [user-interface component] list displays
stuff, just dummy stuff, that works, but as soon as you
want to open one of those dummy stuff, there is no stuff
behind the dummy stuff so the list cannot hand off to the
launcher [another user-interface component] that
cannot hand off to the [component] you cannot open up
because there is really nothing that far. It is a matter of
how deep does the dummy stuff go. You really dive a bit,
and then there is no more there. It kind of works in the
start but as you go further along …”

To avoid this situation, software developers and managers
perform an assessment of the local APIs in their weekly meetings.
Sometimes it is possible for API consumers to continue using the
local APIs for one more week. However, if the remote API is
needed, the manager will contact the other team manager about it.
Furthermore, the manager will suggest that the software engineer
who is the API consumer contact his or her API provider. Note
that the assumption here is that the API consumer knows who his
or her API provider is, but this does not always hold (see section
6).

Replacing local APIs by remote APIs is theoretically a simple
matter due to the usage of APIs. When this happens, the API
consumer’s code is being integrated with the API provider’s code.
However, integration problems between the client and the server
teams had happened before in the former integration period. This
led the client and server teams to adopt a pre-integration phase
before the “official” integration period. Furthermore, in order to
minimize this problem, the manager of the server team also
decided to allocate a new hire into the testing team to test the
code to be integrated to avoid possible problems. This means that
the coordination effort required to integrate code developed by
different software engineers is recognized by the managers. This
additional effort is necessary even for members of the same team.
Indeed, in another situation we observed, the client manager
recognized that a developer would not be able to meet the
schedule because he had to integrate his source code with two
different software developers.

6. REIFYING ORGANIZATIONAL
BOUNDARIES
6.1 Advantages
Each software component being developed by the organization
might provide different services, which will consequently be
made accessible through different APIs. This means that APIs are
purposefully created to be the external boundaries of a
component. Because each software component is implemented by
a unique software development team, APIs also define the
interfaces among these software development teams. APIs can
then be viewed as boundaries of the teams: they define the limits
of what will be delivered and what needs to be done by each
team. Being an API provider means being a member of the team
that is implementing this API, and consequently understanding its
implementation details. Conversely, being an API consumer
means being part of a different team, which does not need to

know the API implementation details2. APIs are then reifications
of the already established team divisions. In other words, APIs
reify organizational boundaries: any two (or more) given teams in
the organization that need to interact (i.e., that their code needs to
interact) will do so through the appropriate set of APIs that will
link the software components they are developing. Typically,
complex components need to interact with several other
components, meaning that several APIs will mediate the
cooperation among these components and, consequently, among
members of these teams. For instance, the architects that we
interviewed reported that there are at least six different APIs
mediating the work between the MCW client and server teams.

To summarize, APIs achieve an organizational goal, which is to
separate teams of developers so they can be named, organized,
managed, and so on. This is especially useful, and indeed
planned, during the initial phases of software construction
because they allow software engineers to work independently
without worrying about the impact of their colleagues’ work in
their own work. However, it might create problems in the later
stages of this process, as discussed in the next section.

6.2 Disadvantages
In contrast, because APIs are reifications of organizational
structures, they divide the work necessary to develop software
into two distinct parts: an internal part responsible for
implementing the API, and an external part responsible for using
this same API. As a side effect of the isolation provided by APIs,
we noticed that teams lacked awareness about other teams’ work.
In the MCW team, this problem was remedied by the managers,
who maintained constant and intensive communication about their
teams’ progress and schedules. Additionally, another approach
adopted by these teams was to pair developers (one from each
team) according to the APIs. That is, for each server team
member responsible for implementing an API, there was a client
team member who was the consumer for that API. This
organizational solution failed because API consumers did not
want to appear to be pressuring their server developer
counterparts. Similarly, we found out that in the server team,
some software engineers were not aware of their client
counterparts, i.e., those who would consume the API they were
implementing. According to the software architect interviewed:

“In our team meeting yesterday and other ones…
people seem to be reluctant to talk to their counterparts
too much … in the sense that they feel they’re bugging
the other person … and that is a problem because, I
mean, the reason why we are here … the reason we’re
getting paid, we are developing a product and that
interaction needs to happen.”

One might think that this type of knowledge about their
counterparts is not necessary during the initial stages of
development while team members might still work independently.
However, as a software architect pointed out, this is still
problematic:

2 It is possible to use APIs to coordinate the work of software
developers in the same team. However, this is the exceptional
case. Indeed, we did not find any instance of this situation in the
MCW project.

5

“People thinking there’s somebody else doing
something [on the API] and when, you know [the API is
needed] … it is an empty void because they did not step
up and said: ‘I tried to identify my server counterpart or
my client counterpart or if there is anyone. We got a
problem here!’”

The “isolation” created by APIs also hindered the collaboration
among members of different teams that were not paired. For
instance, another team in the organization was responsible for
implementing a component that provided services for both the
server and the infrastructure team. Due to the isolation of the
teams, members of these teams were not aware of this common
dependency, therefore they were working in parallel in
overlapping aspects. One software engineer identified this issue
and decided to talk to the members of the other team so that they
all could align their efforts and avoid duplicate work.

7. DISCUSSION
In our work, we identified two major roles played by APIs in the
software development process in the context of the MCW and its
hosting organization: they function as contracts among
stakeholders and, in addition, as reifications of the organizational
boundaries. Our overall findings show that APIs simultaneously
allow and constrain collaboration among software developers,
contradicting the common wisdom among software developers
that APIS are only beneficial.

On the one hand, APIs facilitate collaboration during the process
of breaking a system into pieces that can be developed
independently (according to the information-hiding principle
[29]) because (i) as reifications, they enforce the organizational
boundaries of team membership, and (ii) as contracts they
establish a shared understanding of what needs to be done and at
some level formalize this agreement. By breaking the system into
pieces, it is possible to isolate development work, allowing
software engineers to work without being affected by their
colleagues’ work. This need for isolation is a common theme in
software engineering because of the several interdependencies
that occur in these efforts. To mention only one example, Sarma
and colleagues [30] discuss how configuration management tools
support this isolation. A problematic situation arises when APIs
are not seen as contracts, which allows them to be changed,
causing disruptions to the collaborative process (see section 4.2).

On the other hand, APIs limit collaboration during the process of
recomposition—the work of putting all pieces together to create a
software artifact [16]. This happens because the initial process of
decomposition creates social relationships among the stakeholders
that need to be maintained during the whole software
development process; otherwise the software cannot be later
recomposed [Ibid.]. This was already recognized by Parnas who
defined a software module as “a responsibility assignment rather
than a subprogram” [29].As discussed in section 5.2, despite the
fact that APIs were used as contracts, problems arose during the
code integration developed by API consumers and providers.
Similarly, section 6.2 shows that APIs (seen as reifications)
hinder collaboration among software developers from different
teams, eliminating opportunities for cooperation.

At this point, it is important to mention that over 30 years ago
Conway [6] had already recognized that the structure of the
system mirrors the structure of the organization that designed it, a

relation known as Conway’s Law. Our findings that APIs
reinforce the organizational boundaries confirm this idea.
However, we go beyond that by explaining why these boundaries
need to be somehow flexible to allow inter-team collaboration.

One way of providing this flexibility is through the concept of
awareness as proposed by Dourish and Bellotti [12]. Several
studies have discussed the role of awareness of others’ actions in
facilitating coordination of individuals in settings as varied as ship
bridges [21], aircraft cockpits [22], and transportation control
rooms [19]. In particular, recent work has shown the importance
of awareness in software development as well (see [9], [18], [16],
and [33]). Based on this empirical evidence, tools have been built
in the last few years to support this approach (such as Jazz [3, 4],
Palantír [30] and Night Watch [28]). This study builds upon this
previous work by providing information about what information
about others’ actions software developers need to be aware of.
That is, API consumers need to be aware of changes in the API
that they are using because the code that they are writing depends
on it. Indeed, people are not interested in all information that is
provided to them. As Schmidt [31] points out:

“(…) in depending on the activities of others, we are
‘not interested’ in the enormous contingencies and
infinitely faceted practices of colleagues unless they
may impact our own work … An actor will thus
routinely expect not to be exposed to the myriad
detailed activities by means of which his or her
colleagues deal with the contingencies they are facing
in their effort to ensure that their individual
contributions are seamlessly articulated with the other
contributions.”

Because an API is usually written by a developer from a different
software development team, this field study also suggests that
software developers need to be aware of actions from his
colleagues from other teams. In this case, this is necessary
because a dependency exists between API consumers and
providers, which is the API itself. This finding is in contrast to
what Grinter [16] suggests in her discussion about organizational
awareness: team information should be aggregated. Our results
suggest that individual information about team members’ actions
is also necessary. Therefore, this field work also illuminates the
list of people that one needs to be aware of, which includes not
only their teammates but other software developers in the
organization as well. We can certainly imagine that software
developers need to be aware of other colleagues that they depend
on as well.

Furthermore, our data show that APIs are successful in facilitating
collaboration because they hide details that software engineers do
not need to know at a particular moment in the process. This
suggests that awareness needs to be balanced with the need for
isolated and independent work. In other words, private and public
work are both necessary in cooperative software development [9].

Finally, it is important to mention that Grinter [17] discusses how
software architects need to convince other members of the
organization to “buy into” their design. We noticed this same
phenomenon in our field study: software architects bring into the
API design review the client team and other potential API
consumers, so that they can approve the API design. That is, the
API design is a technical process as much it is a social process

6

involving communication, coordination, and negotiation [2]. One
can not reconstruct an API based solely on technical decisions,
there are also social conditions that somehow are embedded in the
API itself.

8. IMPLICATIONS FOR TOOLS
In the previous section, we discussed how APIs play a dual role in
the coordination of collaborative software development.
Moreover, we discussed how APIs are reification of
organizational boundaries in the organization, therefore allowing
and constraining collaboration among software developers of
different teams. One of the reasons why they hinder collaboration
is because they do not allow software developers’ to be aware of
their colleagues’ actions that affect their work. Because not all
actions are important, we argue that awareness tools need to be
able to hide some details, while at the same time, provide useful
information to let software developers align their work. This
suggests that translucent approaches could be very useful in the
design of collaborative software development tools because their
goal is to make social information available without, however,
presenting too much information [13]. Furthermore, our field
study also suggests how to go about deciding which information
should be presented and which information should be hidden.
Information about changes that might affect another’s person
work should be presented to the interested parties, while
everything else can be either hidden or presented in a less
intrusive way. Information about changes that do not affect
directly one’s work is still interesting. For example, de Souza,
Redmiles and Dourish [9] present empirical evidence that this
information is useful to software developers learn about each
other’s areas of expertise, therefore leveraging expertise
identification when necessary.

Finally, we argue that the source-code itself can be an important
resource to identify social dependencies since it contains
information about the technical dependencies among pieces of
software and these suggest the social relationships that need to be
built among software developers to facilitate the integration
process. For instance, dependencies among pieces of code exist
because components make use of services provided by other
components: let’s say that a component A uses the services of
another component B, as a result, A depends on B. Assuming that
A is being developed by engineer a and B is being implemented
by engineer b, we similarly find that engineer a depends on b. A
data structure containing all the dependency relationships of a
software application is called a call-graph, because it contains
information of which components call which other components.
Information from this call-graph can be used to describe the
technical dependencies in one software application. This needs to
be combined with authorship information about each component
or module to allow the identification of social dependencies.
Configuration management repositories contain this authorship
information since they track the changes made to each component
alongside the information about the developer who performed the
change [5]. Combining information from the call-graph with
authorship information can then create a “social call-graph”,
which describes which software developers depend on which
other software developers for a given piece of code. Figure 1
below presents an example of a “social call-graph” from a
software development project being conducted at UCI called
Ariadne. A directed edges from package A to B indicates a

dependency from A to B. Directed edges between authors and
packages indicated authorship information. Note that authors are
leaves in this graph.

Figure 1: An example of a “social call graph”

We argue that current software development tools have only
focused on the call-graph itself. For example, this information can
be used to calculate different metrics that provide useful
information about the organization of the source-code. For
example, one can evaluate the cohesion and coupling of the
modules using information from the call-graph. Unfortunately,
information from “social call-graphs” have not been explored yet.
We believe that such graph is a potential resource that could be
used for a variety of purposes. For example, this “social call-
graph” could be used to provide more selective information about
software developers’ actions. In our previous example, developer
a needs to be aware of b’s actions regarding changes in the
interface of the component B. That is, if b changes the
implementation of the services that B provides, it is necessary to
inform developer a of these changes. Furthermore, this “social
call-graph” could be used by software developers to identify other
developers with similar interests, as in the situation described in
section 6.2 where developers who shared a dependency where
performing duplicate work because they were not aware of each
other. This approach is similar to the one adopted in the
ExpertiseBrowser system [27], that provides expertise
identification. In both approaches, it is necessary to associate
software engineers with the pieces of software that they produce.
However our approach also requires the association of pieces of
software among themselves according to their dependencies. This
idea is based on the actor-network approach proposed by Latour
[25], where networks of artifacts and human (both called
“actants”) are represented together.

Because of the information that they have available, “social call-
graphs” could easily generate social network graphs describing
the dependency relationship among software developers, in this
case without depicting dependencies among software components.
Figure 2 below presents an example of a “social call-graph.” This
example is based on information collected from the MCW team
through our interviews and non-participant observation. Members

7

of the client team are represented by cN, where N is an integer
from 1 to 8. Similarly, members of the server team are
represented by sN, and finally, members of test team are
presented by tN. The other letters (n, d and a) indicate other teams
in the organization. Arrows indicate dependency relationships
from the source to the target of the arrow, for example, developer
c2 depends on developer s1.

Figure 2: An example of a social network graph describing
dependency relationships among software developers

 The next step then is to analyze these graphs with social
networks algorithms in order to assess potential coordination
problems in the software development process. For example, one
could generate technical recommendations about how to
reorganize the source code, or provide managerial
recommendations about how to change the division of labor to
minimize the coordination effort of some developers that have to
deal with too many dependencies. The construction and analysis
of “social call-graphs” and social network graphs generated from
those are our next steps and are briefly described in the next
section.

9. CONCLUSIONS AND FUTURE WORK
This paper described a field study that examined the use of
application programming interfaces (APIs) in the management of
interdependencies in cooperative software development. The
notion of APIs is a fairly familiar concept in software engineering
and among professional software developers. They are technical
constructs that instantiate the principle of information hiding [29],
aiming to create well-defined interfaces between two pieces of
software to minimize the dependency between them. Usually,
these two pieces of software are developed by two different teams
of software developers, and as a result APIs also reduce the
dependency between the work of these teams. Our results suggest
that APIs facilitate the coordination of activities in software
development because they can be seen as (i) contracts among
stakeholders, and (ii) as reifications of organizational boundaries.
That is, APIs also achieve the organizational goal of maintaining
teams of software developers isolated from each other. However,
by doing that, they reduce the opportunities for cooperation,
consequently disrupting the collaborative construction of
software, especially during the integration period. To be more
specific, the main problem created is the lack of awareness about
other colleagues’ actions. In order to minimize this problem, we
also described how collaborative software development tools
could be extended to make use of the artifact being built (the
software itself) to facilitate collaboration. This is based on the

observation that (i) dividing a software system is simultaneously a
division of labor [29], and (ii) a software system becomes
embedded with part of the social relationships that surround its
construction [6, 16]. Currently, we are working on the
development of Ariadne, a collaborative software development
tool based on the Eclipse IDE, that adopts this approach. We plan
to deploy this tool among professional software developers to find
out whether it is useful in coordinating their work.

ACKNOWLEDGMENTS
The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for financial support. This effort was sponsored by
the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-00-2-0599. Funding was
also provided by the National Science Foundation under grant
numbers CCR-0205724, 9624846, IIS-0133749 and IIS-0205724.
The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Laboratory,
or the U.S. Government.

10. REFERENCES
[1] "Application Programming Interfaces," vol. 2004: Software

Engineering Institute - Carnegie Mellon University, 2003.
[2] Bucciarelli, L. L., Designing Engineers. Cambridge, Ma:

MIT Press, 1996.
[3] Cheng, L.-T., De Souza, C. R. B., et al., "Building

Collaboration into IDEs. Edit -> Compile -> Run -> Debug
->Collaborate?," in ACM Queue, vol. 1, 2003, pp. 40-50.

[4] Cheng, L.-T., Hupfer, S., et al., "Jazz: a collaborative
application development environment," ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, pp. 102-103, Anaheim, CA,
USA, 2003.

[5] Conradi, R. and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[6] Conway, M. E., "How Do Committees invent?,"
Datamation, vol. 14, pp. 28-31, 1968.

[7] Curtis, B., Krasner, H., et al., "A field study of the software
design process for large systems," Communications of the
ACM, vol. 31, pp. 1268-1287, 1988.

[8] de Souza, C. R. B., Redmiles, D., et al., "Management of
Interdependencies in Collaborative Software Development:
A Field Study," International Symposium on Empirical
Software Engineering (ISESE'2003), pp. 294-303, Rome,
Italy, 2003.

[9] de Souza, C. R. B., Redmiles, D. F., et al., ""Breaking the
Code", Moving between Private and Public Work in
Collaborative Software Development," International
Conference on Supporting Group Work (GROUP'2003), pp.
105-114, Sanibel Island, Florida, USA, 2003.

[10] des Rivieres, J., "Eclipse APIs: Lines in the Sand," in
EclipseCon, vol. 2004, 2004.

[11] des Rivieres, J., "How to Use the Eclipse API," vol. 2004.

8

[12] Dourish, P. and Bellotti, V., "Awareness and Coordination
in Shared Workspaces," Conference on Computer-
Supported Cooperative Work (CSCW '92), pp. 107-14,
Toronto, Ontario, Canada, 1992.

[13] Erickson, T. and Kellogg, W. A., "Social Translucence: An
Approach to Designing Systems that Support Social
Processes," Transactions on HCI, vol. 7, pp. 59-83, 2000.

[14] Fowler, M., "Public versus Published Interfaces," IEEE
Software, vol. 19, pp. 18-19, 2002.

[15] Grinter, R., Herbsleb, J., et al., "The Geography of
Coordination: Dealing with Distance in R&D Work," ACM
Conference on Supporting Group Work (GROUP '99),
Phoenix, AZ, 1999.

[16] Grinter, R. E., "Recomposition: Putting It All Back
Together Again," Conference on Computer Supported
Cooperative Work (CSCW'98), pp. 393-402, Seattle, WA,
USA, 1998.

[17] Grinter, R. E., "System Architecture: Product Designing
and Social Engineering," Work Activities Coordination and
Collaboration, pp. 11-18, San Francisco, CA, USA, 1999.

[18] Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development," Conference on
Organizational Computing Systems, pp. 168-177, Milpitas,
CA, 1995.

[19] Heath, C. and Luff, P., "Collaboration and Control: Crisis
Management and Multimedia Technology in London
Underground Control Rooms," Computer Supported
Cooperative Work, vol. 1, pp. 69-94, 1992.

[20] Herbsleb, J., Mockus, A., et al., "Distance, Dependencies,
and Delay in a Global Collaboration," ACM Conference on
Computer-Supported Cooperative Work (CSCW 2000),
Philadelphia, PA, 2000.

[21] Hutchins, E., Cognition in the Wild. Cambridge, MA: The
MIT Press, 1995.

[22] Hutchins, E., "How a Cockpit Remembers its Speeds,"
Cognitive Science, vol. 19, pp. 265-288, 1995.

[23] Jorgensen, D. L., Participant Observation: A Methodology
for Human Studies. Thousand Oaks: SAGE publications,
1989.

[24] Larman, G., "Protected Variation: The Importance of Being
Closed," IEEE Software, vol. 18, pp. 89-91, 2001.

[25] Latour, B., "Where are the missing masses? The sociology
of a few mundane artifacts.," in Shaping Technology /
Building Society: Studies in Sociotechnical Change, W.
Bijker and J. Law, Eds. Cambridge, MA: MIT Press, 1994,
pp. 225-258.

[26] McCracken, G., The Long Interview: SAGE Publications,
1988.

[27] Mockus, A. and Herbsleb, J. D., "Expertise Browser: A
Quantitative Approach to Identifying Expertise,"
International Conference on Software Engineering, pp. 503-
512, Orlando, FL, USA, 2002.

[28] O'Reilly, C., Morrow, P., et al., "Improving Conflict
Detection in Optimistic Concurrency Control Models," 11th
International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003 (to
appear).

[29] Parnas, D. L., "On the Criteria to be Used in Decomposing
Systems into Modules," Communications of the ACM, vol.
15, pp. 1053-1058, 1972.

[30] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering, pp.
444-453, Portland, Oregon, 2003.

[31] Schmidt, K., "The critical role of workplace studies in
CSCW," in Workplace Studies : Recovering Work Practice
and Informing System Design, P. Luff, J. Hindmarsh, and
C. Heath, Eds.: Cambridge University Press, 2000, pp. 141-
149.

[32] Strauss, A. and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory, Second. ed. Thousand Oaks: SAGE publications,
1998.

[33] Teasley, S., Covi, L., et al., "How Does Radical Collocation
Help a Team Succeed?," Conference on Computer
Supported Cooperative Work, pp. 339-346, Philadelphia,
PA, USA, 2000.

9

