
RC23310 (W0408-138) August 27, 2004
Computer Science

IBM Research Report

How a Good Software Practice Thwarts Collaboration - 
The Multiple Roles of APIs in Software Development

Cleidson R. B. de Souza
Universidade Federal do Pará
Dapartmento de Informática

Belém, Pará, Brasil
and

University of California at Irvine

David Redmiles
University of California at Irvine

Department of Informatics
Irvine, CA

Li-Te Cheng, David Millen, John Patterson
IBM Research Division

One Rogers Street
Cambridge, MA  02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



How a Good Software Practice Thwarts Collaboration –  
The multiple roles of APIs in Software Development 

Cleidson R. B. de Souza1,2 David Redmiles2 Li-Te Cheng3 David Millen3 John Patterson3 
1Universidade Federal do Pará  

Departmento de Informática 
Belém, Pará, Brasil 

55-91-211-1405  
cdesouza@ics.uci.edu 

2University of California, Irvine 
Department of Informatics 

Irvine, CA, USA 
1-949-824-3823 

redmiles@ics.uci.edu 

3IBM T. J. Watson Research Center  
Collaborative User Experience Group 

Cambridge, MA, USA 
1-617-577-8500 

{li-te_cheng, david_r_millen, 
john_patterson}@us.ibm.com 

 

ABSTRACT  
The principle of information hiding has been very influential in 
software engineering since its inception in 1972. This principle 
prescribes that software modules hide implementation details 
from other modules in order to decrease their interdependencies. 
This separation also decreases the dependency among software 
developers implementing modules, thus simplifying some aspects 
of collaboration. A common instantiation of this principle is in the 
form of application programming interfaces (APIs). We 
performed a qualitative study on how practitioners use APIs in 
their daily work. Although particularly interested in aspects of 
collaboration, we report all findings about their observed use. The 
findings include mundane observations that are predicted by 
theory, ways that APIs support collaborative software 
development.  But the findings also include some surprises, ways 
that APIs hinder collaboration. The surprises indicate directions 
for further improvement of collaborative software development 
practices and tools. 

Categories and Subject Descriptors 
D.2.9 [Management]: D.2.11 [Software Architectures]: H.4.1 
[Office Automation]: Groupware; H.5.3 [Group and 
Organization Interfaces]: Computer-supported cooperative 
work;  

General Terms 
Human Factors  

Keywords 
Empirical software engineering, qualitative studies, interfaces, 
application programming interfaces. 

1. INTRODUCTION 
It has been long recognized that breakdowns in communication 
and coordination efforts constitute a major problem in 
collaborative software development [7]. One of the reasons is the 

large number of interdependencies among activities in the 
software development process, among different software artifacts, 
and finally, within different parts of the same artifact. To 
overcome this problem, the field of software engineering has 
developed tools, approaches, and principles to deal with 
interdependencies. Configuration management and issue-tracking 
systems are examples of such tools, while the adoption of 
software development processes ([31],[2], and [15]) exemplifies 
an organizational approach [8, 9]. One of the most important and 
influential examples principles used to manage dependencies is 
the idea of information hiding proposed by Parnas [33]. 
According to this principle, software modules should be both 
“open (for extension and adaptation) and closed (to avoid 
modifications that affect clients)” [27]. Information hiding aims to 
decrease the dependency (or coupling) between two modules so 
that changes to one do not impact the other. This principle is 
instantiated as several different mechanisms in programming 
languages that provide flexibility and protection from changes, 
including, data encapsulation, interfaces, and polymorphism [27]. 
In particular, separating interfaces specifications from their 
implementation is a growing trend in software design [14]. 
Furthermore, interface specifications are believed to be helpful in 
the coordination of developers working with different components 
[17]: 

“(…) interface specifications play the well-known role 
of helping to coordinate the work between developers of 
different components. If the designers of two 
components agree on the interface, then design of the 
internals of each component can go forward relatively 
independently. Designers of component A need not 
know much about the design decisions made about 
component B, so long as both sides honor their well-
specified commitments about how the two will hook 
together.” [emphasis added] 

APIs (application programming interfaces) are a common way of 
hiding component specification and implementation details from 
users of those components (e.g. see [10]). They are commonly 
used in the industry to divide software development work, 
including distributed software development, and are widely 
regarded as “the only scalable way to build systems from semi-
independent components” [17].  

This paper describes an empirical study that we performed on 
how practitioners use APIs in their daily work. Although 
particularly interested in aspects of collaboration, we report all 
findings about their observed use. The findings range from 

 

 

1



mundane observations that are predicted by theory to surprising 
observations. As predicted by theory, APIs serve as contracts 
among stakeholders, reifications of organizational boundaries, 
and as a common language among software developers. In these 
ways, APIs support developers collaborating on a common 
project yet allow them to work independently in isolation. 
However, there is a surprising side effect we observed, that the 
isolation hinders some forms of collaboration, particularly among 
members of different teams. Therefore, we think it is noteworthy 
to know that API’s do not only have beneficial purposes.  

The rest of the paper is organized as follows. The next section 
reviews concepts surrounding APIs and explains their adoption by 
industry. After that, section 3 presents the research site studied 
and methods that we used in our study. Then, Section 4 describes 
how the organization and teams we observed go about 
developing, using, and maintaining APIs. Section 5, describes the 
multiple roles played by APIs in a collaborative software 
development process. Section 7 and 8 respectively discuss the 
data collected and the implications of our findings to the design of 
CSCW tools. Finally, conclusions and ideas for future work are 
presented. 

2. APPLICATION PROGRAMMING 
INTERFACES 
In order to understand the concept of application programming 
interfaces, we need to understand a couple of important software 
engineering principles first. Separation of concerns, for example, 
is one the most important principles in software engineering that 
allow one to deal with different individual aspects of a problem, 
so that it is possible to concentrate on each separately. When 
different parts of the same system are dealt separately, we are 
talking about a type of separation of concerns named modularity 
[16]. Modules should be designed according to the information 
hiding principle proposed by Parnas [33]. According to this 
principle, software modules should be both “open (for extension 
and adaptation) and closed (to avoid modifications that affect 
clients)” [27]. This principle is instantiated in programming 
languages as several different mechanisms such as data 
encapsulation, interface specifications, and polymorphism [27]. 
An application programming interface (API) is defined by the 
Software Engineering Institute as: 

Application Programming Interface (API) is an older 
technology that facilitates exchanging messages or data 
between two or more different software applications. API is 
the virtual interface between two interworking software 
functions, such as a word processor and a spreadsheet. … 
An API is the software that is used to support system-level 
integration of multiple commercial-off-the-shelf (COTS) 
software products or newly-developed software into 
existing or new applications [1]. 

Although the definition above presents APIs as interfaces between 
software applications, among professional software engineers the 
term API is coming to mean any well-defined interface that 
defines the service that one component, module, or application 
provides to others software elements. Therefore, we will adopt a 
more loose definition of an API as proposed by des Rivieres [10]: 
an API is a well-defined interface that allows one software 
component to access programmatically another component and is 

normally supported by the constructs of programming languages. 
Typically, in a programming language such as Java, an API 
corresponds to a set of public methods of classes and interfaces, 
and the associated documentation (in this case, javadoc files). In 
the rest of the text, we will use the terms component, module and 
software applications indistinctly, since they do not change the 
purpose of using APIs. 

The word interface in the abbreviation is used to explicitly 
indicate that APIs are constructs that exist in the boundaries of at 
least two different software applications or components. These 
two (or more) applications are often developed by different teams, 
and hardly ever individuals. An example of a well-known API is 
the Microsoft Windows API that allows a program to access and 
use resources of the underlying operating system such as file 
system, scheduling of processes, and so on.  

APIs are largely adopted by industry because they support the 
separation of interface from implementation, a growing trend in 
software design [14]. The main advantage of this approach is the 
possibility of separating modules into public (the API itself) and 
private (the implementation of the API) parts so changes to the 
private part can be performed without impacting the public one. 
That is, modularity, and consequently separation of concerns, is 
achieved. 

In the rest of the text, we adopt the terms API consumers and API 
producers. API consumers are software developers who write 
code with method calls to an API, and API producers are software 
developers who write the API implementation.  

An important aspect of any API is stability. A stable API is not 
subject to frequent changes, therefore leveraging the promised 
independence between the API producers’ and consumers’ code. 
Changes in the API itself require changes in the API consumers’ 
code because this code uses services provided by the API. This 
situation might become problematic if changes to the API happen 
too often. Therefore, according to one software architect 
interviewed, APIs “tend to be something well-thought out, and set 
in stone,” so that they are regarded as contracts with the clients 
(see section 5.1). As a result, API consumers expect that the API 
will not change often, and if it does happen, they also expect that 
these changes will not severely affect them. Recent work in 
software engineering tries to provide advice on how to properly 
change APIs so that the impact of those changes is minimized 
[11] [14]. 

3. RESEARCH SITE AND METHODS  
Our fieldwork was conducted in a software development company 
that we will call BSC (a pseudonym). BSC is one of the largest 
software development companies in the United States with 
products ranging from operating systems to software development 
tools, including e-business and tailored applications. The project 
studied, called MCW (another pseudonym), is responsible for 
developing a client-server application that had not yet been 
released during the period of the study. The project staff includes 
57 software engineers, user-interface designers, software 
architects, and managers, who are divided into five different 
teams, each one developing a different part of the application. The 
teams are designated as follows: lead, client, server, 
infrastructure, and test. The lead team was comprised of the 
project lead, development manager, user interface designers, and 

2



so on. The client team was developing the client side of the 
application, while the server team was developing the server side 
of it. The infrastructure team was working in the shared 
components to be used by both the client and server teams. 
Finally, the test team was responsible for the quality assurance of 
the product, testing the software produced by the other teams. 

The MCW project (including its teams) is part of a larger 
company strategy focusing on software reuse. This strategy aims 
to create software components (each one developed by a different 
project) that can be used by other projects (teams) in the 
organization. Indeed, the MCW project uses several components 
provided by other projects, which means that members of the 
MCW teams need to interact with other software developers in 
other parts of the organization. 

Regarding the data collection, we adopted non-participant 
observation [24] and semi-structured interviews [28], which 
involved the first author spending 11 weeks at the field site. 
Among other documents, we collected meeting invitations, 
product requests for software changes, and emails and instant 
messages exchanged among the software engineers. We were also 
granted access to shared discussion databases used by the 
software engineers. All this information was used in addition to 
field notes generated by the observations and interviews. We 
conducted 15 semi-structured interviews with members of all four 
sub-teams. The questions were designed to encourage the 
participants to talk about their everyday work, including work 
processes, problems, tools, collaboration and coordination efforts, 
and so on. Interviews lasted between 35 and 90 minutes. All the 
material collected has been analyzed using grounded theory 
techniques [36]. The grounded theory approach calls for an 
interplay between data gathering and analysis to develop an 
understanding of what is going on in the field and, most 
important, the reasons that explain what is going on. As the 
fieldwork progresses, hypotheses are generated and tested and 
modified according to the ongoing analysis of the data being 
collected. During our fieldwork, we eventually realized the 
fundamental role of APIs in the management of the 
interdependencies. Accordingly, we collected more information 
about this aspect in order to verify whether we had understood the 
software developers’ work. Finally, the interviewees provided 
feedback on our interpretation of the roles of APIs in the process. 
This feedback was fundamental to improving our understanding 
of their work.  

4. THE DEVELOPMENT OF APIs 
4.1 The Organizational approach to APIs 
At the time of the study, BSC had recently adopted a strategy of 
developing reusable software components. Each software 
component would have a public and stable API through which its 
consumers could access the set of services provided by that 
component. APIs need to be public to allow other components to 
access the services its underlying component provides. They also 
need to be stable, that is, they cannot change very often. 
Otherwise, the expected reduced coupling between API 
consumers’ and producers’ code is not achieved. The importance 
of APIs in the coordination of the software developers was clearly 
recognized by members of the software development team, who 
agreed, “APIs are the heart of the whole exercise.” As another 
member of the server team confirmed: 

 “Our only work is to make these APIs work … the 
client team’s [work] is to consume the APIs and create 
user interfaces.”  

Each software component and its respective API were developed 
by a different project team, and could be used by other projects 
teams in the organization. Most projects implemented different 
sets of services, therefore implementing several APIs. Despite 
their willingness to reuse software components, different teams in 
the company developed different software components that 
provided similar sets of services. For example, one team would 
provide access to email services implemented in one particular 
platform. Another team would also provide access to email 
services in a different platform. In this case, these software 
components would provide similar APIs. To guarantee that APIs 
were consistent and that software components were indeed reused 
throughout the organization, each project team had a software 
architect responsible for the specification of the APIs. Weekly 
meetings of the organization’s software architects were used to 
monitor this work. 

4.2 The Development of APIs 
Despite these meetings, the organization had no established 
formal process to create, implement, deploy, and maintain APIs. 
In one of the meetings that we observed, developers from 
different groups discussed the lack of recommendations by the 
software architects on how to proceed when facing such issues. 
As one developer pointed out: “All APIs need to look, feel, and 
smell the same.” This lack of an established process had already 
been identified by the software architects and was starting to be 
discussed in the software architects’ weekly meetings. 

Although there was no formal process, an informal process was 
adopted by members of the MCW project. In this case, the 
majority of the APIs were developed by the server team, who 
provided services to be used by the client team. Each one of these 
APIs was specified by the server software architect as necessary. 
After an API was specified, it was discussed by the interested 
parties in a formal design review meeting. The following people 
were invited to this meeting: the API consumers, the API 
producers, and the test team that eventually would test the 
software component functionality through this API. Another 
purpose of this meeting was to guarantee that the API met the 
requirements that the client team had and to make sure that API 
consumers understood how to use it.  

4.3 “Local” and “Remote” APIs  
Once APIs are reviewed, they are made available through the 
configuration management tool to their consumers. As mentioned 
before, APIs are composed of sets of public classes, interfaces and 
methods, and the associated documentation (in this case, javadoc 
files). Besides that, the software architect defining the API 
provides a shallow implementation of the API for the sole purpose 
of allowing the client team to immediately start programming 
against this API. According to one software architect: 

“The first-pass delivery (…) is a shallow 
implementation, just enough to start some work but it 
does not really flesh out anything.” 

Software developers would refer to these implementations as 
local APIs in contrast to remote APIs, which are the APIs 
implemented by the server team. These APIs are called remote 
because when the application is released, they will be located in a 

3



remote machine. That is, the local and the remote APIs are the 
same; the distinction between them is solely based on the 
functionality provided by the current implementation.  

Periodically, API providers replace parts of this shallow API 
implementation by its real implementation often based on 
suggestions provided by and needs of the API consumers and 
according to the planned schedule: 

 “(…) when it [the implementation] is ready, I replace 
the dummy code for the real implementation”  

By adopting this approach, the organization could separate the 
work that each team needs to perform and temporarily remove 
dependencies between the teams: the client team can start 
implementing against the local API, while the server team can 
start implementing the (real) remote API. Work can now proceed 
in parallel. Hopefully, replacing local APIs by remote APIs is a 
simple matter. However, our data shows that that is a problematic 
aspect. These problems are discussed in section 6. The following 
section describes the multiple roles played by the API in this 
particular team and organization. 

5. THE MULTIPLE ROLES OF APIs 
The previous sections described how APIs are used by the MCW 
project team and other parts of the organization in order to 
manage their interdependencies and successfully cooperate. Using 
grounded theory techniques we analyzed our field notes and the 
transcribed interviews to find out that the roles that APIs play in 
the software development process. We found that they play three 
different roles; each one of them is described below. 

5.1 APIs as Contracts  
API review meetings exemplify the first and foremost important 
role of any API: to establish a defined interface among, at least, 
two worlds. That is, APIs are contracts established between two 
parties. As such, they allow each party to go about doing its work 
while minimizing the coordination needs between them. During 
the design review meetings, API producers, consumers, testers 
and other interested parties are all gathered together to reach a 
consensus about how the API is going to look like. After this 
meeting, each party can work independently because they all 
expect that the established contract is going to be fulfilled. These 
meetings are also “coordination events” for all software 
developers interested in a particular API. For instance, members 
of the test team meet the developers who will implement the API. 
Later, testers will email information to these API providers about 
how the APIs are going to be tested, with the intent of avoiding 
minor integration problems that could delay the development 
schedule. On the other hand, if the scope of these meetings is too 
wide, they might be problematic. One software engineer 
interviewed informed us that: “the larger the audience, the wider 
the type of questions”. In a similar fashion, members of the server 
team reported that client team developers want to understand too 
many implementation details of the APIs, instead of focusing in 
the “big picture” and using the meeting for clarifications purposes 
only. 

Seeing APIs as contracts also allows one to notice how APIs 
specify the set of services a component is going to provide. 
Because they are the only updated document containing the 
description of the services to be provided by a component, they 

often play the important role of specification documents. 
According to one of the developers: 

“ I’ve never seen a technical spec that describes 
functional requirements that has been implemented 
without changes.” 

“(…) while you’re developing code, everything can 
change.” 

Official specification documents, because of time pressure and 
other constraints, are often outdated. Indeed, as one software 
developer noticed, some teams would even write their specs as 
APIs calls. In several occasions during our fieldwork, software 
engineers were observed inspecting the APIs trying to figure out 
the services offered by a component. Later, this observation was 
confirmed during the interviews.  

The role of APIs as specification documents was so evident that 
one developer during an interview reported that APIs are 
equivalent to functional requirements: they describe small pieces 
of work, function calls and how to aggregate them to do 
something useful. He even defined APIs in regard to requirement 
specification documents: “[a] well defined set of interfaces to 
allow the requirements to be met”.  

5.2 APIs as Organizational Boundaries 
Each software component being developed by the organization 
might provide different services, which will be made accessible 
through different APIs. This means that APIs are purposefully 
created to be the external boundaries of a component. Because 
each software component is implemented by a unique software 
development team, APIs also define the necessary interfaces 
between these software development teams. APIs can be thought 
as boundaries of the teams: they define the limits of what can be 
known about and what needs to be done by each team. Being an 
API provider means to be a member of the team who is 
implementing this API, and consequently to understand its 
implementation details. On the other hand, to be an API consumer 
means to be part of a different team, which does not need to know 
the API implementation details1. APIs are then reifications of the 
already established team structures. That is, APIs reify 
organizational boundaries: any two given teams that need to 
interact (i.e., that their code needs to interact with each other) in 
the organization will do so through the appropriate set of APIs 
that will integrate their software components.  

Typically, complex components need to interact with several 
other components, meaning that several APIs will mediate the 
cooperation among members of these two teams. For instance, the 
architects that we interviewed reported that there are, at least, six 
different APIs mediating the work between the MCW client and 
server teams. In addition, each one of these teams needed to 
interact with other teams in the organization because their 
components needed to somehow interact. 

                                                                 
1 Sometimes APIs are used to coordinate the work of software 
developers in the same team. That is, dependencies within a 
software development team might be handled through the usage 
of APIs. However this is the exceptional case.  

4



5.3 APIs as Communication mechanisms 
Finally, APIs allowed the software developers to talk about their 
work while performing it. More specifically, it allowed them to 
talk about their dependencies. For example, the following quote 
resumes the division of labor between the client and server teams:  

“our only work is to make these APIs work … the client 
team’s [work] is to consume the APIs and create user 
interfaces”  [member of the server team] 

This is a typical thing among software developers, who find it 
useful to associate components with the teams developing them 
[18]. In this case, teams are associated with the APIs that they are 
developing. 

6. ON THE LIMITATIONS OF APIs 
This section describes some problems that the MCW project team 
faced during this field study. We describe these problems 
according to the role played by the APIs. The first three problems 
were associated with the contractual nature of APIs, while the 
fourth one is associated with the fact that APIs reinforce 
organizational boundaries. Each one of these problems is 
discussed below. 

6.1 Instability 
An important feature of any contract, and consequently any API, 
is its stability, which means that APIs should not change often 
because when they change, its consumers need to make changes 
in their code as well. In other words, changing an API has a high 
impact because it potentially leads to several other changes in the 
source code. Despite that and all the discussion that takes place 
during the API design (during the API review meetings), APIs do 
change. As one would expect, these changes impact API 
consumers. For instance, the client team needs to update its code. 
This situation might be more or less problematic depending on the 
type and amount of changes that occurred in the API. To 
minimize these problems, we observed that members of the server 
team (the API producers), before changing an API, meet and 
negotiate these changes with members of the client team (the API 
consumers). Furthermore, we noticed that both teams do not adopt 
any technical support to this: if there are tools available to 
perform API versioning and diff, they are not used by these 
teams. Finally, our last observation is that in some occasions the 
clients would be notified about changes in the API, but the 
changes to the API were not delivered to the client team right 
away. As explained before, this team needs this API to be able to 
use it as a “local” API, creating a temporary independence from 
the server’s team. In some cases, the changes to the API are not 
spread in the organization. And since other teams also depend on 
the set of services that the API makes available this situation 
makes the design and implementation tasks much harder. As one 
software developer reported: “this [the task of designing using an 
evolving API] is a total moving target”. 

The instability of some APIs was so evident that developers often 
would ask questions like: “Is the [name] API changing?’. They 
would ask this question in their weekly meetings before starting 
to work in the API in order to avoid problems. This instability is 
aggravated because current tools make it difficult to identify 
changes in APIs. 

Note that software developers acknowledge that APIs need to 
change and evolve, therefore recognizing the inevitable situation 

where the API proposed in the design review is not the one that 
will be ultimately implemented. According to one of the 
developers: 

“ I’ve never seen a technical spec that describes 
functional requirements that have been implemented 
without changes.”  

“while you’re developing code, everything can change.” 

Despite that, several developers reported problems with changes 
in the APIs.  

6.2 Incompleteness  
APIs are widely used in this company to facilitate the 
coordination of teams of developers because of the agreed upon 
common and well-defined interface that can be used to connect 
these teams’ source-code. The expectation then is that the 
integration should go smoothly. The following quote from one of 
the managers clearly reflects this expectation: “if we use [N]  
weeks for integration, them we’re doing something wrong”.  

However, in reality, problems arise during the integration period. 
In the MCW team, for example, several problems happened 
during the last organizationally scheduled integration period. This 
situation led both the client and server teams to adopt a “pre-
integration” period before the official integration period. 
Furthermore, the manager of the server team decided to assign a 
new hire to perform “smoke tests” to minimize possible 
integration problems.  

As mentioned before, the adoption of “local” and “remote” APIs 
is another approach adopted by the organization to facilitate the 
integration. However this approach is also limited, it only works 
in the early stages of development becoming problematic as work 
progresses:  

“I think … this [the usage of dummy implementations] 
works to some extent. But as you push further along 
implementation dummy stuff starts not working. So, for 
example, the list displays stuff, just dummy stuff, that 
works, but as soon as you want to open one of those 
dummy stuff, there is no stuffy behind the dummy stuff 
so the list can not hand off to the launcher [component] 
that can not hand off to the [component] …you can not 
open up because there is really nothing that far…It is a 
matter of how deep does the dummy stuff goes. You dive 
a really bit and then, there is no more there. It kind of 
works in the start but as you go further along (…)” 

In order to avoid this situation, assessment of the local APIs is 
performed by managers, software architects and software 
developers during their weekly meetings. The goal is basically to 
assess either if the “local” API can still be used (work can 
proceed independently) or if it is time to use the “remote” API 
(work now has to be integrated). Sometimes, it is possible to API 
consumers to continue using the “local” APIs, which means that 
they will go on working without contacting their API providers. 
However, when the “remote” API is needed, the manager will 
contact the other team manager and suggest the API consumer to 
contact his or her API provider. Note that there is an assumption 
here, which is that the API consumer knows who his or her API 
provider is, which does not always hold. Indeed this problem is 
described in the next section.  

5



The main reason why there are problems during the integration 
period is that, despite the amount of effort spent in the design of 
an API, it is necessarily incomplete. That is, an API defines the 
syntactic aspects of an interface, however, it does not provide 
enough details about its implementation, and sometimes these 
details are necessary to the API consumer [25] [26] (see the 
discussion section). The important point then is how this 
incompleteness increases the already existing coordination 
problems in any collaborative software development process. 

6.3 Lack of Awareness 
APIs, and most generally interfaces, divide the work necessary to 
develop software into two distinct parts: an internal part 
responsible for implementing the API and an external part 
responsible for using this same API. That is APIs reify the 
organizational structures that define the team boundaries. Again, 
this brings several advantages to the coordination process (see 
section 5.2). However, as a side effect of the isolation provided by 
APIs, we noticed that teams lacked awareness about other teams’ 
work. In the MCW team, this problem was remedied by the 
managers, who maintained constant and intensive communication 
about their teams’ progress and schedules. Additionally, an 
approach adopted by the MCW client and server teams was to 
pair developers (one from each team) according to the APIs. That 
is, for each server team member responsible for implementing an 
API, there was a client team member who was the consumer for 
that API. This organizational solution failed in some occasions 
because API consumers did not want to appear to be pressuring 
their server developer counterparts. Similarly, we found out that 
in the server team, some software engineers were not aware of 
their client counterparts, i.e., those who would consume the API 
they were implementing. According to the software architect 
interviewed:  

“In our team meeting yesterday and other ones… 
people seem to be reluctant to talk to their counterparts 
too much … in the sense that they feel they’re bugging 
the other person … and that is a problem because, I 
mean, the reason why we are here … the reason we’re 
getting paid, we are developing a product and that 
interaction needs to happen.” 

One might think that this type of knowledge about their 
counterparts is not necessary during the initial stages of software 
development while team members might still be able to work 
independently. However, as a software architect pointed out, this 
lack of awareness is still problematic: 

“People thinking there’s somebody else doing 
something [on the API] and when, you know [the API is 
needed] … it is an empty void because they did not step 
up and said: ‘I tried to identify my server counterpart or 
my client counterpart or if there is anyone. We got a 
problem here!’” 

Note that the API design review meetings play an important role 
in the coordination work because that is when all software 
developers interested in a particular API meet potentially 
avoiding some of the problems described above. However, the 
design of the API, and consequently the API design review 
meetings, occur well-before anyone needs the services provided 
by the API. That is, often the implementation of an API will not 
start right after its design review. Changes in people’s roles and 

assignments during the software development process therefore 
remove this knowledge about API consumers and producers.  

In addition, by reifying organizational boundaries APIs indirectly 
hindered the collaboration among members of different teams that 
were not paired. For instance, another team in the organization 
was responsible for implementing a component that provided 
services for both the server and the infrastructure team. Members 
of these teams were not aware that they shared this dependency 
and were working in parallel in overlapping aspects of this task. 
One software engineer identified this issue and decided to talk to 
the members of the other team so that they all could align their 
efforts and avoid duplicate work. 

7. Discussion 
In general, the advantages and disadvantages of APIs for 
supporting collaborative software development are related to the 
independent work or isolation they create. This need for isolation 
is a common theme and a recurrent problem in software 
engineering. For example, Grinter, Herbsleb and Perry [17] 
describe how software development projects coordinate their 
efforts across multiple locations. One of the models described by 
these authors is called product structure and uses standards and 
interface specifications as coordination mechanism. One of the 
problems faced by the projects adopting this model was that 
components evolved independently making it hard to align 
features during the integration period. In our field study, while we 
identified the same coordination role played by interface 
specifications (APIs), we found out that the independence created 
by these interfaces was seen in the organization as an advantage, 
not as a problem. On a different approach, Sarma and colleagues 
[35] discuss how configuration management tools support both 
good and bad isolation. Good isolation occurs is when these tools 
allow software developers to work independently without being 
affected by their colleagues’ work. Bad isolation, on the other 
hand, happens when these tools decrease the awareness software 
developers have of their colleagues’ relevant work, potentially 
leading to coordination problems. These authors draw on the 
concept of awareness [12] to augment configuration management 
tools with visualization of other developers’ activities [35], 
therefore supporting good isolation and minimizing the problems 
of bad isolation. Awareness of others’ actions has been 
recognized as an important aspect that facilitates coordination of 
individuals in settings as varied as ship bridges [22], aircraft 
cockpits [23], and transportation control rooms [21]. Recent work, 
including this present work, has shown the importance of 
awareness in software development efforts (see [9], [20], [18], 
and [37]). Some trials at supporting awareness in software tools 
has begun as well (e.g., Jazz [5, 6], Palantír [35] and Night Watch 
[32]). Closely tied to the work on awareness, Ericksson and 
Kellogg define a further refined concept, social translucence [13]. 
Their aim is to support the design of systems that support 
communication and collaboration among large group of people. 
Translucent systems make people’s actions visible through 
intelligent user interfaces and thereby facilitate awareness among 
collaborators. 

One could argue that process centered software environments 
[31],[2], and [15] support awareness and social translucency 
because these environments normally represent where documents 
(or software components) need to be delivered to next. However, 
these systems are not focused on revealing to one participant 

6



which other participants might be involved in a process. Indeed, 
the point of employing some of these systems is to generalize or 
hide such information which is seemingly not pertinent to an 
individual’s particular activity. In short, the level of detail needed 
with respect to the kinds of awareness and translucency discussed 
here may not be appropriate to process tools. 

Notions such as translucency and awareness indicate an 
alternative to simply delaying the definition of APIs. The 
underlying idea is that private work has public consequences, and 
vice-versa [9]. In this study, this means that the work performed 
by API providers impacts the API consumers’ work (if the API 
changes for example). And, at the same time, the way API 
consumers’ use the API influence how the API should be 
designed by the API providers. 

Interestingly, a distant analogy to social translucency was once 
discussed in the programming language and software engineering 
arenas in the idea of open implementation [25] [26]. Namely, 
Kizcales and colleagues recognized the need to make APIs less 
opaque in a sense. They maintained that users of software 
components needed to know some information about a 
component’s implementation and not just its API in order to make 
appropriate decisions about whether to use the component and 
how to use it. In these terms, our goal of supporting improved 
collaboration would mean extending the concept of openness to 
reveal the network of people relevant to making decisions about 
the API. This topic is discussed in more details in the next 
section.   

In their seminal field study of software development projects, 
Curtis and colleagues observed the following problems: “the thin 
spread of application domain knowledge, fluctuating and 
conflicting requirements, and communication bottlenecks and 
breakdowns [7].” Our findings are primarily related to the last two 
issues because we carried out the study with a focus on 
collaboration and communication issues. In these aspects our 
findings corroborate theirs, but in the context of the specific 
coordination enabled by APIs. For example, the instability of 
APIs in the MCW team clearly reflects the issue of conflicting 
requirements. 

Managers recognized the coordination effort required to integrate 
pieces of code provided by different developers. In one instance, 
for example, the client manager recognized that a developer 
would not be able to meet his schedule because he had to 
integrate his source code with source code provided by two other 
different software developers, members of the same team. This 
additional effort necessary to integrate different pieces of code 
has already been identified by Grinter, who called it 
recomposition work: the work necessary to build a system from 
its pieces [18]. In another work, Grinter [19] discusses how 
software architects need to convince other members of the 
organization to “buy in” their design. The same phenomenon 
happens in this organization, where software architects bring in to 
the API design review meeting the client and test teams, which 
need to approve the API. Indeed, software developers at this 
organization faced a dilemma: on one hand, they wanted to define 
APIs early in the process in order to allow independent work, 
however, on the other hand, they wanted to avoid making the API 
unstable, which could be avoided only by postponing the 
definition of this same API. Fowler [14] [11] suggests postponing 
the definition of APIs to avoid changes and the resulting 

instability, which on the other hand, does not allow independent 
work.  

In this section, we have contributed an interpretation of how 
recent research of ours and others in the fields of software 
engineering and computer-supported cooperative work help 
explain the issues seen in section 6 and point to encouraging 
directions. In the next section, we attempt to be even more 
specific about changes in support tools and practices for 
alleviating some of these problems. 

8. IMPLICATIONS FOR TOOLS  
We have discussed how APIs play an important role in the 
coordination of a collaborative software development effort. 
Moreover, we discussed how APIs are reification of 
organizational boundaries in the organization, therefore, at the 
same time, allowing and constraining collaboration among 
software developers of different teams. One of the reasons why 
they hinder collaboration is because they are used in such a way 
that do not allow software developers’ to be aware of their 
colleagues’ actions that might affect their work. Because not all 
actions are important, we argue that awareness tools need to be 
able to hide some details from software developers while at the 
same time, provide important information to let them align their 
work. This suggests that translucent approaches could be very 
useful in the design of collaborative software development tools 
[13]. As mentioned in the previous section, a translucent system 
makes people’s actions visible through intelligent user interfaces 
and thereby facilitate awareness among collaborators. Similarly, 
collaborative software development environments need to be able 
to make software developers’ actions visible to the subset of 
software developers “interested” in these actions. One way of 
identifying who are those “interested” software developers is by 
using the concept of APIs. For example, the API consumer needs 
to be aware of the actions of the corresponding API provider, so 
that they can both align their work and avoid problems during the 
integration. 

Furthermore, our field study also suggests how to go about 
deciding which information should be presented and which 
information should be hidden. Indeed, we argue that the source-
code itself contains this information because dependencies among 
pieces of software create social dependencies among software 
developers. For instance, dependencies among pieces of code 
exist because components make use of services provided by other 
components: let’s say that a component A uses the services of 
another component B, as a result, A depends on B. Assuming that 
A is being developed by a and B is being implemented by b, we 
similarly find that developer a depends on b. A data structure 
containing all the dependency relationships of a software 
application is called a call-graph, because it contains information 
of which components call other components. Information from 
this call-graph combined with authorship information could be 
used to create a “social call-graph” describing which software 
developers depend on which other software developers for a given 
piece of code.  

Figure 1 below presents an example of a “social call-graph” from 
a software development project being conducted at UCI called 
Ariadne. A directed edge from package A to B indicates a 
dependency from package A to package B, meaning that classes 
inside package A request services from classes inside package B. 

7



Directed edges between authors and packages indicate authorship 
information. Note that authors are leaves in this graph.  

 

Figure 1: An example of a “social call graph” 

Unfortunately, current software development tools have only 
focused on the call-graph itself, that is, information from this 
“social call-graph” has not been explored yet. We argue that this 
graph is a potential resource that could be used for a variety of 
purposes. For example, this “social call-graph” could be used to 
provide more selective information about software developers’ 
actions. In our previous example, developer a needs to be aware 
of b’s actions regarding changes in the interface of the component 
B. That is, if b changes the implementation of the services that B 
provides, there is no need inform a of these changes. Furthermore, 
this “social call-graph” could be used by software developers to 
identify other developers with similar interests, as in the situation 
described in section 6.3. This approach is very similar to the one 
adopted in the ExpertiseBrowser system [29], that provides 
expertise identification based on the number of changes that one 
committed to the file. 

Because of the information that they make have available, “social 
call-graphs” could easily be transformed in social network graphs, 
where the relationship among software developers is a 
dependency relationship. In order to do that, one only needs to get 
the dependency relationships among components and use them do 
describe dependency relationships among the authors’ of these 
components. Figure 2 below presents an example of a “social call-
graph.” This example is based on information collected from the 
MCW team through our interviews and non-participant 
observation. Members of the client team are represented by cN, 
where N is an integer from 1 to 8. Similarly, members of the 
server team are represented by sN and test by tN. The other letters 
(n, d and a) indicate other teams in the organization. Arrows 
indicate dependency relationships from the source to the target of 
the arrow. 

 

 

Figure 2: An example of a social network graph describing 
dependency relationships among software developers 

The social-call graph approach could also be used to help support 
the human-to-human collaboration such as found in agile 
approaches, like such as Extreme Programming (XP)[3] and Test 
Driven Development (TDD)[4]. These approaches promote more 
collaboration through practices like pair programming and stand-
up meetings, asking developers to interact and work together 
more often. For a company that is not using these approaches or 
that is having problems promoting the technique, the social-call 
graph could be an initial step to facilitate this transition and or 
adoption. Furthermore, these approaches can benefit from our 
“social-call graph” because they assume the pre-existence of a 
closely-knit group of people (or team) that is interacting often. 
However, this assumption does not always hold, since some 
groups might be distributed, the project may evolve requiring 
different kinds of expertise, team requirements may change 
during prototyping, development, and maintenance phases 
requiring new people being integrated to the team, and so on. 
Indeed, recent research in software development teams reveals 
that there is a large disagreement about team boundaries in 
distributed and collocated settings [30].  

An organization interested in practicing XP, TDD, or other agile 
approaches as well as other software development organizations 
may benefit from the “social call-graph”, because it can provide 
valuable information to facilitate these approaches such as:  

• which pieces of code will be impacted by one change; 

• who are the software developers that need to be notified 
about this same change;  

• who are the most active users of one particular module 
being refactored; 

• who are the most proficient developers of a module 
being refactored; 

• identification the “right” people to complete the missing 
"expertise" in the group, and so on.  

Note that some of the conditions described before, distributed 
development, different expertise needed, etc are not exclusive of 
organizations practicing XP, TDD or other agile approaches. 
Therefore, we believe that other organizations can also benefit 
from our the “social call-graph” approach. 

Finally, we argue that APIs should be considered first-level 
programming constructs, which means that tool support for 

8



publication, versioning, diffing, and updating of APIs is 
necessary. Of course, configuration management tools can easily 
perform these operations in individual and in set of files. 
However, these same tools do not provide support for these 
operations in large set of files, such as APIs. It is important to 
notice that some open-source projects are beginning to address 
this problem (e.g., see Jdiff at http://www.jdiff.org/ and 
DependencyFinder at http://depfind.sourceforge.net/). 
Furthermore, because of their role as an instrument that facilitates 
communication among software developers, we also argue that 
APIs should be given graphical representations, so that they can 
be designed and discussed and modeled in modeling languages 
such as UML [34]. Hence, cooperative software development 
tools could use this information to notify API consumers when 
changes in APIs were performed, as well as inform API providers 
about the severity of their changes in the API.  

9. CONCLUSIONS AND FUTURE WORK  
The notion of APIs is a well known widely used concept in 
software engineering. APIs are constructs that implement the 
principle of information hiding, which aims to create well-defined 
interfaces between two pieces of software to minimize the 
dependency between them. We performed a field study of a 
software development project that relied on APIs both for 
technical design as well as social coordination. We observed 
several beneficial roles of APIs that confirmed expected uses. 
Namely, APIs served as contracts among stakeholders, 
reifications of organizational boundaries, and as a common 
language among software developers. However, we also observed 
various limitations of APIs including information overload, 
instability, integration problems, and lack of awareness. Just as 
researchers have begun to address the issue of openness with 
respect to algorithmic aspects of software components, we 
suggest using concepts of social translucence and awareness to 
open up software components in a way supportive of 
collaborative software development.  

10. ACKNOWLEDGMENTS 
The authors thank CAPES (grant BEX 1312/99-5) and 
NASA/Ames for the financial support. Effort sponsored by the 
Defense Advanced Research Projects Agency (DARPA) and Air 
Force Research Laboratory, Air Force Materiel Command, USAF, 
under agreement number F30602-00-2-0599. Funding also 
provided by the National Science Foundation under grant 
numbers CCR-0205724, 9624846, IIS-0133749 and IIS-0205724. 
The U.S. Government is authorized to reproduce and distribute 
reprints for governmental purposes notwithstanding any copyright 
annotation thereon. The views and conclusions contained herein 
are those of the authors and should not be interpreted as 
necessarily representing the official policies or endorsements, 
either expressed or implied, of the Defense Advanced Research 
Projects Agency (DARPA), the Air Force Laboratory, or the U.S. 
Government. 

11. REFERENCES 
[1] "Application Programming Interfaces," vol. 2004: Software 

Engineering Institute - Carnegie Mellon University, 2003. 
[2] Barthelmess, P. and Anderson, K. M., "A View of Software 

Development Environments Based on Activity Theory," 
Computer Supported Cooperative Work (CSCW) - Special 

Issue on Activity Theory and the Practice of Design, vol. 11, 
pp. 13-37, 2002. 

[3] Beck, K., Extreme Programming Explained: Embrace 
Change: Addison-Wesley, 1999. 

[4] Beck, K., Test-Driven Development by Example: Addison 
Wesley, 2003. 

[5] Cheng, L.-T., De Souza, C. R. B., et al., "Building 
Collaboration into IDEs. Edit -> Compile -> Run -> Debug -
>Collaborate?," in ACM Queue, vol. 1, 2003, pp. 40-50. 

[6] Cheng, L.-T., Hupfer, S., et al., "Jazzing Up Eclipse with 
Collaborative Tools," OOPSLA Workshop on Eclipse 
Technology eXchange, pp. 45-49, Anaheim, CA, USA, 
2003. 

[7] Curtis, B., Krasner, H., et al., "A field study of the software 
design process for large systems," Communications of the 
ACM, vol. 31, pp. 1268-1287, 1988. 

[8] de Souza, C. R. B., Redmiles, D., et al., "Management of 
Interdependencies in Collaborative Software Development: 
A Field Study," International Symposium on Empirical 
Software Engineering (ISESE'2003), pp. 294-303, Rome, 
Italy, 2003. 

[9] de Souza, C. R. B., Redmiles, D. F., et al., ""Breaking the 
Code", Moving between Private and Public Work in 
Collaborative Software Development," International 
Conference on Supporting Group Work (GROUP'2003), pp. 
105-114, Sanibel Island, Florida, USA, 2003. 

[10] des Rivieres, J., "Eclipse APIs: Lines in the Sand," in 
EclipseCon, vol. 2004, 2004. 

[11] des Rivieres, J., "How to Use the Eclipse API," vol. 2004. 
[12] Dourish, P. and Bellotti, V., "Awareness and Coordination in 

Shared Workspaces," Conference on Computer-Supported 
Cooperative Work (CSCW '92), pp. 107-14, Toronto, 
Ontario, Canada, 1992. 

[13] Erickson, T. and Kellogg, W. A., "Social Translucence: An 
Approach to Designing Systems that Support Social 
Processes," Transactions on HCI, vol. 7, pp. 59-83, 2000. 

[14] Fowler, M., "Public versus Published Interfaces," IEEE 
Software, vol. 19, pp. 18-19, 2002. 

[15] Fuggetta, A., "Software Processes: A Roadmap," Future of 
Software Engineering, Limerick, Ireland, 2000. 

[16] Ghezzi, C., Jazayeri, M., et al., Fundamentals of Software 
Engineering: Prentice Hall, 1991. 

[17] Grinter, R., Herbsleb, J., et al., "The Geography of 
Coordination: Dealing with Distance in R&D Work," ACM 
Conference on Supporting Group Work (GROUP '99), 
Phoenix, AZ, 1999. 

[18] Grinter, R. E., "Recomposition: Putting It All Back Together 
Again," Conference on Computer Supported Cooperative 
Work (CSCW'98), pp. 393-402, Seattle, WA, USA, 1998. 

[19] Grinter, R. E., "System Architecture: Product Designing and 
Social Engineering," Work Activities Coordination and 
Collaboration, pp. 11-18, San Francisco, CA, USA, 1999. 

[20] Grinter, R. E., "Using a Configuration Management Tool to 
Coordinate Software Development," Conference on 
Organizational Computing Systems, pp. 168-177, Milpitas, 
CA, 1995. 

[21] Heath, C. and Luff, P., "Collaboration and Control: Crisis 
Management and Multimedia Technology in London 
Underground Control Rooms," Computer Supported 
Cooperative Work, vol. 1, pp. 69-94, 1992. 

9



[22] Hutchins, E., Cognition in the Wild. Cambridge, MA: The 
MIT Press, 1995. 

[23] Hutchins, E., "How a Cockpit Remembers its Speeds," 
Cognitive Science, vol. 19, pp. 265-288, 1995. 

[24] Jorgensen, D. L., Participant Observation: A Methodology 
for Human Studies. Thousand Oaks: SAGE publications, 
1989. 

[25] Kiczales, G., "Beyond the Black Box: Open 
Implementation," IEEE Software, vol. 13, pp. 8-11, 1996. 

[26] Kiczales, G., Lamping, J., et al., "Open Implementation 
Design Guidelines," International Conference on Software 
Engineering, pp. 481-490, Boston, MA, USA, 1997. 

[27] Larman, G., "Protected Variation: The Importance of Being 
Closed," IEEE Software, vol. 18, pp. 89-91, 2001. 

[28] McCracken, G., The Long Interview: SAGE Publications, 
1988. 

[29] Mockus, A. and Herbsleb, J. D., "Expertise Browser: A 
Quantitative Approach to Identifying Expertise," 
International Conference on Software Engineering, pp. 503-
512, Orlando, FL, USA, 2002. 

[30] Mortensen, M. and Hinds, P., "Fuzzy Teams: Boundary 
Disagreement in Distributed and Collocated Teams," in 
Distributed Work: New Research on Working across 
Distance Using Technology, P. Hinds and S. Kiesler, Eds.: 
MIT Press, 2002, pp. 283-308. 

[31] Nutt, G. J., "The evolution toward flexible workflow 
systems," Distributed Systems Engineering, pp. 276-294, 
1996. 

[32] O'Reilly, C., Morrow, P., et al., "Improving Conflict 
Detection in Optimistic Concurrency Control Models," 11th 
International Workshop on Software Configuration 
Management (SCM-11), Portland, Oregon, 2003 (to appear). 

[33] Parnas, D. L., "On the Criteria to be Used in Decomposing 
Systems into Modules," Communications of the ACM, vol. 
15, pp. 1053-1058, 1972. 

[34] Rumbaugh, J., Jacobson, I., et al., The Unified Modeling 
Language Reference Manual. Reading, MA: Addison 
Wesley Longman, Inc, 1999. 

[35] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness 
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering, pp. 
444-453, Portland, Oregon, 2003. 

[36] Strauss, A. and Corbin, J., Basics of Qualitative Research: 
Techniques and Procedures for Developing Grounded 
Theory, Second. ed. Thousand Oaks: SAGE publications, 
1998. 

[37] Teasley, S., Covi, L., et al., "How Does Radical Collocation 
Help a Team Succeed?," Conference on Computer Supported 
Cooperative Work, pp. 339-346, Philadelphia, PA, USA, 
2000. 

 

10


