RC23310 (W0408-138) August 27, 2004
Computer Science

IBM Research Report

How a Good Software Practice Thwarts Collaboration -
The Multiple Roles of APIs in Software Development

Cleidson R. B. de Souza
Universidade Federal do Para
Dapartmento de Informatica
Belém, Para, Brasil
and
University of California at Irvine

David Redmiles
University of California at Irvine
Department of Informatics
Irvine, CA

Li-Te Cheng, David Millen, John Patterson
IBM Research Division
One Rogers Street
Cambridge, MA 02142

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

How a Good Software Practice Thwarts Collaboration —
The multiple roles of APIs in Software Development

Cleidson R. B. de Souza'?
'Universidade Federal do Para
Departmento de Informéatica
Belém, Para, Brasil
55-91-211-1405

cdesouza@ics.uci.edu

David Redmiles?
University of California, Irvine
Department of Informatics
Irvine, CA, USA
1-949-824-3823

redmiles@ics.uci.edu

%|BM T. J. Watson Research Center
Collaborative User Experience Group
Cambridge, MA, USA
1-617-577-8500

ABSTRACT

The principle of information hiding has been ven§luential in
software engineering since its inception in 197BisTprinciple
prescribes that software modules hide implementatietails
from other modules in order to decrease their d@pendencies.
This separation also decreases the dependency asuftwgare
developers implementing modules, thus simplifyingne aspects
of collaboration. A common instantiation of thisrmiple is in the
form of application programming interfaces (APIsWe
performed a qualitative study on how practitionese APIs in
their daily work. Although particularly interestéd aspects of
collaboration, we report all findings about theliserved use. The
findings include mundane observations that are igied by
theory, ways that APIs support collaborative sofeva
development. But the findings also include somgrises, ways
that APIs hinder collaboration. The surprises iathcdirections
for further improvement of collaborative softwarevdlopment
practices and tools.

Categories and Subject Descriptors
D.2.9 Managemeni{: D.2.11 [Software Architectures: H.4.1

[Office Automation]: Groupware; H.5.3 Group and
Organization Interfaces]: Computer-supported cooperative
work;

General Terms
Human Factors

Keywords
Empirical software engineering, qualitative studi@gterfaces,
application programming interfaces.

1. INTRODUCTION

It has been long recognized that breakdowns in caomiration

and coordination efforts constitute a major probleim

collaborative software development [7]. One of tbasons is the

{li-te chenq, david r millen,
john pattersont@us.ibm.com

large number of interdependencies among activiiiesthe
software development process, among different soéhartifacts,
and finally, within different parts of the same ifadt. To
overcome this problem, the field of software engmeg has
developed tools, approaches, and principles to deih

interdependencies. Configuration management ang-isacking
systems are examples of such tools, while the amopof

software development processes ([31],[2], and [Expmplifies
an organizational approach [8, 9]. One of the nmogbrtant and
influential examples principles used to manage déercies is
the idea of information hiding proposed by Parn&3].[
According to this principle, software modules shbiile both
“open (for extension and adaptation) and closed gtwid

modifications that affect clients)” [27]. Informati hiding aims to
decrease the dependency (or coupling) between tedul®s so
that changes to one do not impact the other. Thiiple is

instantiated as several different mechanisms ingraraming
languages that provide flexibility and protectiaori changes,
including, data encapsulation, interfaces, andmpolphism [27].
In particular, separating interfaces specificatioinem their
implementation is a growing trend in software desid4].

Furthermore, interface specifications are belieteede helpful in
the coordination of developers working with differeomponents
[17]:

“(...) interface specifications play theell-known role
of helping to coordinate the work between developér
different components. If the designers of two
components agree on the interface, then desigmeof t
internals of each component can go forward reldyive
independently. Designers of component A need not
know much about the design decisions made about
component B, so long as both sides honor their-well
specified commitments about how the two will hook
together.”[emphasis added]

APIs (application programming interfaces) are a icmm way of
hiding component specification and implementatietads from
users of those components (e.g. see [10]). Theycanmemonly
used in the industry to divide software developmerdrk,
including distributed software development, and are widely
regarded as “the only scalable way to build systéwm semi-
independent components” [17].

This paper describes an empirical study that wdopeed on
how practitioners use APIs in their daily work. Hdugh
particularly interested in aspects of collaboratioe report all
findings about their observed use. The findingsgearirom

Li-Te Cheng® David Millen® John Patterson®

mundane observations that are predicted by theputprising
observations. As predicted by theory, APIs servec@stracts
among stakeholders, reifications of organizatiomaundaries,
and asa common language among software develogdarthese
ways, APIs support developers collaborating on anrmon
project yet allow them to work independently in l&mn.
However, there is a surprising side effect we olesdrthat the
isolation hinders some forms of collaboration, igatarly among
members of different teams. Therefore, we thinlk ioteworthy
to know that API's do not only have beneficial posps.

The rest of the paper is organized as follows. et section
reviews concepts surrounding APIs and explains tmption by
industry. After that, section 3 presents the redeaite studied
and methods that we used in our study. Then, Sedtidescribes

normally supported by the constructs of programniémgyuages.
Typically, in a programming language such as Jama,API

corresponds to a set of public methods of classdsiraerfaces,
and the associated documentation (in this casaed@vfiles). In
the rest of the text, we will use the terms componeodule and
software applications indistinctly, since they dat thange the
purpose of using APIs.

The word interface in the abbreviation is used to explicitly
indicate that APIs are constructs that exist inlithendaries of at
least two different software applications or comgmats. These
two (or more) applications are often developed iffieient teams,
and hardly ever individuals. An example of a weiblvn API is
the Microsoft Windows API that allows a programatccess and
use resources of the underlying operating systeoh s file

how the organization and teams we observed go aboutsystem, scheduling of processes, and so on.

developing, using, and maintaining APIs. Sectioddscribes the
multiple roles played by APIs in a collaborative fta@re

development process. Section 7 and 8 respectivislyuss the
data collected and the implications of our findingshe design of
CSCW tools. Finally, conclusions and ideas for fatwork are
presented.

2. APPLICATION PROGRAMMING
INTERFACES

In order to understand the concept of applicatioogmamming
interfaces, we need to understand a couple of itapbsoftware
engineering principles first. Separation of conegffor example,
is one the most important principles in softwargieeering that
allow one to deal with different individual aspeofsa problem,
so that it is possible to concentrate on each agglgir When
different parts of the same system are dealt sepprave are
talking about a type of separation of concerns mamedularity
[16]. Modules should be designed according to tifermation
hiding principle proposed by Parnas [33]. Accorditg this
principle, software modules should be both “opew @éxtension
and adaptation) and closed (to avoid modificatitimst affect
clients)” [27]. This principle is instantiated inrggramming
languages as several
encapsulation, interface specifications, and polyhism [27].
An application programming interface (API) is defih by the
Software Engineering Institute as:

Application Programming Interface (API) is an older
technology that facilitates exchanging messagetata
between two or more different software applicatioki3| is
the virtual interface between two interworking eafte
functions, such as a word processor and a spreadshe
An APl is the software that is used to supportesystevel
integration of multiple commercial-off-the-shelfdTS)
software products or newly-developed software into
existing or new applicatiornd].

Although the definition above presents APIs asrfates between
software applications, among professional softveargineers the
term API is coming to mean any well-defined intedfathat
defines the service that one component, modulegpptication
provides to others software elements. Thereforeywileadopt a
more loose definition of an APl as proposed by Rirgeres [10]:
an API is a well-defined interface that allows oseftware
component to access programmatically another coergamd is

different mechanisms such aa d

APIs are largely adopted by industry because thgpart the
separation of interface from implementation, a gngwtrend in
software design [14]. The main advantage of thizr@gch is the
possibility of separating modules into public (Bl itself) and
private (the implementation of the API) parts sarudes to the
private part can be performed without impacting piodblic one.
That is, modularity, and consequently separatiocafcerns, is
achieved.

In the rest of the text, we adopt the te#® consumerandAPI
producers APl consumersare software developers who write
code with method calls to an API, aA®| producersare software
developers who write the APl implementation.

An important aspect of any API g&ability. A stable API is not
subject to frequent changes, therefore leveragdey pgromised
independence between the API producers’ and corrstzde.
Changes in the API itself require changes in thé édhsumers’
code because this code uses services providedebpRh This
situation might become problematic if changes oAl happen
too often. Therefore, according to one software higect
interviewed, APIs tend to be something well-thought out, and set
in stone” so that they are regarded as contracts withctiemts
(see section 5.1). As a result, APl consumers éxpet the API
will not change often, and if it does happen, th&sp expect that
these changes will not severely affect them. Reeemtk in
software engineering tries to provide advice on hovproperly
change APIs so that the impact of those changesingnized
[11] [14].

3. RESEARCH SITE AND METHODS

Our fieldwork was conducted in a software develophoempany
that we will call BSC (a pseudonym). BSC is onethed largest
software development companies in the United Statéh
products ranging from operating systems to softwdaseelopment
tools, including e-business and tailored applicwtioThe project
studied, called MCW (another pseudonym), is resiptasor
developing a client-server application that had met been
released during the period of the study. The ptg&df includes
57 software engineers, user-interface designerstwa®
architects, and managers, who are divided into fiNféerent
teams, each one developing a different part oafi@ication. The
teams are designated as follows: lead, client, eserv
infrastructure, and test. The lead team was comgrisf the
project lead, development manager, user interfasggders, and

so on. The client team was developing the cliede sf the
application, while the server team was developirgderver side
of it. The infrastructure team was working in théared
components to be used by both the client and seweams.
Finally, the test team was responsible for theiguaksurance of
the product, testing the software produced by theraeams.

The MCW project (including its teams) is part of larger
company strategy focusing on software reuse. Tthigegy aims
to create software components (each one developeddifferent
project) that can be used by other projects (teams}the
organization. Indeed, the MCW project uses sevasaiponents
provided by other projects, which means that memiwérthe
MCW teams need to interact with other software tgpars in
other parts of the organization.

Regarding the data collection, we adopted non-@pant
observation [24] and semi-structured interviews],[2&hich
involved the first author spending 11 weeks at fiedd site.
Among other documents, we collected meeting inoites,
product requests for software changes, and emails iastant
messages exchanged among the software engineemseWealso
granted access to shared discussion databases hysetie
software engineers. All this information was usedaddition to
field notes generated by the observations and vietes. We
conducted 15 semi-structured interviews with memloérall four
sub-teams. The questions were designed to encoutiage
participants to talk about their everyday work, lilding work
processes, problems, tools, collaboration and ¢oatidn efforts,
and so on. Interviews lasted between 35 and 90tesnAll the
material collected has been analyzed using grourttiedry
techniques [36]. The grounded theory approach dailftsan
interplay between data gathering and analysis teeldp an
understanding of what is going on in the field amdpst
important, the reasons that explain what is goimg As the
fieldwork progresses, hypotheses are generatedtestdd and
modified according to the ongoing analysis of theadbeing
collected. During our fieldwork, we eventually riezeld the

fundamental role of APIs in the management of the

interdependencies. Accordingly, we collected mar®rmation

about this aspect in order to verify whether we tiaderstood the
software developers’ work. Finally, the intervieweprovided

feedback on our interpretation of the roles of AiRlghe process.
This feedback was fundamental to improving our ustd@ding

of their work.

4. THE DEVELOPMENT OF APIs

4.1 The Organizational approach to APIs

At the time of the study, BSC had recently adopestrategy of
developing reusable software components. Each aoftw
component would have a public and stable API thinowbich its
consumers could access the set of services provigedhat
component. APIs need to Ipeiblic to allow other components to
access the services its underlying component pesvidihey also

need to bestable, that is, they cannot change very often.
Otherwise, the expected reduced coupling betweenl AP

consumers’ and producers’ code is not achieved.ifipertance
of APIs in the coordination of the software deveiapwas clearly
recognized by members of the software developrearmt who
agreed,"APIs are the heart of the whole exerciseds another
member of the server team confirmed:

“Our only work is to make these APIs work ... the
client team’qwork] is to consume the APIs and create
user interfaces.

Each software component and its respective API wexeloped
by a different project team, and could be used ttweroprojects
teams in the organization. Most projects implemerdéferent

sets of services, therefore implementing severalsABespite
their willingness to reuse software componentder#ht teams in
the company developed different software componehtst

provided similar sets of services. For example, t@a@n would
provide access to email services implemented in parécular

platform. Another team would also provide accessetoail

services in a different platform. In this case, sthesoftware
components would provide similar APIs. To guarartes APIs

were consistent and that software components welexd reused
throughout the organization, each project team aasbftware
architect responsible for the specification of thels. Weekly

meetings of the organization’s software architegése used to
monitor this work.

4.2 The Development of APIs

Despite these meetings, the organization had nabledied
formal process to create, implement, deploy, anthtaia APIs.

In one of the meetings that we observed, develofenn
different groups discussed the lack of recommeondatby the
software architects on how to proceed when facingh dssues.
As one developer pointed outAlt APIs need to look, feel, and
smell the sam&.This lack of an established process had already
been identified by the software architects and stasting to be
discussed in the software architects’ weekly mestin

Although there was no formal process, an infornrakcpss was
adopted by members of the MCW project. In this cabe
majority of the APIs were developed by the seneam, who
provided services to be used by the client tearohBae of these
APIs was specified by the server software archiéschecessary.
After an APl was specified, it was discussed by ititerested
parties in a formal design review meeting. Theolwihg people
were invited to this meeting: the APl consumerse tAPI
producers, and the test team that eventually wdekt the
software component functionality through this ARnother
purpose of this meeting was to guarantee that tRe rAet the
requirements that the client team had and to make that API
consumers understood how to use it.

4.3 “Local” and “Remote” APIs

Once APIs are reviewed, they are made availableutir the

configuration management tool to their consumessmfentioned
before, APIs are composed of sets of public classesfaces and
methods, and the associated documentation (ircétss, javadoc
files). Besides that, the software architect definithe API

provides a shallow implementation of the API fae 8ole purpose
of allowing the client team to immediately starobgramming

against this API. According to one software arddtite

“The first-pass delivery (...) is a shallow
implementation, just enough to start some workitout
does not really flesh out anything.”

Software developers would refer to these implentamts as
local APIs in contrast toremote APIs, which are the APIs
implemented by the server team. These APIs areda#mote
because when the application is released, theybwilbcated in a

remote machine. That is, the local and the remd®és Aare the
same; the distinction between them is solely basadthe
functionality provided by the current implementatio

Periodically, API providers replace parts of thisallow API
implementation by its real implementation often dshson
suggestions provided by and needs of the API coasurand
according to the planned schedule:

“(...) when it[the implementationis ready, | replace
the dummy code for the real implementdtion

By adopting this approach, the organization cowdgasate the
work that each team needs to perform and tempgreginove
dependencies between the teams: the client team stam
implementing against the local API, while the serteam can
start implementing the (real) remote API. Work cexwv proceed
in parallel. Hopefully, replacing local APIs by rete APIs is a
simple matter. However, our data shows that thatpsoblematic
aspect. These problems are discussed in sectibhesfollowing

section describes the multiple roles played by AR in this

particular team and organization.

5. THE MULTIPLE ROLES OF APIs

The previous sections described how APIs are uggtidoMCW
project team and other parts of the organizationoider to
manage their interdependencies and successfullyecate. Using
grounded theory techniques we analyzed our fielgsiand the
transcribed interviews to find out that the roleattAPIs play in
the software development process. We found that peey three
different roles; each one of them is describedwelo

5.1 APIs as Contracts

API review meetings exemplify the first and foremomportant
role of any API: to establish a defined interfaceoag, at least,
two worlds. That is, APIs areontractsestablished between two
parties. As such, they allow each party to go aloirig its work
while minimizing the coordination needs betweennth®uring
the design review meetings, API producers, conssimesters
and other interested parties are all gathered tiegeb reach a
consensus about how the API is going to look likéer this
meeting, each party can work independently becdhsg all
expect that the established contract is going teulidled. These
meetings are also “coordination events” for all twafe
developers interested in a particular API. Foranse, members
of the test team meet the developers who will immglet the API.
Later, testers will email information to these ARRbviders about
how the APIs are going to be tested, with the intdravoiding
minor integration problems that could delay the edepment
schedule. On the other hand, if the scope of the=stings is too
wide, they might be problematic. One software eegin
interviewed informed us thattie larger the audience, the wider

the type of questiohsin a similar fashion, members of the server

team reported that client team developers wanntterstand too
many implementation details of the APIs, insteadagsing in
the “big picture” and using the meeting for clardiions purposes
only.

Seeing APIs as contracts also allows one to ndime& APIs
specify the set of services a component is goingravide.
Because they are the only updated document congpittie
description of the services to be provided by a pament, they

often play the important role of specification domnts.
According to one of the developers:

“I've never seen a technical spec that describes
functional requirements that has been implemented
without changes.

“(...) while you're developing code, everything can
change:

Official specification documents, because of timespure and
other constraints, are often outdated. Indeed, rees software
developer noticed, some teams would even writer thgeécs as
APIs calls. In several occasions during our fieldkycsoftware
engineers were observed inspecting the APIs trionfigure out
the services offered by a component. Later, thisepkation was
confirmed during the interviews.

The role of APIs as specification documents wagwdent that
one developer during an interview reported that sARIre
equivalent to functional requirements: they descsmall pieces
of work, function calls and how to aggregate them do
something useful. He even defined APIs in regartetpuirement
specification documents: “[ajvell defined set of interfaces to
allow the requirements to be rhet

5.2 APIs as Organizational Boundaries

Each software component being developed by thentration
might provide different services, which will be neaeccessible
through different APIs. This means that APIs areppsefully
created to be the external boundaries of a compoBsTause
each software component is implemented by a ungpievare
development team, APIs also define the necessasrfaces
between these software development teams. APIdeahought
as boundaries of the teams: they define the liofitwhat can be
known about and what needs to be done by each ®aimg an
APl provider means to be a member of the team who i
implementing this API, and consequently to undestdts
implementation details. On the other hand, to b&Rhconsumer
means to be part of a different team, which doeésaed to know
the APl implementation detallsAPIs are then reifications of the
already established team structures. That is, ARy
organizational boundaries: any two given teams thetd to
interact_{.e., that their code needs to interact with eattier)in
the organization will do so through the approprisgt of APIs
that will integrate their software components.

Typically, complex components need to interact wsthveral

other components, meaning that several APIs wiltliate the

cooperation among members of these two teamsnBtarice, the
architects that we interviewed reported that ttaeee at least, six
different APIs mediating the work between the MCli¢rat and

server teams. In addition, each one of these teamesled to
interact with other teams in the organization bseauheir

components needed to somehow interact.

! Sometimes APIs are used to coordinate the workoétivare
developers in the same team. That is, dependendifin a
software development team might be handled thrahghusage
of APIs. However this is the exceptional case.

5.3 APIs as Communication mechanisms

Finally, APIs allowed the software developers ti& &bout their
work while performing it. More specifically, it alved them to
talk about their dependencies. For example, theviatg quote
resumes the division of labor between the client sarver teams:

“our only work is to make these APIs work ... themdi
team’s[work] is to consume the APIs and create user
interfaces” [member of the server team]

This is a typical thing among software developevkp find it

useful to associate components with the teams deve them
[18]. In this case, teams are associated with tRks Ahat they are
developing.

6. ON THE LIMITATIONS OF APIs

This section describes some problems that the ME&Wéqt team
faced during this field study. We describe theseblams
according to the role played by the APIs. The finsee problems
were associated with the contractual nature of ARtsile the

fourth one is associated with the fact that APlinfogce

organizational boundaries. Each one of these pmblas

discussed below.

6.1 Instability

An important feature of any contract, and consetiyemy API,
is its stability, which means that APIs should cbange often
because when they change, its consumers need te chakges
in their code as well. In other words, changingA# has a high
impact because it potentially leads to severalrothanges in the
source code. Despite that and all the discussiantttkes place
during the API design (during the API review megs)) APIs do
change. As one would expect, these changes impdit A
consumers. For instance, the client team needpdate its code.
This situation might be more or less problematigeteling on the
type and amount of changes that occurred in the. AmI
minimize these problems, we observed that membeteserver
team (the API producers), before changing an ARtetrand
negotiate these changes with members of the dkamh (the API
consumers). Furthermore, we noticed that both tefom®ot adopt
any technical support to this: if there are toolsikable to
perform API versioning and diff, they are not uskey these
teams. Finally, our last observation is that in eamcasions the
clients would be notified about changes in the ARt the
changes to the API were not delivered to the clieam right
away. As explained before, this team needs thistAPke able to
use it as a “local” API, creating a temporary inelegence from
the server’'s team. In some cases, the change® tARh are not
spread in the organization. And since other tedsts @epend on
the set of services that the API makes availabie s$ituation
makes the design and implementation tasks muctehatd one
software developer reportedhis [the task of designing using an
evolving API]is a total moving targét

The instability of some APIs was so evident thatedigpers often
would ask questions like:l$ the [name] APl changing? They
would ask this question in their weekly meetingfobe starting
to work in the API in order to avoid problems. Thistability is
aggravated because current tools make it diffitaltidentify
changes in APIs.

Note that software developers acknowledge that Afled to
change and evolve, therefore recognizing the iabigt situation

where the API proposed in the design review isthetone that
will be ultimately implemented. According to one dhe
developers:

“I've never seen a technical spec that describes
functional requirements that have been implemented
without changes.

“while you're developing code, everything can chahg

Despite that, several developers reported probleitis changes
in the APlIs.

6.2 Incompleteness

APIs are widely used in this company to facilitatbe
coordination of teams of developers because ofatireed upon
common and well-defined interface that can be usedonnect
these teams’ source-code. The expectation thenhas the
integration should go smoothly. The following quéiem one of
the managers clearly reflects this expectatidh:we use[N]

weeks for integration, them we’re doing somethingng'’.

However, in reality, problems arise during the gnégion period.
In the MCW team, for example, several problems bappd
during the last organizationally scheduled intdagraperiod. This
situation led both the client and server teamsdopa a “pre-
integration” period before the official integratioperiod.
Furthermore, the manager of the server team dec¢@edsign a
new hire to perform “smoke tests” to minimize pbgsi
integration problems.

As mentioned before, the adoption of “local” andrtrote” APIs
is another approach adopted by the organizatidiadititate the
integration. However this approach is also limitedynly works
in the early stages of development becoming prosfenas work
progresses:

“I think ... this[the usage of dummy implementations]
works to some extent. But as you push further along
implementation dummy stuff starts not working.f&o,
example, the list displays stuff, just dummy stiodt,
works, but as soon as you want to open one of those
dummy stuff, there is no stuffy behind the dumuoify st
so the list can not hand off to the launcfmmponent]
that can not hand off to tHeomponent]...you can not
open up because there is really nothing that fars.&
matter of how deep does the dummy stuff goes. iVeu d
a really bit and then, there is no more there.itidkof
works in the start but as you go further along (...)"

In order to avoid this situation, assessment ofltiwal APIs is
performed by managers, software architects andwaodt
developers during their weekly meetings. The gsdlasically to
assess either if the “local” API can still be us@dork can
proceed independently) or if it is time to use themote” API
(work now has to be integrated). Sometimes, itoissjble to API
consumers to continue using the “local” APls, whiokans that
they will go on working without contacting their AProviders.
However, when the “remote” API is needed, the managill
contact the other team manager and suggest thedBumer to
contact his or her API provider. Note that therarnsassumption
here, which is that the APl consumer knows whodnisier API
provider is, which does not always hold. Indeed tioblem is
described in the next section.

The main reason why there are problems during ritegiation
period is that, despite the amount of effort sperthe design of
an API, it is necessarily incomplete. That is, &Pl Aefines the
syntactic aspects of an interface, however, it dogsprovide
enough details about its implementation, and sonesi these
details are necessary to the APl consumer [25] [26F the
discussion section). The important point then isw hthis
incompleteness increases the already existing @wiidn
problems in any collaborative software developnpeotess.

6.3 Lack of Awareness

APIs, and most generally interfaces, divide thekwugcessary to
develop software into two distinct parts: an ingrrpart

responsible for implementing the APl and an exterpart

responsible for using this same API. That is APdyr the

organizational structures that define the team Batias. Again,
this brings several advantages to the coordingpiatess (see
section 5.2). However, as a side effect of theatsmh provided by
APIs, we noticed that teams lacked awareness altbet teams’
work. In the MCW team, this problem was remedied thg

managers, who maintained constant and intensiventorication

about their teams’ progress and schedules. Additipn an

approach adopted by the MCW client and server teaas to

pair developers (one from each team) accordingaocAPls. That
is, for each server team member responsible foleimenting an
API, there was a client team member who was thawuoer for

that API. This organizational solution failed inng® occasions
because API consumers did not want to appear toréssuring
their server developer counterparts. Similarly, fasend out that
in the server team, some software engineers were@ware of

their client counterparts, i.e., those who wouldistome the API
they were implementing. According to the softwameh#aect

interviewed:

“In our team meeting yesterday and other ones...
people seem to be reluctant to talk to their conpaes
too much ... in the sense that they feel they're inagg
the other person ... and that is a problem because, |

mean, the reason why we are here ... the reason we’re

getting paid, we are developing a product and that
interaction needs to happen.”

One might think that this type of knowledge abotieit
counterparts is not necessary during the initiajas$ of software
development while team members might still be ablevork
independently. However, as a software architeabtpdi out, this
lack of awareness is still problematic:

“People thinking there's somebody else doing
somethindon the APl]land when, you knofthe API is

needed].. it is an empty void because they did not step

up and said: ‘I tried to identify my server coungart or
my client counterpart or if there is anyone. We got
problem here!™

Note that the API design review meetings play apdrtant role
in the coordination work because that is when alitvsare
developers interested in a particular APl meet maly

avoiding some of the problems described above. Wewehe
design of the API, and consequently the API degigniew
meetings, occur well-before anyone needs the ssvicovided
by the API. That is, often the implementation of Al will not

start right after its design review. Changes ingbe's roles and

assignments during the software development protesefore
remove this knowledge about API consumers and [mersu

In addition, by reifying organizational boundariBls indirectly

hindered the collaboration among members of diffeteams that
were not paired. For instance, another team inotiganization
was responsible for implementing a component thawiged

services for both the server and the infrastructeaen. Members
of these teams were not aware that they sharediémsendency
and were working in parallel in overlapping aspexftshis task.

One software engineer identified this issue anddeelcto talk to
the members of the other team so that they alldcalign their

efforts and avoid duplicate work.

7. Discussion

In general, the advantages and disadvantages of A#Y
supporting collaborative software development atated to the
independent work or isolation they create. Thisdnee isolation
is a common theme and a recurrent problem in softwa
engineering. For example, Grinter, Herbsleb andryP¢t7]
describe how software development projects cootéirtheir
efforts across multiple locations. One of the medidscribed by
these authors is called product structure and stewlards and
interface specifications as coordination mechani€me of the
problems faced by the projects adopting this modat that
components evolved independently making it hard atign
features during the integration period. In ourdistudy, while we
identified the same coordination role played by eiface
specifications (APIs), we found out that the indegence created
by these interfaces was seen in the organizati@naslvantage,
not as a problem. On a different approach, Sarmacaleagues
[35] discuss how configuration management toolspstipboth
good and bad isolation. Good isolation occurs ismthese tools
allow software developers to work independentlyhwitt being
affected by their colleagues’ work. Bad isolatiam the other
hand, happens when these tools decrease the assrsofevare
developers have of their colleagues’ relevant waitentially
leading to coordination problems. These authorsvdoa the
concept ofawarenesg12] to augment configuration management
tools with visualization of other developers’ adtes [35],
therefore supporting good isolation and minimizthg problems
of bad isolation. Awareness of others’ actions Hasen
recognized as an important aspect that facilitatesdination of
individuals in settings as varied as ship bridg22],[aircraft
cockpits [23], and transportation control rooms][Recent work,
including this present work, has shown the impartarof
awareness in software development efforts (see[29], [18],
and [37]). Some trials at supporting awarenessoftwsre tools
has begun as well (e.g., Jazz [5, 6], Palantir &t Night Watch
[32]). Closely tied to the work on awareness, Esgn and
Kellogg define a further refined conceptcial translucencgl3].
Their aim is to support the design of systems thapport
communication and collaboration among large grotipemple.
Translucent systems make people’s actions visiltleough
intelligent user interfaces and thereby facilitateareness among
collaborators.

One could argue that process centered softwarercemeents
[31],[2], and [15] support awareness and sociahditzcency
because these environments normally represent vduetements
(or software components) need to be delivered xb. iéowever,
these systems are not focused on revealing to amcipant

which other participants might be involved in aqess. Indeed,
the point of employing some of these systems igeteeralize or
hide such information which is seemingly not pestinto an
individual’s particular activity. In short, the leiof detail needed
with respect to the kinds of awareness and traasltic discussed
here may not be appropriate to process tools.

Notions such as translucency and awareness indieaie
alternative to simply delaying the definition of KP The
underlying idea is thatrivate workhaspublic consequenceand
vice-versa [9]. In this study, this means that wWark performed
by API providersimpactsthe APl consumers’ work (if the API
changes for example). And, at the same time, thg WBI
consumers’ use the API influence how the APl shobkl
designed by the API providers.

Interestingly, a distant analogy to social transha@y was once
discussed in the programming language and softeagmeering

arenas in the idea dafpen implementatio25] [26]. Namely,

Kizcales and colleagues recognized the need to rAfte less

opaque in a sense. They maintained that users fivase

components needed to know some information about
component’s implementation and not just its APbider to make
appropriate decisions about whether to use the ocoem and
how to use it. In these terms, our goal of suppgrimproved

collaboration would mean extending the concept p#nmess to
reveal the network of people relevant to makingisiens about
the API. This topic is discussed in more detailstlie next

section.

In their seminal field study of software developmémojects,
Curtis and colleagues observed the following proiste“the thin
spread of application domain knowledge, fluctuatirend
conflicting requirements, and communication botlgs and
breakdowns [7].” Our findings are primarily relatiedthe last two
issues because we carried out the study with asfoon
collaboration and communication issues. In thesgeas our
findings corroborate theirs, but in the contexttbé specific
coordination enabled by APIs. For example, theainitity of
APIs in the MCW team clearly reflects the issuecofiflicting
requirements.

Managers recognized the coordination effort requieintegrate
pieces of code provided by different developersone instance,
for example, the client manager recognized thateaeldper
would not be able to meet his schedule because &tk th
integrate his source code with source code provigjetivo other
different software developers, members of the s&emen. This
additional effort necessary to integrate differpigces of code
has already been identified by Grinter, who calléd
recomposition work: the work necessary to buildystesm from
its pieces [18]. In another work, Grinter [19] disses how
software architects need to convince other memloérghe

organization to “buy in” their design. The same mdm@enon
happens in this organization, where software agctstbring in to
the API design review meeting the client and tesints, which
need to approve the API. Indeed, software devetoperthis
organization faced a dilemma: on one hand, theytedato define
APIs early in the process in order to allow indefet work,
however, on the other hand, they wanted to avoikimyahe API
unstable, which could be avoided only by postponihg

definition of this same API. Fowler [14] [11] sugge postponing
the definition of APIs to avoid changes and theultesy

instability, which on the other hand, does notwliodependent
work.

In this section, we have contributed an interpretatof how
recent research of ours and others in the fieldssaffware
engineering and computer-supported cooperative woekp
explain the issues seen in section 6 and pointntmwwaging
directions. In the next section, we attempt to lvenemore
specific about changes in support tools and prestidor
alleviating some of these problems.

8. IMPLICATIONS FOR TOOLS

We have discussed how APIs play an important ralethie
coordination of a collaborative software developmeffort.
Moreover, we discussed how APIs are reification of
organizational boundaries in the organization, dfeee, at the
same time, allowing and constraining collaboratiamong
software developers of different teams. One of rdssons why
they hinder collaboration is because they are usetich a way
that do not allow software developers’ to be awafetheir

acolleagues’ actions that might affect their worlecBuse not all

actions are important, we argue that awareness toegd to be
able to hide some details from software developéibe at the

same time, provide important information to letrthalign their

work. This suggests that translucent approache$d dog very

useful in the design of collaborative software depment tools
[13]. As mentioned in the previous section, a thacent system
makes people’s actions visible through intelligaser interfaces
and thereby facilitate awareness among collabara®milarly,

collaborative software development environmentsirteebe able
to make software developers’ actions visible to subset of
software developers “interested” in these actidbee way of
identifying who are those “interested” software elepers is by
using the concept of APIs. For example, the APIscomer needs
to be aware of the actions of the corresponding gtBVider, so
that they can both align their work and avoid peoi$ during the
integration.

Furthermore, our field study also suggests how ®o atpout
deciding which information should be presented amich
information should be hidden. Indeed, we argue thatsource-
code itself contains this information because ddpeoies among
pieces of software create social dependencies amsofigiare
developers. For instance, dependencies among pidcesde
exist because components make use of serviceslpobby other
components: let's say that a componéntises the services of
another componem, as a resultA depends omB. Assuming that
A is being developed by andB is being implemented bly, we
similarly find that developen depends orb. A data structure
containing all the dependency relationships of dtwsoe
application is called a call-graph, because it aimst information
of which componentgall other components. Information from
this call-graph combined with authorship informatioould be
used to create a “social call-graph” describing aluhgsoftware
developers depend on which other software deveddpera given
piece of code.

Figure 1 below presents an example of a “sociddgrabh” from
a software development project being conducted @t thlled
Ariadne. A directed edge from package A to B inthsaa
dependency from package A to package B, meanirtgcthsses
inside package A request services from classedensackage B.

Directed edges between authors and packages iadiogorship
information. Note that authors are leaves in thépy.

C1 tsauing

O (seuirky 1 (zquing

edu.uci ios.ariadne.view.reports
[(cesouzay

[TG uciics atiadne

ey uciics.ariadne view bt

Jectu uci ics. ariadne|model.depfing
Cledu et ics ariadne preferences

O isquiry

O tsquirg [0 uci.ics. ariadne.ui popup actions

Wi cs.aradne model authorship.cvsmodel O souir

L jedu.uci.ics.ariadne view jung

BTl ics.ariadne. model O (etrainen

O tsouig (sauirk)

O (etesouza)
puLucLics aniadne api

O (cdesouzay

{TJpduuciics ariadne view

PUIIETICS anadneview tteemans

E ({cdesouza)

Figure 1: An example of a “social call graph”

O tetrainen

(Seuirk) 3 squirky

Unfortunately, current software development tookveh only
focused on the call-graph itself, that is, inforimatfrom this
“social call-graph” has not been explored yet. Wigue that this
graph is a potential resource that could be used feariety of
purposes. For example, this “social call-graph”lddoe used to
provide more selective information about softwaevelopers’
actions. In our previous example, developareeds to be aware
of b's actions regardinghangesn the interface of the component
B. That is, ifb changes the implementation of the services Bhat
provides, there is no need infoarof these changes. Furthermore,
this “social call-graph” could be used by softwakvelopers to
identify other developers with similar interests,ia the situation
described in section 6.3. This approach is venylainto the one
adopted in the ExpertiseBrowser system [29], thaidviges
expertise identification based on the number ohgea that one
committed to the file.

Because of the information that they make havelabiai, “social
call-graphs” could easily be transformed in sonetwork graphs,
where the relationship among software developers ais
dependency relationship. In order to do that, arlg peeds to get
the dependency relationships among components sstheam do
describe dependency relationships among the authbrhese
components. Figure 2 below presents an examplésfcal call-
graph.” This example is based on information cedddrom the
MCW team through our interviews and non-participant
observation. Members of the client team are reptesebycN,
where N is an integer from 1 to 8. Similarly, memsbef the
server team are representedsyand test byN. The other letters
(n, d and @) indicate other teams in the organization. Arrows
indicate dependency relationships from the souwdbé target of
the arrow.

n1

2 >R dl

»x al

Figure 2: An example of a social network graph desibing
dependency relationships among software developers

The social-call graph approach could also be usdgklp support
the human-to-human collaboration such as found giea
approaches, like such as Extreme Programming (XB){8 Test
Driven Development (TDD)[4]. These approaches prmmore
collaboration through practices like pair programgnand stand-
up meetings, asking developers to interact and wodether
more often. For a company that is not using thegeaaches or
that is having problems promoting the technique, sbcial-call
graph could be an initial step to facilitate thiansition and or
adoption. Furthermore, these approaches can beinefit our

“social-call graph” because they assume the pretexie of a
closely-knit group of people (or team) that is ratging often.
However, this assumption does not always hold, esibome
groups might be distributed, the project may evalgquiring

different kinds of expertise, team requirements nehange
during prototyping, development, and maintenanceaspb
requiring new people being integrated to the teang so on.
Indeed, recent research in software developmemhseveals
that there is a large disagreement about team laoiasdin

distributed and collocated settings [30].

An organization interested in practicing XP, TDD,ather agile
approaches as well as other software developmeainaations
may benefit from the “social call-graph”, becausean provide
valuable information to facilitate these approachgsh as:

« which pieces of code will be impacted by one change

« who are the software developers that need to hieabt
about this same change;

* who are the most active users of one particularuieod
being refactored;

« who are the most proficient developers of a module
being refactored;

« identification the “right” people to complete thessing
"expertise" in the group, and so on.

Note that some of the conditions described befdistributed
development, different expertise needed, etc ateexdusive of
organizations practicing XP, TDD or other agile a@thes.
Therefore, we believe that other organizations akso benefit
from our the “social call-graph” approach.

Finally, we argue that APIs should be consideredt-fevel
programming constructs, which means that tool sttppor

publication, versioning, diffing, and updating of P& is
necessary. Of course, configuration managemens wanh easily
perform these operations in individual and in sét fites.

However, these same tools do not provide suppartttiese
operations in large set of files, such as APIds limportant to
notice that some open-source projects are beginmingddress
this problem (e.g., see Jdiff ahttp://www.jdiff.org/ and
DependencyFinder at http://depfind.sourceforge.ngt/
Furthermore, because of their role as an instrutthexitfacilitates
communication among software developers, we algoeathat
APIs should be given graphical representationghab they can
be designed and discussed and modeled in modelimguages
such as UML [34]. Hence, cooperative software dgwalent
tools could use this information to notify APl consers when
changes in APIs were performed, as well as infoilph providers
about the severity of their changes in the API.

9. CONCLUSIONS AND FUTURE WORK

The notion of APIs is a well known widely used cept in

software engineering. APIs are constructs that émgint the
principle of information hiding, which aims to cteavell-defined
interfaces between two pieces of software to minémthe
dependency between them. We performed a field stfdn
software development project that relied on APIghbéor

technical design as well as social coordination. Wserved
several beneficial roles of APIs that confirmed exted uses.
Namely,
reifications of organizational boundaries, and ascanmon

language among software developers. However, veeadiserved

various limitations of APIs including informationverload,

instability, integration problems, and lack of aem@ss. Just as
researchers have begun to address the issue ohegsenvith

respect to algorithmic aspects of software comptmemwe

suggest using concepts of social translucence amdeaess to
open up software components
collaborative software development.

10. ACKNOWLEDGMENTS
The authors thank CAPES (grant
NASA/Ames for the financial support. Effort sponsdrby the
Defense Advanced Research Projects Agency (DARPA)Adr
Force Research Laboratory, Air Force Materiel Comuin& SAF,
under agreement number F30602-00-2-0599. Fundirep al
provided by the National Science Foundation undeantg
numbers CCR-0205724, 9624846, 11S-0133749 and 2&024.
The U.S. Government is authorized to reproduce disttibute
reprints for governmental purposes notwithstanding copyright
annotation thereon. The views and conclusions auedaherein
are those of the authors and should not be integras
necessarily representing the official policies ord@&sements,
either expressed or implied, of the Defense Advdrigesearch
Projects Agency (DARPA), the Air Force Laboratooythe U.S.
Government.

11. REFERENCES

[1] "Application Programming Interfaces," vol. 20@oftware
Engineering Institute - Carnegie Mellon Universi2p03.

[2] Barthelmess, P. and Anderson, K. M., "A ViewSiftware
Development Environments Based on Activity Theory,"
Computer Supported Cooperative Work (CSCW) - Specia

APIs served as contracts among stakeholders

in a way supportive of

BEX 1312/99-5) and

Issue on Activity Theory and the Practice of Designh. 11,
pp. 13-37, 2002.

[3] Beck, K.,Extreme Programming Explained: Embrace
Change Addison-Wesley, 1999.

[4] Beck, K., Test-Driven Development by ExampAeldison
Wesley, 2003.

[5] Cheng, L.-T., De Souza, C. R. B., et al., "Blinlg
Collaboration into IDEs. Edit -> Compile -> Run Bebug -
>Collaborate?," ilACM Queuevol. 1, 2003, pp. 40-50.

[6] Cheng, L.-T., Hupfer, S., et al., "Jazzing Ugifse with
Collaborative Tools," OOPSLA Workshop on Eclipse
Technology eXchange, pp. 45-49, Anaheim, CA, USA,
2003.

[7] Curtis, B., Krasner, H., et al., "A field study the software
design process for large systentSdmmunications of the
ACM, vol. 31, pp. 1268-1287, 1988.

[8] de Souza, C. R. B., Redmiles, D., et al., "Mgeraent of
Interdependencies in Collaborative Software Develept:
A Field Study," International Symposium on Empitica
Software Engineering (ISESE'2003), pp. 294-303, &om
Italy, 2003.

[9] de Souza, C. R. B., Redmiles, D. F., et aBr&aking the
Code", Moving between Private and Public Work in
Collaborative Software Development,” International
Conference on Supporting Group Work (GROUP'2008), p
105-114, Sanibel Island, Florida, USA, 2003.

[10] des Rivieres, J., "Eclipse APIs: Lines in &nd,"” in
EclipseConvol. 2004, 2004.

[11] des Rivieres, J., "How to Use the Eclipse ARgl. 2004.

[12] Dourish, P. and Bellotti, V., "Awareness ando€dination in
Shared Workspaces," Conference on Computer-Supporte
Cooperative Work (CSCW '92), pp. 107-14, Toronto,
Ontario, Canada, 1992.

[13] Erickson, T. and Kellogg, W. A., "Social Tramesence: An
Approach to Designing Systems that Support Social
Processes,Transactions on HClvol. 7, pp. 59-83, 2000.

[14] Fowler, M., "Public versus Published Interfa¢¢EEE
Software vol. 19, pp. 18-19, 2002.

[15] Fuggetta, A., "Software Processes: A Roadmiptlire of
Software Engineering, Limerick, Ireland, 2000.

[16] Ghezzi, C., Jazayeri, M., et dundamentals of Software
Engineering Prentice Hall, 1991.

[17] Grinter, R., Herbsleb, J., et al., "The Geqimaof
Coordination: Dealing with Distance in R&D Work,'CM
Conference on Supporting Group Work (GROUP '99),
Phoenix, AZ, 1999.

[18] Grinter, R. E., "Recomposition: Putting It Blck Together
Again," Conference on Computer Supported Coopexativ
Work (CSCW'98), pp. 393-402, Seattle, WA, USA, 1998

[19] Grinter, R. E., "System Architecture: ProdD&signing and
Social Engineering," Work Activities Coordinationca
Collaboration, pp. 11-18, San Francisco, CA, US394

[20] Grinter, R. E., "Using a Configuration ManagamhTool to
Coordinate Software Development,” Conference on
Organizational Computing Systems, pp. 168-177, it4ifp
CA, 1995.

[21] Heath, C. and Luff, P., "Collaboration and @oh Crisis
Management and Multimedia Technology in London
Underground Control RoomsComputer Supported
Cooperative Workvol. 1, pp. 69-94, 1992.

[22] Hutchins, E.Cognition in the WildCambridge, MA: The
MIT Press, 1995.

[23] Hutchins, E., "How a Cockpit Remembers its &t
Cognitive Sciencgevol. 19, pp. 265-288, 1995.

[24] Jorgensen, D. LRarticipant Observation: A Methodology
for Human StudiesThousand Oaks: SAGE publications,
1989.

[25] Kiczales, G., "Beyond the Black Box: Open
Implementation,'|EEE Softwarevol. 13, pp. 8-11, 1996.

[26] Kiczales, G., Lamping, J., et al., "Open Impkntation
Design Guidelines," International Conference ormaie
Engineering, pp. 481-490, Boston, MA, USA, 1997.

[27] Larman, G., "Protected Variation: The Imporearof Being
Closed,"IEEE Softwarevol. 18, pp. 89-91, 2001.

[28] McCracken, G.The Long InterviewSAGE Publications,
1988.

[29] Mockus, A. and Herbsleb, J. D., "Expertise Bser: A
Quantitative Approach to Identifying Expertise,"
International Conference on Software Engineeripg 503-
512, Orlando, FL, USA, 2002.

[30] Mortensen, M. and Hinds, P., "Fuzzy Teams: itary
Disagreement in Distributed and Collocated Teains,"
Distributed Work: New Research on Working across
Distance Using Technologf. Hinds and S. Kiesler, Eds.:
MIT Press, 2002, pp. 283-308.

[31] Nutt, G. J., "The evolution toward flexible vkélow
systems,'Distributed Systems Engineerirgp. 276-294,
1996.

[32] O'Reilly, C., Morrow, P., et al., "Improvingo@flict
Detection in Optimistic Concurrency Control Mod&ls]th
International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003 (teapp

[33] Parnas, D. L., "On the Criteria to be Used&composing
Systems into ModulesCommunications of the AGMol.

15, pp. 1053-1058, 1972.

[34] Rumbaugh, J., Jacobson, I., et 8he Unified Modeling
Language Reference Manu&eading, MA: Addison
Wesley Longman, Inc, 1999.

[35] Sarma, A., Noroozi, Z., et al., "Palantir: 8lag Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engiregrpp.
444-453, Portland, Oregon, 2003.

[36] Strauss, A. and Corbin, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory Second. ed. Thousand Oaks: SAGE publications,
1998.

[37] Teasley, S., Covi, L., et al., "How Does RadiCollocation
Help a Team Succeed?," Conference on Computer &eppo
Cooperative Work, pp. 339-346, Philadelphia, PAAUS
2000.

10

