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Abstract

This paper considers the problem of mining closed frequent itemsets over a data stream
sliding window using limited memory space. We design a synopsis data structure to mon-
itor transactions in the sliding window so that we can output the current closed frequent
itemsets at any time. Due to time and memory constraints, the synopsis data structure can-
not monitor all possible itemsets. However, monitoring only frequent itemsets will make it
impossible to detect new itemsets when they become frequent. In this paper, we introduce
a compact data structure, the closed enumeration tree (CET), to maintain a dynamically
selected set of itemsets over a sliding window. The selected itemsets contain a boundary
between closed frequent itemsets and the rest of the itemsets. Concept drifts in a data
stream are reflected by boundary movements in the CET. In other words, a status change
of any itemset (e.g., from non-frequent to frequent) must occur through the boundary.
Because the boundary is relatively stable, the cost of mining closed frequent itemsets over
a sliding window is dramatically reduced to that of mining transactions that can possibly
cause boundary movements in the CET. Our experiments show that our algorithm per-
forms much better than a representative algorithm for the sate-of-the-art approaches.
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1 Introduction

1.1 Motivation

Data streams arise with the introduction of new application areas, including ubiquitous com-
puting and electronic commerce. Mining data streams for knowledge discovery is important
to many applications, such as fraud detection, intrusion detection, trend learning, etc. In this
paper, we consider the problem of mining closed frequent itemsets on data streams.

Mining frequent itemset on static data sets has been studied extensively. However, data
streams have posed new challenges. First, data streams are continuous, high-speed, and un-
bounded. Archiving everything from streams is impossible, not to mention mining association
rules from them using algorithms that require multiple scans. Second, the data distribution
in streams are usually changing with time, and very often people are interested in the most
recent patterns.

It is thus of great interest to mine itemsets that are currently frequent. One approach
is to always focus on frequent itemsets in the most recent window. A similar effect can be
achieved by exponentially discounting old itemsets. For the window-based approach, we can
immediately come up with two naive methods:

1. Regenerate frequent itemsets from the entire window whenever a new transaction comes
into or an old transaction leaves the window.

2. Store every itemset, frequent or not, in a traditional data structure such as the prefix
tree, and update its support whenever a new transaction comes into or an old transaction
leaves the window.

Clearly, method 1 is not efficient. In fact, as long as the window size is reasonable, and
the concept drifts in the stream is not too dramatic, most itemsets do not change their status
(from frequent to non-frequent or from non-frequent to frequent) often. Thus, instead of regen-
erating all frequent itemsets every time from the entire window, we shall adopt an incremental
approach.

Method 2 is incremental. However, its space requirement makes it infeasible in practice.
The prefix tree [1] is often used for mining association rules on static data sets. In a prefix
tree, each node nI represents an itemset I and each child node of nI represents an itemset
obtained by adding a new item to I. The total number of possible nodes is exponential. Due
to memory constraints, we cannot keep a prefix tree in memory, and disk-based structures will
make real time update costly.

In view of these challenges, we focus on a dynamically selected set of itemsets that are
i) informative enough to answer at any time queries such as “what are the (closed) frequent
itemsets in the current window”, and at the same time, ii) small enough so that they can be
easily maintained in memory and updated in real time.

The problem is, of course, what itemsets shall we select for this purpose? To reduce memory
usage, we are tempted to select, for example, nothing but frequent (or even closed frequent)
itemsets. However, if the frequency of a non-frequent itemset is not monitored, we will never
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know when it becomes frequent. A naive approach is to monitor all itemsets whose support is
above a reduced threshold minsup−ε, so that we will not miss itemsets whose current support
is within ε of minsup when they become frequent. This approach is apparently not general
enough.

In this paper, we design a synopsis data structure to keep track of the boundary between
closed frequent itemsets and the rest of the itemsets. Concept drifts in a data stream are
reflected by boundary movements in the data structure. In other words, a status change of any
itemset (e.g., from non-frequent to frequent) must occur through the boundary. The problem
of mining an infinite amount of data is thus converted to mine data that can potentially change
the boundary in the current model. Because most of the itemsets do not often change status,
which means the boundary is relatively stable, and even if some does, the boundary movement
is local, the cost of mining closed frequent itemsets is dramatically reduced.

1.2 Our Contribution

This paper makes the following contributions: (1) We introduce a novel algorithm, Moment1, to
mine closed frequent itemsets over data stream sliding windows. To the best of our knowledge,
our algorithm is the first one for mining closed frequent itemsets in data streams. (2) We
present an in-memory data structure, the closed enumeration tree (CET), which monitors
closed frequent itemsets as well as itemsets that form the boundary between the closed frequent
itemsets and the rest of the itemsets. We show that i) a status change of any itemset (e.g.,
from non-frequent to frequent) must come through the boundary itemsets, which means we do
not have to monitor itemsets beyond the boundary, and ii) the boundary is relatively stable,
which means the update cost is minimum. (3) We introduce a novel algorithm to maintain
the CET in an efficient way. (4) We have done extensive experimental studies to evaluate the
performance of the proposed new algorithm. Experiments show that for mining closed frequent
itemsets in data streams, Moment has significant performance advantage over a representative
algorithm for the state-of-the-art approaches.

1.3 Related Work

Mining frequent itemsets from data streams has been investigated by many researchers. Manku
et al [14] proposed an approximate algorithm that for a given time t, mines frequent itemsets
over the entire data streams up to t. Charikar et al [6] presented a 1-pass algorithm that
returns most frequent items whose frequencies satisfy a threshold with high probabilities. Teng
et al [15] presented an algorithms, FTP-DS, that mines frequent temporal patterns from data
streams of itemsets. Chang et al [5] presented an algorithm, estDec, that mines recent frequent
itemsets where the frequency is defined by an aging function. Giannella et al [9] proposed an
approximate algorithm for mining frequent itemsets in data streams during arbitrary time
intervals. An in-memory data structure, FP-stream, is used to store and update historic
information about frequent itemsets and their frequency over time and an aging function is

1Maintaining Closed Frequent Itemsets by Incremental Updates
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used to update the entries so that more recent entries are weighted more. Asai et al [3]
presented an online algorithm, StreamT, for mining frequent rooted ordered trees. To reduce
the number of subtrees to be maintained, an update policy that is similar to that in online
association rule mining [12] was used and therefore the results are inexact. In all these studies,
approximate algorithms were adopted. In contrast, our algorithm is an exact one. On the
other hand, we can also assume that an approximation step has been implemented through
the sampling scheme and our exact algorithm works on a sliding window containing the random
samples (which are a synopsis of the data stream).

In addition, closely related to our work, Cheung et al [7, 8] and Lee et al [13] proposed
algorithms to maintain discovered frequent itemsets through incremental updates. Although
these algorithms are exact, they focused on mining all frequent itemsets (as do the above ap-
proximate algorithms). The large number of frequent itemsets makes it impractical to maintain
information about all frequent itemsets using in-memory data structures. In contrast, our al-
gorithm maintains only closed frequent itemsets. As demonstrated by extensive experimental
studies, e.g., [17], there are usually much fewer closed frequent itemsets compared to the total
number of frequent itemsets.

The rest of the paper is organized as follows. In section 2, we give necessary background in
frequent itemset mining. In section 3, we describe in detail our Moment algorithm. In section
4, we give experimental results. We give conclusion in section 5.

2 Problem Statement

2.1 Preliminaries

Given a set of items Σ, a database D wherein each transaction is a subset of Σ, and a threshold
f called the minimum frequency, 0 < f ≤ 1, the frequent itemset mining problem is to find
all itemsets that occur in at least f |D| transactions. For an itemset I, we call the number of
transactions in which I occurs the support of I. In addition, we define the minimum support
(minsup) s as s = f |D|.

We assume that there is a lexicographical order among the items in Σ and we use X ≺ Y
to denote that item X is lexicographically smaller than item Y . Furthermore, an itemset
can be represented by a sequence, wherein items are lexicographically ordered. For instance,
{A,B, C} is represented by ABC, given A ≺ B ≺ C. We also abuse notation by using ≺ to
denote the lexicographical order between two itemsets. For instance, AB ≺ ABC ≺ CD.

As an example, let Σ = {A,B, C, D}, D = {CD,AB,ABC, ABC}, and s = 2, then the
frequent itemsets are

F = {(A, 3), (B, 3), (C, 3), (AB, 3), (AC, 2), (BC, 2), (ABC, 2)}

In F , each frequent itemset is associated with its support in database D.
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2.2 Combinatorial Explosion

According to the a priori property, any subset of a frequent itemset is also frequent. Thus,
algorithms that mine all frequent itemsets often suffer from the problem of combinatorial
explosion.

Two solutions have been proposed to alleviate this problem. In the first solution (e.g., [4],
[10]), only maximal frequent itemsets are discovered. A frequent itemset is maximal if none of
its proper supersets is frequent. The total number of maximal frequent itemsets M is usually
much smaller than that of frequent itemsets F , and we can derive each frequent itemset from
M. However, M does not contain information of the support of each frequent itemset unless
the itemset is a maximal frequent itemset. Thus, mining only maximal frequent itemsets loses
information.

In the second solution (e.g., [16], [17]), only closed frequent itemsets are discovered. An
itemset is closed if none of its proper supersets has the same support as it has. Usually, the
total number of closed frequent itemsets C is still much smaller than that of frequent itemsets
F . Furthermore, we can derive F from C, because a frequent itemset I must be a subset of one
(or more) closed frequent itemset, and I’s support is equal to the maximal support of those
closed itemsets that contain I.

In summary, the relation among F , C, and M is M ⊆ C ⊆ F . The closed and maximal
frequent itemsets for the above examples are

C = {(C, 3), (AB, 3), (ABC, 2)}
M = {(ABC, 2)}

Since C is smaller than F , and C does not lose information about any frequent itemsets, in
this paper, we focus on mining the closed frequent itemsets because they maintain sufficient
information to determine all the frequent itemsets as well as their support.

2.3 Problem Statement

The problem is to mine closed frequent itemsets in the most recent N transactions (or the
most recent N samples) in a data stream. Each transaction has a time stamp, which is used
as the tid (transaction id) of the transaction. Figure 1 is an example with Σ = {A,B, C, D}
and window size N = 4. We use this example throughout the paper with minimum support
s = 2.

To find frequent itemsets on a data stream, we maintain a data structure that models the
current frequent itemsets. We update the data structure incrementally. The combinatorial
explosion problem of mining frequent itemsets becomes even more serious in the streaming
environment. As a result, on the one hand, we cannot afford keeping track of all itemsets or
even all frequent itemsets, because of time and space constraints. On the other hand, any
omission (for instance, maintaining only M, C, or F instead of all itemsets) may prevent us
from discovering future frequent itemsets. Thus, the challenge lies in designing a compact data
structure which does not lose information of any frequent itemset over a sliding window.

5



w
indow

 #3

tid items

1

2

3

4

5

6

C,D

A,B

A,B,C

A,B,C

A,C,D

B,C

tim
e line

w
indow

 #1

w
indow

 #2
Figure 1: A Running Example

3 The Moment Algorithm

We propose the Moment algorithm and an in-memory data structure, the closed enumeration
tree, to monitor a dynamically selected small set of itemsets that enable us to answer the query
“what are the current closed frequent itemsets?” at any time.

3.1 The Closed Enumeration Tree

Similar to a prefix tree, each node nI in a closed enumeration tree (CET) represents an itemset
I. A child node, nJ , is obtained by adding a new item to I such that I ≺ J . However, unlike
a prefix tree, which maintains all itemsets, a CET only maintains a dynamically selected set
of itemsets, which include i) closed frequent itemsets, and ii) itemsets that form a boundary
between closed frequent itemsets and the rest of the itemsets.

As long as the window size is reasonably large, and the concept drifts in the stream are not
too dramatic, most itemsets do not change their status (from frequent to non-frequent or from
non-frequent to frequent). In other words, the effects of transactions moving in and out of a
window offset each other and usually do not cause change of status of many involved nodes.

If an itemset does not change its status, nothing needs to be done except for increasing or
decreasing the counts of the involved itemsets. If it does change its status, then, as we will
show, the change must come through the boundary nodes, which means the changes to the
entire tree structure is still limited.
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Figure 2: The Closed Enumeration Tree Corresponding to Window #1 (each node is labeled
with its support)
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We further divide itemsets on the boundary into two categories, which correspond to the
boundary between frequent and non-frequent itemsets, and the boundary between closed and
non-closed itemsets, respectively. Itemsets within the boundary also have two categories,
namely the closed nodes, and other intermediary nodes that have closed nodes as descendants.
For each category, we define specific actions to be taken in order to maintain a shifting boundary
when there are concept drifts in data streams (Section 3.3). The four types of itemsets are
listed below.

infrequent gateway nodes A node nI is an infrequent gateway node if i) I is an infrequent
itemset, ii) nI ’s parent, nJ , is frequent, and iii) I is the result of joining I’s parent,
J , with one of J ’s frequent siblings. In addition, we define all nodes at the first level
of the CET tree that correspond to infrequent items as infrequent gateway nodes. In
Figure 2, D is an infrequent gateway node (represented by dashed circle). In contrast,
AD is not an infrequent gateway node (hence it does not appear in the CET), because
D is infrequent.

unpromising gateway nodes A node nI is an unpromising gateway node if i) I is a frequent
itemset, and ii) there exists a closed frequent itemset J such that J ≺ I, J ⊃ I, and J has
the same support as I does. In Figure 2, B is an unpromising gateway node because AB
has the same support as B does. So is AC because of ABC. In Figure 2, unpromising
gateway nodes are represented by dashed rectangles. For convenience of discussion, when
a node in the CET is neither an infrequent gateway node nor an unpromising gateway
node, we call it a promising node.

intermediate nodes A node nI is an intermediate node if i) I is a frequent itemset, ii) nI

has a child node nJ such that J has the same support as I does, and iii) nI is not an
unpromising gateway node. In Figure 2, A is an intermediate node because its child AB
has the same support as A does.

closed nodes These nodes represent closed frequent itemsets in the current sliding window.
A closed node can be an internal node or a leaf node. In Figure 2, C, AB, and ABC are
closed nodes, which are represented by solid rectangles.

3.2 Node Properties

We prove the following properties for the nodes in the CET. Properties 1 and 2 enable us to
prune a large amount of itemsets from the CET, while Property 3 makes sure certain itemsets
are not pruned. Together, they enable us to mine closed frequent itemsets over a sliding window
using an efficient and compact synopsis data structure.

Property 1. If nI is an infrequent gateway node, then any node nJ where J ⊃ I represents
an infrequent itemset.

Proof. Property 1 is derived from the a priori property.
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A CET achieves its compactness by pruning a large amount of the itemsets. It prunes
the descendants of nI and the descendants of nI ’s siblings nodes that subsume I. However,
the CET ‘remembers’ the boundary where such pruning occurs, so that it knows where to
start exploring when nI is no longer an infrequent gateway node. An infrequent gateway node
marks such a boundary. In particular, infrequent gateway nodes are leaf nodes in a CET. For
example, in Figure 2, after knowing that D is infrequent, we do not explore the subtree under
D. Furthermore, we do not join A with D to generate A’s child nodes. As a result, a large
amount of the itemsets are pruned.

Property 2. If nI is an unpromising gateway node, then nI is not closed, and none of nI ’s
descendents is closed.

Proof. Based on the definition of unpromising gateway nodes, there exists an itemset J such
that i) J ≺ I, and ii) J ⊃ I and support(J) = support(I). From ii), we know nI is not closed.
Let imax be the lexicographically largest item in I. Since J ≺ I and J ⊃ I, there must exist
an item j ∈ J\I such that j ≺ imax. Thus, for any descendant nI′ of nI , we have j 6∈ I ′.
Furthermore, because support(J) = support(I), itemset J\I must appear in every transaction
I appears, which means support(nI′) = support(n{j}∪I′), so I ′ is not closed.

Descendants of an unpromising gateway node are pruned because no closed nodes can be
found there, and the CET ‘remembers’ the boundary where such pruning occurs by recording
the unpromising gateway nodes.

Property 3. If nI is an intermediate node, then nI is not closed and nI has closed descendants.

Proof. Based on the definition of intermediate nodes, nI is not closed. Thus, there must exists
a closed node nJ such that J ⊃ I and support(J) = support(I). If J ≺ I, then nI is an
unpromising gateway node, which means nI cannot be an intermediate node. So we have
I ≺ J . However, if I ≺ J , then nJ must be nI ’s descendant because J ⊃ I.

Property 3 shows that we cannot prune intermediate nodes in a CET.

3.3 Building the Closed Enumeration Tree

For each node nI in a CET, we store the following information: i) the itemset I itself,2 ii) the
node type of nI , iii)support: the number of transactions in which I occurs, and iv) tid sum:
the sum of the tids of the transactions in which I occurs. The purpose of having tid sum is
because we use a hash table to maintain closed itemsets.

2In our implementation, we do not actually store the whole itemset I in node nI—instead, we only store the
last item in I. Because we always visit a node following a root-path of the CET, we can derive the itemset I
by concatenating the items stored in the nodes along the root-path.
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3.3.1 The Hash Table

We frequently check whether or not a certain node is an unpromising gateway node, which
means we need to know whether there is a closed frequent node that has the same support as
the current node.

We use a hash table to store all the closed frequent itemsets. To check if nI is an un-
promising gateway node, by definition, we check if there is a closed frequent itemset J such
that J ≺ I, J ⊃ I, and support(J) = support(I).

We can thus use support as the key to the hash table. However, it may create frequent
hash collisions. We know if support(I) = support(J) and I ⊂ J , then I and J must occur in
the same set of transactions. Thus, a better choice is the set of tids. However, the set of tids
take too much space, so we instead use (support, tid sum) as the key. Note that tid sum of an
itemset can be incrementally updated. To check if nI is an unpromising gateway node, we hash
on the (support, tid sum) of nI , fetch the list of closed frequent itemsets in the corresponding
entry of the hash table, and check if there is a J in the list such that J ≺ I, J ⊃ I, and
support(J) = support(I).

To save space, in the hash table entries, instead of the itemsets themselves, we store the
pointers pointing to the corresponding nodes in the CET.

3.3.2 FP-Tree for Transactions

We store the transactions in the sliding window in an FP-tree, in order to reduce the memory
footprint and to speed up exploration of the transactions. FP-tree was first introduced by
Han et al for mining frequent itemsets without candidate generation [11]. In an FP-tree, each
transaction is stored along a root-path; when transactions have a common prefix, the common
part only needs to be stored once; a counter is used to record the number of times the common
part is repeated. As demonstrated by Han et al, an FP-tree is a compact data structure that
stores all necessary information for frequent itemsets mining and it is usually much smaller
than the database itself. Figure 3 shows the FP-tree for the first sliding window. Note that the
items are stored in an inverse lexicographical order among the root-path. This arrangement
makes it easy to explore the FP-tree.

Our FP-tree is slightly different from the one we described above. First, we use the FP-
tree to store all the transactions in the sliding window, so we do not prune infrequent items.
Second, in addition to the head table in traditional FP-trees (which is used to record the
starting pointers to each item), we also maintain another table, the tid table. In the tid table,
for each tid (transaction id), there is a pointer pointing to a node in the FP-tree, which we
call the node the tail of the transaction; the path from the tail to the root of the FP-tree gives
us the itemset corresponding to the given tid. By using the FP-tree with the tid table, we do
not need the transactions anymore.

To add a transaction to the sliding window, we store the corresponding itemset in the
FP-tree and insert a new entry at the end of the tid table, where the pointer in the new entry
points to the tail of the new transaction in the FP-tree; to delete a transaction from the sliding
window, we pop an entry from the front of the tid table, and use the pointer to locate in the
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Figure 3: The FP-Tree for Transactions in the Sliding Window

FP-tree the tail of the transaction to be deleted. We then follow the path from the tail to the
root of the FP-tree, and update the counters along the path. Notice that although the size of
the tid table is the same as that of the sliding window (N), if we follow a first-in-first-out rule
for updating the sliding window, most part of the tid table can be stored in disk, because we
only update the front and the end of the tid table.

3.3.3 CET Construction

To build a CET, first we create a root node n∅. Second, we create |Σ| child nodes for n∅ (i.e.,
each i ∈ Σ corresponds to a child node n{i}), and then we call Explore on each child node n{i}.
Pseudo code for the Explore algorithm is given in Figure 4.

Explore is a depth-first procedure that visits itemsets in lexicographical order. For an
itemset I, Explore consults the FP-tree to determine the support and tid sum of I. In lines 1-2
of Figure 4, if a node is found to be infrequent, then it is marked as an infrequent gateway
node, and we do not explore it further (Property 1). However, the support and tid sum of an
infrequent gateway node have to be stored because they will provide important information
during a CET update when an infrequent itemset can potentially become frequent.

In lines 3-4, when an itemset I is found to be non-closed because of another lexicographically
smaller itemset, then nI is an unpromising gateway node. Based on Property 2, we do not
explore nI ’s descendants, which does not contain any closed frequent itemsets. However, nI ’s
support and tid sum must be stored, because during a CET update, nI may become promising.

In Explore, leftcheck(nI) checks if nI is an unpromising gateway node. It looks up the hash
table to see if there exists a previously discovered closed itemset that has the same support
as nI and which also subsumes I, and if so, it returns true (in this case nI is an unpromising
gateway node); otherwise, it returns false (in this case nI is a promising node).

If a node nI is found to be neither infrequent nor unpromising, then we explore its descen-
dants (lines 6-10). After that, we can determine if nI is an intermediate node or a closed node
(lines 11-15) according to Property 3.

10



Explore (nI , D, minsup)
1: if support(nI) < minsup then
2: mark nI an infrequent gateway node;
3: else if leftcheck(nI) = true then
4: mark nI an unpromising gateway node;
5: else
6: foreach frequent right sibling nK of nI do
7: create a new child nI∪K for nI ;
8: compute support and tid sum for nI∪K ;
9: foreach child nI′ of nI do

10: Explore(nI′ , D, minsup);
11: if ∃ a child nI′ of nI such that

support(nI′) = support(nI) then
12: mark nI an intermediate node;
13: else
14: mark nI a closed node;
15: insert nI into the hash table;

Figure 4: The Explore Algorithm

Complexity The time complexity of the Explore algorithm depends on the size of the sliding
window N , the minimum support, and the number of nodes in the CET. However, because
Explore only visits those nodes that are necessary for discovering closed frequent itemsets,
so Explore should have the same asymptotic time complexity as any closed frequent itemset
mining algorithm that is based on traversing the enumeration tree.

3.4 Updating the CET

New transactions are inserted into the window, as old transactions are deleted from the window.
We discuss the maintenance of the CET for the two operations: addition and deletion.3

3.4.1 Adding a Transaction

In Figure 5, a new transaction T (tid 5) is added to the sliding window. We traverse the parts
of the CET that are related to transaction T . For each related node nI , we update its support,
tid sum, and possibly its node type.

Most likely, nI ’s node type will not change, in which case, we simply update nI ’s support
and tid sum, and the cost is minimum. In the following, we discuss cases where the new

3At the time that a new transaction is added to the sliding window, the window size is temporarily increased
to N + 1; after that, deleting a transaction from the sliding window will change the window size back to N .
Therefore in our algorithm, we assume that the minimum support (minsup) remained unchanged during the
addition and the deletion.
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transaction T causes nI to change its node type.

nI was an infrequent gateway node. If nI becomes frequent (e.g., from node D in Figure 2
to node D in Figure 5), two types of updates must be made. First, for each of nI ’s left siblings
it must be checked if new children should be created. Second, the originally pruned branch
(under nI) must be re-explored by calling Explore.

For example, in Figure 5, after D changes from an infrequent gateway node to a frequent
node, node A and C must be updated by adding new children (AD and CD, respectively).
Some of these new children will become new infrequent gateway nodes (e.g., node AD), and
others may become other types of nodes (e.g., node CD becomes a closed node). In addition,
this update may propagate down more than one level.

nI was an unpromising gateway node. Node nI may become promising (e.g., from node
AC in Figure 2 to node AC in Figure 5) for the following reason. Originally, ∃(j ≺ imax and j 6∈
I) s.t. j occurs in each transaction that I occurs. However, if T contains I but not any of such
j’s, then the above condition does not hold anymore. If this happens, the originally pruned
branch (under nI) must be explored by calling Explore.

nI was a closed node. Based on the following property, nI will remain a closed node.

Property 4. Adding a new transaction will not change a node from closed to non-closed, and
therefore it will not decrease the number of closed itemsets in the sliding window.

Proof. Originally, ∀J ⊃ I, support(J) < support(I); after adding the new transaction T ,
∀J ⊃ I, if J ⊂ T then I ⊂ T . Therefore if J ’s support is increased by one because of T , so
is I’s support. As a result, ∀J ⊃ I, support(J) < support(I) still holds after adding the new
transaction T . However, if a closed node nI is visited during an addition, its entry in the hash
table will be updated. Its support is increased by 1 and its tid sum is increased by adding the
tid of the new transaction.

nI was an intermediate node. An intermediate node, such as node A in Figure 2, can
possibly become a closed node after adding a new transaction T . Originally, nI was an inter-
mediate node because one of nI ’s children has the same support as nI does; if T contains I
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but none of nI ’s children who have the same support as nI had before the addition, then nI

becomes a closed node because its new support is higher than the support of any of its children.
However, nI cannot change to an infrequent gateway node or an unpromising gateway node.
First, nI ’s support will not decrease because of adding T , so it cannot become infrequent.
Second, if before adding T , leftcheck(nI) = false, then 6 ∃(j ≺ imax and j 6∈ I) s.t. j occurs
in each transaction that I occurs; this statement will not change after we add T . Therefore,
leftcheck(nI) = false after the addition.

Addition (nI , Inew, D, minsup)
1: if nI is not relevant to the addition then return;
2: foreach child node nI′ of nI do
3: update support and tid sum of nI′ ;
4: F ← {nI′ |nI′ is newly frequent};
5: foreach child node nI′ of nI do
6: if nI′ is infrequent then
7: (re)mark nI′ an infrequent gateway node;
8: else if leftcheck(nI′) = true then
9: (re)mark nI′ an unpromising gateway node;

10: else if nI′ is a newly frequent node or
nI′ is a newly promising node then

11: Explore(nI′ , D, minsup);
12: else
13: foreach nK ∈ F s.t. I ′ ≺ K do
14: add nI′∪K as a new child of nI′ ;
15: Addition(nI′ , Inew, D, minsup);
16: if nI′ was a closed node then
17: update nI′ ’s entry in the hash table;
18: else if 6 ∃ a child node nI′′ of nI′ s.t.

support(nI′′) = support(nI′) then
19: mark nI′ a closed node;
20: insert nI′ into the hash table;
21: return;

Figure 6: The Addition Algorithm

Figure 6 gives a high-level description of the addition operation. Adding a new transaction
to the sliding window will trigger a call of Addition on n∅, the root of the CET.

From the above discussion and from the Addition algorithm shown in Figure 6, we can
easily derive the following property of Addition:

Property 5. The Addition algorithm will not decrease the number of nodes in a CET.
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3.4.2 Deleting a Transaction

In Figure 7, an old transaction T (tid 1) is deleted from the sliding window. To delete a
transaction, we also traverse the parts of the CET that is related to the deleted transaction.
Most likely, nI ’s node type will not change, in which case, we simply update nI ’s support and
tid sum, and the cost is minimum. In the following, we discuss the impact of deletion in detail.
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Figure 7: Deleting a Transaction

If nI was an infrequent gateway node, obviously deletion does not change nI ’s node type.
If nI was an unpromising gateway node, deletion may change nI to infrequent but will not
change nI to promising, for the following reason. For an unpromising gateway node nI , if
before deletion, leftcheck(nI) = true, then ∃(j ≺ imax and j 6∈ I) s.t. j occurs in each
transaction that I occurs; this statement remains true when we delete a transaction.

If nI was a frequent node, it may become infrequent because of a decrement of its support,
in which case, all nI ’s descendants are pruned and nI becomes an infrequent gateway node. In
addition, all of nI ’s left siblings are updated by removing children obtained from joining with
nI . For example in Figure 7, when transaction T (tid 1) is removed from the window, node D
becomes infrequent. We prune all descendants of node D, as well as AD and CD, which were
obtained by joining A and C with D, respectively.

If nI was a promising node, it may become unpromising because of the deletion, for the
following reason. If before the deletion, ∃(j ≺ imax and j 6∈ I) s.t. j occurs in each transaction
that I occurs, except only for the transaction to be deleted, then after deleting the transaction,
I becomes unpromising. This happens to node C in Figure 7. Therefore, if originally nI was
neither infrequent nor unpromising, then we have to do the leftcheck on nI . From the above
discussion we can also see that for a node nI to change to unpromising because of a deletion,
nI must be contained in the deleted transaction. Therefore nI will be visited by the traversal
and we will not miss it.

If nI was a closed node, it may become non-closed. To demonstrate this, we delete another
transaction T (tid 2) from the sliding window. Figure 8 shows this example where previously
closed node nI (e.g. A and AB) become non-closed because of the deletion. This can be
determined by looking at the supports of the children of nI after visiting them. If a previously
closed node that is included in the deleted transaction remains closed after the deletion, we
still need to update its entry in the hash table: its support is decreased by 1 and its tid sum
is decreased by subtracting the tid of the deleted transaction.
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Figure 8: Another Deletion

From the above discussion we derive the following property for the deletion operation on a
CET.

Property 6. Deleting an old transaction will not change a node in the CET from non-closed
to closed, and therefore it will not increase the number of closed itemsets in the sliding window.

Proof. If an itemset I was originally non-closed, then before the deletion, ∃j 6∈ I s.t. j occurs
in each transaction that I occurs. Obviously, this fact will not be changed due to deleting a
transaction. So I will still be non-closed after the deletion.

Figure 9 gives a high-level description of the deletion operation. Some details are skipped
in the description. For example, when pruning a branch from the CET, all the closed frequent
itemsets in the branch should be removed from the hash table.

From the above discussion and from the Deletion algorithm shown in Figure 9, we can
easily derive the following property of Deletion:

Property 7. The Deletion algorithm will not increase the number of nodes in a CET.

3.5 Discussion

In the addition algorithm, Explore is the most time consuming operation, because it scans
the transactions stored in the FP-tree. However, as will be demonstrated in the experiments,
the number of such invocations is very small, as most insertions will not change node types.
In addition, the new branches grown by calling Explore are usually very small subsets of the
whole CET, therefore such incremental growing takes much less time than regenerating the
whole CET. On the other hand, deletion only involves related nodes in the CET, and does not
scan transactions stored in the FP-tree. Therefore, its time complexity is at most linear to the
number of nodes. Usually it is faster to perform a deletion than an addition.

It is easy to show that if a node nI changes node type (frequent/infrequent and promis-
ing/unpromising), then I is in the added or deleted transaction and therefore nI is guaranteed
to be visited during the update. Consequently, our algorithm will correctly maintain the cur-
rent close frequent itemsets after any of the two operations. Furthermore, if nI remains closed
after an addition or a deletion and I is contained in the added/deleted transaction, then its
position in the hash table is changed because its support and tid sum are changed. To make
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Deletion (nI , Iold, minsup)
1: if nI is not relevant to the deletion then return;
2: foreach child node nI′ of nI do
3: update support and tid sum of nI′ ;
4: F ← {nI′ |nI′ is newly infrequent};
5: foreach child node nI′ of nI do
6: if nI′ was infrequent or unpromising then
7: continue;
8: else if nI′ is newly infrequent then
9: prune nI′ ’s descendants from CET;

10: mark nI′ an infrequent gateway node;
11: else if leftcheck(nI′) = true then
12: prune nI′ ’s descendants from CET;
13: mark nI′ an unpromising gateway node;
14: else
15: foreach nK ∈ F s.t. I ′ ≺ K do
16: prune nI′∪K from the children of nI′ ;
17: Deletion(nI′ , Iold, minsup);
18: if nI′ was closed and ∃ a child nI′′ of nI′

s.t. support(nI′′) = support(nI′) then
19: mark nI′ an intermediate node;
20: remove nI′ from the hash table;
21: else if nI′ was a closed node then
22: update nI′ ’s entry in the hash table;
23: return;

Figure 9: The Deletion Algorithm

the update, we delete the itemset from the hash table and re-insert it back to the hash table
based on the new key value. However, such an update has amortized constant time complexity.

In our discussion so far, we used sliding windows of fixed size. However, the two operations–
addition and deletion–are independent of each other. Therefore, if needed, the size for the
sliding window can grow or shrink without affecting the correctness of our algorithm. In
addition, our algorithm does not restrict a deletion to happen at the end of the window: at
a given time, any transaction in the sliding window can be removed. For example, if when
removing a transaction, the transaction to be removed is picked following a random scheme:
e.g., the newer transactions have lower probability of being removed than the older ones, then
our algorithm can implement a sliding window with soft boundary, i.e., the more recent the
transaction, the higher chance it will remain in the sliding window.

In addition, so far our algorithm only handles one transaction in one update. In reality,
there are situations in which data are bursty and multiple transactions need to be added and
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deleted during one update. However, it is not difficult to adapt our algorithm to handle multiple
transactions in one update. Originally, for an addition or a deletion, we traverse the CET with
the single added or deleted transaction; if an update contains a batch of transactions, we can
still traverse the CET in the same fashion using the batch of transactions and project out
unrelated transactions along the traversal.

4 Experimental Results

We performed extensive experiments to evaluate the performance of Moment. We use Charm,
a state-of-the-art algorithm proposed by Zaki et al [17], as the baseline algorithm to generate
closed frequent itemsets without using incremental updates. We have used the latest version
of Charm. As demonstrated in many studies (e.g., [17, 18]), among the algorithms that mine
closed frequent itemsets, Charm has best performance for various data sets. All our experi-
ments were done on a 2GHz Intel Pentium IV PC with 2GB main memory, running RedHat
Linux 7.3 operating system. Both Charm and Moment are implemented in C++ and compiled
using the g++ 2.96 compiler with -O3 optimization level.

For the performance study, we have used 3 synthetic data sets and 4 real-world data sets.
The data characteristics for all the data sets are summarized in Table 1. We will describe each
data set in detail in the following sections.

Database # Items Avg. Length Max Length # Records Window Size
T20I4N10K-100K 1,000 20 44 100,000 10K-100K
T40I10N10K-100K 1,000 40 80 100,000 10K-100K

T20I10N100K 1,000 20 49 100,000 100K
BMS-WebView-1 497 2.5 267 59,602 50K
BMS-WebView-2 3,340 4.6 161 77,512 50K

BMS-POS 1,657 6.5 164 515,597 500K
Mushroom 120 23 23 8,124 8K

Table 1: Data Characteristics

4.1 Synthetic Data Sets

The synthetic data sets are generated using the synthetic data generator developed by Agrawal
et al [2]. Data from this generator mimics transactions from retail stores. Here are some of
the parameters that we have controlled: the size of the sliding window N , the average size of
transactions T , the average size of the maximal potentially frequent itemsets I.

Performance under Different Sliding Window Sizes

In the first experiment, we compare Moment and Charm under different sliding window sizes.
For this study, we generated two data sets: in the first one, T20I4N10K-100K, we have set
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the parameters as T = 20, I = 4; in the second one, T40I10N10K-100K, we have set the
parameters as T = 40, I = 10. In both data sets, we let the sliding window size N grow
from 10K to 100K. For both algorithms, we report the average running time over 100 sliding
windows.
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Figure 10: Running Time vs. Sliding Window Size

As shown in Figure 10, as the sliding window size increases, the time to generate all closed
frequent itemsets for Charm grows in a linear fashion. In contrast, the running time of Moment
does not change too much with the sliding window size. This result demonstrates an advantage
of the Moment algorithm: because of its incremental updating fashion, it is not sensitive to
the sliding window size.
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Figure 11: Bulk Loading vs. Incremental Loading

In Figure 11(a) we compare the time for Moment to bulk-load the first sliding window (by
calling Explore()) and the time for Charm to mine the closed frequent itemsets in the first
sliding window. As can be seen from the figure, for getting the results in the first sliding
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window, Charm is faster by 5 to 10 times. There are several reasons for this result: first, we
have used the latest version of Charm, which is heavily optimized for large set operations (e.g.,
by using the diffset techniques); second, Moment has extra data structures to maintain (e.g.,
creating the CET nodes, update their support and tid sum, etc.). However, we argue that
this comparison is not fair–Moment is an incremental algorithm and the bulk-loading should
not be used at all. To show this point, we have done the following experiment: originally, the
sliding window is empty, then transactions are added one by one until the sliding window is
full. We have done this experiment under different sliding window sizes (10K to 100K), and
in Figure 11(b) we report the average time for adding each new transaction, where the time
includes the time for updating the FP-tree and that for updating the CET. As we can see from
the figure, the average time per transaction is very small and it is not very sensitive to the
window size.

Performance under Different Minimum Support

In the second experiment, we compare the performance of Moment and Charm under different
minimum supports. The data set we have used, T20I10N100K, has the following parameters:
T = 20, I = 10, N=100K. We let the minimum support decrease from 1% to 0.1%.
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Figure 12: Performance on T20I10N100K

Figure 12(a) shows the average running time for Moment and for Charm over the 100 sliding
windows under different minimum supports. As can be seen from the figure, as minimum
support decreases, because the number of closed frequent itemsets increases, the running time
for both algorithms grows. However, the response time of Moment is faster than that of Charm
by more than an order of magnitude under all the minimum supports.

Table 2 shows the number of closed itemsets under different minimum supports. In addition,
in the table we show some static and dynamic statistics about the CET data structure. All
reported data are average values taken over the 100 sliding windows. The first three columns
show the minimum support, the number of closed itemsets, and the number of nodes in the
CET. From the table we can see that as the minimum support decreases, the number of
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minsup closed CET changed added deleted
(in %) itemset # node # node # node # node #

1.0 721 193526 0.01 6.20 12.39
0.9 821 210673 0.01 6.46 0.00
0.8 967 231376 0.04 13.94 6.76
0.7 1211 257498 0.02 0.26 0.00
0.6 1649 282330 0.04 0.67 0.27
0.5 2544 325834 0.05 1.62 0.16
0.4 4468 410629 0.07 6.40 3.17
0.3 9176 644622 0.16 5.53 6.67
0.2 22446 1549740 0.59 30.06 48.64
0.1 386075 7394420 38.70 147.67 115.64

Table 2: Data Characteristics for T20I10N100K

closed itemsets grows rapidly. So does the number of nodes in the CET. However, the ratio
between the number of nodes in the CET and the number of closed itemsets (which is shown in
Figure 12(b)) actually decreases as the minimum support decreases. This implies that as the
sizes of the CET grows larger, it becomes more efficient and the size of the CET is bounded
by the number of closed itemsets times a constant number.

Because an addition may trigger a call for Explore() which is expensive, we study how
many nodes change their status from infrequent/unpromising to frequent/promising (column
4) and how many new nodes are created due to the addition (column 5). From the data we
can see that during an addition, the average number of nodes that change from infrequent
to frequent or from unpromising to promising in the CET is very small relative to the total
number of nodes in the CET. Similarly, the number of new nodes created due to an addition
is also very small. These results verify the postulation behind our algorithm: that an update
usually only affects the status of a very small portion of the CET and the new branches grown
because of an update is usually a very small subset of the CET. In addition, we have reported
the average number of CET nodes deleted due to a deletion (column 6). It can be seen that
this number is in about the same scale as that of added nodes. However, because a deletion
does not query the FP-tree and does not grow the CET, it is a relatively inexpensive operation
and therefore will not affect the performance too much.

4.2 Read-World Data Sets

We have used 4 real-world data sets to study the performance of Moment. The first 3 data sets
were used for KDDCUP 2000 [18]. Among these 3 data sets, the first two, BMS-WebView-1 and
BMS-WebView-2, record several months of clickstream data from two e-commerce web sites;
the third one, BMS-POS, contains several years of point-of-sale data from a large electronics
retailer [18]. Our forth real-world data set is the Mushroom data set used by Zaki et al [17]
and it belongs to the family of “dense” data, where there exists strong correlation among
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transactions. The data characteristics for the 4 data sets are summarized in Table 1.

Running Time Performance

Figures 13(a), 13(b), and 13(c) show the average running time of Moment and Charm for the
BMS-WebView-1, the BMS-WebView-2, and the BMS-POS data sets, under different minimum
supports. From the figure we can see that Moment outperforms Charm by one or two orders
of magnitude for all the three data sets. Similar results are obtained for the Mushroom data
set, as given in Figure 13(d). These results show that Moment also has good performance in
real-world data sets of various characteristics (sparse or dense).
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Figure 13: Performance for Real-World Data Sets

The Number of CET Nodes

One design consideration for Moment is to maintain in CET only information related to closed
frequent itemsets, instead of all frequent itemsets. In this section, we use real data sets to
justify this consideration.
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We show the total number of frequent itemsets, the number of closed frequent itemsets,
and the number of CET nodes for two data sets. Figure 14(a) shows these numbers for the
BMS-WebView-1 data set and Figure 14(b) shows these numbers for the Mushroom data set
under different minimum supports. As can be seen from Figure 14(a), because BMS-WebView-
1 is a relatively sparse data set, under high minimum supports, the number of closed frequent
itemsets and that of all frequent itemsets do not have much difference; however, when the
minimum support decreases further, as some large itemsets become frequent, the total number
of frequent itemsets blows up dramatically; in contrast, the number of CET nodes still keeps a
constant ratio relative to the number of closed frequent itemsets. The Mushroom data set, in
comparison, is relatively dense, and therefore, even at high minimum support, there are much
more frequent itemsets than closed frequent itemsets. As shown in Figure 14(b), although
the number of CET nodes is about one order of magnitude more than the number of closed
frequent itemsets, it is at least two orders of magnitude fewer than the total number of frequent
itemsets.
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Figure 14: The Number of Closed Itemsets, CET Nodes, and Frequent Itemsets

5 Conclusion

In this paper we propose a novel algorithm, Moment, to discover and maintain all closed
frequent itemsets in a sliding window that contains the most recent samples in a data stream.
In the Moment algorithm, an efficient in-memory data structure, the closed enumeration tree
(CET), is used to record all closed frequent itemsets in the current sliding window. In addition,
CET also monitors the itemsets that form the boundary between closed frequent itemsets and
the rest of the itemsets. We have also developed efficient algorithms to incrementally update the
CET when newly-arrived transactions change the content of the sliding window. Experimental
studies show that the running time of the Moment algorithm is not sensitive to the sliding
window size and Moment outperforms a state-of-the-art algorithm that mines closed frequent
itemsets without using incremental updates. In addition, the number of CET nodes is shown
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to be proportional to that of closed frequent itemsets. Under low minimum supports or when
applied to dense data sets, CET has much fewer number of nodes than the total number of
frequent itemsets.
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