
RC23313 (W0408-172) August 30, 2004
Computer Science

IBM Research Report

Cooperative Software–Hardware Power Management for
DRAM

Hai Huang, Tom W. Keller, Eric Van Hensbergen, Kang Shin,
Karthick Rajamani, Charles Lefurgy, Freeman L. Rawson III

IBM Research Division
Austin Research Laboratory

11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Cooperative Software–Hardware Power Management for DRAM

Abstract

Energy is becoming a critical resource to not only small battery-powered devices but also large server sys-

tems, where high energy consumption translates to excessive heat dissipation, which, in turn, increases cool-

ing costs and causes machine to become more prone to failures. DRAM is one of the most energy-consuming

components in many systems. In this paper, we propose and evaluate a novel DRAM power management

technique that exploits the cooperation between the system software and the memory controller hardware, in

which the system software provides the memory controller with only a small amount of information about the

current state of the system. This enables the memory controller to more intelligently react to the changing

state in the system, and therefore, is able to make more accurate and more aggressive power management de-

cisions. The proposed technique is evaluated against previously implemented power management techniques

running synthetic, SPECjbb2000 [40] and various SPEC CPU2000 benchmarks [41]. Using SPEC bench-

marks, we are able to show that the cooperative technique consumes 14.2–17.3% less energy than previously

proposed hardware-only techniques, 16.0–25.8% less than software-only techniques, and 71.6–75.8% less

than no power management.

1 Introduction

With semiconductor fabrication technology continuously improving and with workloads kept scaling at a similar, if

not a faster, pace, hardware components are becoming faster, denser, and more highly integrated. Unfortunately,

they also consume more energy. To alleviate this growing energy demand, more components are designed with

power management capabilities, which enable them to operate at lower power states when not being actively used.

Previous research has demonstrated that by judiciously managing power states for each of the components subject to

the workload, a significant amount of energy can be saved. The reason behind such findings is that many systems

are designed to be capable of providing continuous service even under certain predetermined peak workload. This is

usually accomplished by over-allocating resources to these systems. However, when the system is operating under

the typical load, some system resources will be under-utilized, thus creating opportunities to put certain components

in low-power states or power them down. Subsequently, when the workload increases in a later time, any relevant

system components can be switched back to higher-performance/power levels. Effectively, this provides performance

on-demand while conserving energy during non-peak periods. However, due to non-negligible delays in transitioning

between an energy-saving state and an operational state, both system performance and energy efficiency may degrade

if these transitions are not controlled properly.

In this paper, we are interested in reducing power dissipated by the main memory, or DRAM. This is motivated by

a continuous increase in the power budget allocated to the main memory. For example, as much as 40% of the system

energy is consumed by the main memory in a mid-range IBM eServer machine [25]. Power dissipated by the memory

is largely dependent on its capacity and bus frequency. Therefore, as applications become increasingly data-centric,

for the performance of the system to continue to scale, we would need more power to sustain a larger-capacity and

higher-performance memory system, which can easily dominate the total system energy budget.

The main contributions of this paper are summarized as follows.

• Design of a novel power management technique that enables the system software to provide the memory con-

troller hardware with critical system-state information which was previously unavailable in the hardware level.

This allows the memory controller to more intelligently react to the changing state in the system, and therefore,

significantly improves the energy-performance efficiency of DRAM.

• Use of a full machine simulator (Mambo [37]) and a systematic evaluation methodology to accurately simu-

late the behavior of the proposed power management unit in the memory controller and its performance and

energy effects on the system. Combined with a modified 2.6.5 Linux kernel, it enables us to precisely identify

problems and benefits associated with the proposed cooperative management technique running various types

of workload.

• In this work, we studied registered (server-grade) DRAM, which has mostly been ignored in power-related

research in the past, but it is becoming more important as registered memory is almost always used in today’s

server-type systems.

The rest of the paper is organized as follows. Section 2 gives background information on the current state of

DRAM technology and various DRAM architectures. In Section 3, we describe the detail in the proposed cooperative

technique which consists of (i) Power-Aware Virtual Memory (PAVM) implemented in the OS, (ii) a thin power

management layer in the memory controller hardware, and (iii) a software-hardware interface. Experimental setup

2

and detailed evaluation are given in Section 4, where we demonstrate the significant benefit in using this new approach

in terms of energy and performance. Section 5 discusses related work, and Section 6 highlights some future research

directions and finally concludes the paper.

2 Memory System Model

In this section, we discuss performance and energy implications of DRAM power management. Since 1980, the

performance gap between the memory and the processor has been widening continuously — DRAM has been only

improving at an annual rate of 7% while processor speed has been improving at an annual rate of 40% [45]. Further-

more, frequent interactions of memory with other I/O components makes it one of the most crucial components in the

overall system’s performance. Unfortunately, power reduction is only possible when memory is operating at lower

performance states, therefore, it is important to ensure that either this performance degradation can be hidden or that

the energy saved in DRAM justifies any performance degradation and potential increase in the energy consumption of

other components in the system. Before illustrating these tradeoffs between performance and energy in more detail,

we will first briefly describe the basics in DRAM technology.

2.1 DRAM

DRAM core consists of large arrays of cells, each of which is a transistor-capacitor pair. To counter current leakage,

each capacitor must be periodically refreshed to retain its bit information, making memory a continuous energy

consumer. In reality, however, energy consumed by periodic refresh is actually very small, whereas most of the

energy is consumed by row and column decoders, sense amplifiers, and external bus drivers due to large arrays with

very long and high capacitance internal bus lines. To reduce power, one or more of these subcomponents need to be

disabled by switching a device to one of several pre-defined low-power states when the device is not being actively

accessed. However, when the device is to be accessed again, a certain performance penalty, called a re-synchronization

cost, is incurred to transition from a low-power state to an active state by re-enabling the disabled components. This

non-negligible is the cause of performance degradation when power management is not done carefully.

The above holds true for all Synchronous DRAM (SDRAM) architectures including single-data-rate (SDR),

double-data-rate (DDR), and Rambus (RDRAM) architectures. In this paper, we mainly concentrate on DDR as

it is becoming the most-widely used memory type. Nevertheless, our technique is architecture-independent and can

be easily applied to other memory types as we will discuss in Section 4.4.2.

3

Bank0

Bank1

Bank2

Bank3

Device8 bits

64 bits

ModuleSub−bank

Top View

Rank 1

Rank 0

Side View

Figure 1: A memory module, or a DIMM, that is composed of 2 ranks, 8 devices per rank, and each of which is quad-
banked.

2.2 Double-Data Rate DRAM Model

DDR memory is usually packaged as modules, or DIMMs, each of which contains either one or two ranks, which

is commonly composed of 4, 8 or 16 number of devices. Each device is then divided into sub-banks as shown in

Figure 1. Each time memory is accessed, a line size of 64 bits is read or written. Since each sub-bank can supply

either 4, 8, or 16 bits at a time, it would require multiple sub-banks to act simultaneously in order to provide a line

size of 64 bits on each memory access. In Figure 1, we assume that each sub-bank supplies 8 bits, and therefore, 8

devices are needed to form a complete bank. More precisely, if we assume that each device is quad-banked, 8 devices

form 4 completely-independent banks, or a single rank, as shown. Even though each bank is accessed independently,

we cannot manage the power of the memory in units of banks. The smallest unit we can manage power is a rank.

Powerdown Self−refresh

Read/Write

Standby

138.9mW + PLL/REG high

1000ns5ns

5ns5ns

393.5mW + PLL/REG high

9.3mW + PLL/REG high 9.3mW + PLL/REG low

0.046 mW

286.6 mW

Low−power

High−power

Low−power

High−power

PLL

Register

810 mW

92.6 mW

(a) (b)

Figure 2: (a) Power dissipated in each power state and the delays to transition between these states for a single 512-Mbit
DDR device. (b) Power dissipation of a TI CDCVF857 PLL device (one per DIMM) and a TI SN74SSTV32867 registered
buffer.

DDR architecture has many power states defined and even more possible transitions between these different

power states [31, 21]. For simplicity of presentation, we only consider four of these power states — Self-Refresh,

Powerdown, Standby, and Read/Write — listed in an increasing order of power dissipation. The power dissipation in

these states and the transitional delays between them are shown in Figure 2(a). Note that the power numbers shown

4

here are for a single device. Therefore, to calculate the total power dissipated by a rank, we need to multiply this

power by the number of devices used per rank. We now detail each of these power states.

• Read/Write: Dissipates the most power, and is only briefly entered when a read/write operation is in progress.

• Standby: When a rank is neither reading nor writing, Standby is the highest power state, or the most-ready

state, in which read and write operations can be initiated immediately at the next clock edge.

• Powerdown: When this state is entered, the input clock signal is gated except for the refresh signal. I/O buffers,

sense amplifiers and row/column decoders are all deactivated in this state.

• Self-refresh: In addition to all components that are deactivated in Powerdown, the phase-lock loop (PLL) and

registered buffer are also put to the low-power state to maximize energy savings as the PLL and the registered

buffer (Figure 2(b)) can consume a significant portion of the total energy consumed on each DIMM. However,

when exiting Self-refresh, a 1 µsec delay is needed to re-synchronize both the PLL and the registered buffer.1

Due to a large power differential between Standby and Powerdown / Self-refresh, we want to minimize the time

a rank stays in Standby and maximize the time it spends in either Powerdown or Self-refresh. However, at the same

time, we want to minimize performance degradation caused by accessing ranks that were previously put to a low-

power state. Therefore, determining which ranks to power down, when to power down, and into which low-power

state to transition are critically important in terms of both energy and performance. For the time being, we refer to

Standby as the high-power state, and both Powerdown and Self-refresh as low-power states. In Section 4, we make

the distinction between these two low-power states and illustrate how to best utilize each to maximize energy savings

and minimize performance impact.

3 Design

This section details the cooperative power management paradigm. It begins with a brief design overview in Sec-

tion 3.1. Hardware and software-side control mechanisms are described in Section 3.2 and Section 3.3, respectively.

3.1 Overview

Power in the memory system has traditionally been managed either solely in the hardware domain [8, 10] or in the

software domain [11, 19], but not in both. However, we discovered that a small amount of cooperation between

1Registered memory is almost always used in server systems to better meet timing needs and provide higher data integrity, and the
PLL and registered buffers are critical components to take into account when evaluating registered memory in terms of performance and
energy.

5

PAVM

Software
Hardware

Processor
Core

Cache
Unit

Peripherals

I/O
unit

Memory
Controller

Power Management
 Unit(PMU)

0 1 2 3 4 5

6 7 8 9 10 11

DIMM array

high-power
low-power

Operating System

Active Module Tracking

pid 100: 0,1,3,9
pid 101: 0,2,4

...
pid 102: 0,1,2,5,9

Energy
Efficient

Page Allocator

Page
Migration

 Library
Aggregation

pid
100

pid
101

pid
102

 Page
Allocation

Thin SW-HW
Interface

current
process

PAVM
control

Figure 3: Architectural overview of cooperative power management system.

these two domains can lead to a significant energy benefit. In the hardware-controlled power management approach,

memory traffic is monitored by the memory controller which permits implementation of a very fine-grained and

highly-adaptive control mechanism, which ideally can be used to glean all possible energy-saving opportunities.

However, the effectiveness of this approach is usually limited by how well the hardware can predict future references

from the past access behavior. Accurate prediction is very difficult to accomplish at such a low level, especially in a

complex multitasking system, where the memory can be referenced by many different processes at the same time. Any

incorrect predictions will translate into both performance and energy penalties. On the other hand, in the software-

controlled, or more precisely OS-controlled, approach, system and process state information (e.g., which memory

regions are used by which process) can be easily tracked by the system software. This information then enables the

OS to avoid performance penalty when managing the power for the memory as it can keep all ranks that may be used

by the currently running process in a high-power ready state while having all other ranks in low-power states. System

software alone, however, is not capable of fine-grained power control, as the OS is not generally aware of which ranks

a process is accessing at run-time, or how actively is it accessing each rank, or whether or not there are any memory

access patterns that can be exploited. It only knows which ranks are allocated to each process, thus missing many

energy-saving opportunities.

Based on this observation and our discovery of a complementary relationship between these two types of ap-

proaches, we propose a cooperative power-management approach that exploits the unique features in each domain

that can be used to aid the other. For example, fine-grained control mechanisms available in the hardware level can

be used to aid the system software to re-capture the missed energy-saving opportunities described previously. Con-

versely, the system software can export useful system and process state information down to the memory controller,

6

so that the observed memory traffic can be better interpreted at the hardware level, thus allowing the hardware to make

more accurate power management decisions. Figure 3 depicts the system architecture for this cooperative power man-

agement approach. In the next section, we give details on the design of a new power management unit (PMU) in the

memory controller and illustrate how it can cooperate with the system software to more intelligently manage power.

We briefly describe Power-Aware Virtual Memory (PAVM) in Section 3.3. This additional software layer mostly op-

erates orthogonally to the PMU in the memory controller, but it can provide useful information to the PMU to save

additional energy and/or reduce the performance impact due to power management.

3.2 Context-Aware PMU

Memory-controller-based power management [8, 12, 13] has been previously proposed to provide fine-grained mon-

itoring and power control, which is usually performed by a separate power management unit (PMU) implemented

within the memory controller. This PMU is typically implemented as a set of simple logic devices that (i) monitor

main memory accesses, (ii) predict threshold values to determine when to power down, and (iii) instruct the memory

controller to perform power-down operations when certain conditions are met.

Power Management Unit(PMU)

PMU
Register File

Address
lines

to
DIMMs

Reg0 Reg1
Row/
Column
Decoder

Command
 UnitUpdate

Interarrival
Monitor/Predictor
TRANSITIONS

Memory Controller

...

THRESHOLD

Standby Powerdown

Standby Self-refresh

1msec

5msec

...
VALUE

Reg2 ...

Figure 4: A simple PMU in the memory controller.

A schematic diagram of a simple PMU is shown in Figure 4. It monitors memory accesses by snooping the address

lines and keeps track of the past access behavior in an internal register file, where the number of registers is dependent

on how accurate we need the prediction logic to be. Based on the history, a threshold value is derived to determine

how much idle time should elapse before putting a ranks in a low-power state. When multiple energy-saving states

are implemented, one can derive multiple thresholds, each used to transition the rank to a different low-power state.

In sections below, we propose various architectural modifications to improve upon this simple PMU design.

3.2.1 Per-Rank Power Management

The first improvement to the simple PMU design is based upon the observation that each rank is accessed differently

from other ranks, and therefore, power management can be more accurately performed if we individually monitor

memory accesses, keep history and control power state for each. Figure 3.2.1(a) shows a histogram (in log scale) of

inter-arrival times (in log scale) between memory accesses observed on two different ranks. It is apparent from this

7

Power Management Unit(PMU)

PMU
Register File

Address
lines

Interarrival
Monitor/Predictor

to
DIMMs

Rank0

Reg0 Reg1 ...

...

Row/
Column
Decoder

Command
Unit

Rank0

Rank1

...

Update

Memory Controller

Threshold to Powerdown

Threshold to Self-refresh

Rank2

...

Rank1

Rank2

Threshold to Powerdown

Threshold to Self-refresh

Threshold to Powerdown

Threshold to Self-refresh

(a) (b)

Figure 5: (a) Inter-arrival time observed on two different ranks (or nodes). (b) Architecture of a Rank-aware PMU imple-
mented in the memory controller.

figure that the access characteristics observed on these two ranks are very different. On rank 0, we can observe that

with most inter-arrival times being very short, nearly every memory access comes within 1 msec after the previous one.

On rank 1, however, there are many larger gaps (indicated by a heavy-tailed distribution) between memory accesses,

suggesting that we have more energy-saving opportunities and also the fact that different thresholds should be used

on the two ranks to maximize energy savings on each. This per-rank management scheme can be easily implemented

in the PMU by keeping separate monitor/predictor circuits and registers for each rank as shown in Figure 3.2.1(b).

However, this would also require additional logic and storage devices which not only adds manufacturing costs but

also energy costs. Later, we will show how to use the process-state information exported by the system software to

amortize this additional cost.

3.2.2 Per-Process Power Management

In the previous section, we illustrated the mechanism to monitor memory traffic and manage power on a per-rank basis.

Now, to take this concept a step further in enabling the controller to better interpret the monitored memory traffic, the

observed per-rank memory traffic can be further partitioned on a per-process basis. The reason this is important is

that different processes can exhibit vastly different memory access behaviors, and even for processes with similar

access behaviors, how they access each individual memory rank can be quite different (Figure 6(a)) as the virtual-

to-physical page mapping is controlled by the OS. So, if the PMU has no understanding of processes, the observed

per-rank memory traffic is essentially “polluted” by all processes that access this rank interleavingly. Therefore, the

PMU will likely make inefficient power management decisions based on an “average” access behavior observed from

all of these processes. We illustrate this by an example shown in Figure 7. In this example, process 1 rarely accesses

8

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

Inter−arrival time (nsec)

H
is

to
gr

am
PID 256

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

Inter−arrival time (nsec)

H
is

to
gr

am

PID 6

process
stack

EAX
EBX
ECX
EDX
EDI
ESI

saved
processor
context

Reg0
Reg1

...

...

memory
controller
context

Top

Bottom
0xc0000000

First page
reserved
for saving
memory
controller
context

Power Management Unit

power management
registers

Address
lines

Interarrival
monitor/predictor

to
DIMMs

Rank

0

1

2

Reg0 Reg1 ...

...

context
 save/
restore

From PAVM

Row/
Column
Decoder

command
unit

update

Memory Controller

HardwareSoftware

Rank0

Rank1

...

Rank2

...

Threshold to Powerdown

Threshold to Self-refresh

Threshold to Powerdown

Threshold to Self-refresh

Threshold to Powerdown

Threshold to Self-refresh

(a) (b)

Figure 6: (a) Inter-arrival time incurred by two different processes observed on the same memory rank. (b) Architecture of
the Process-Aware PMU in the memory controller.

rank 0, whereas Process 2 accesses this rank intensively. If the controller monitors the memory traffic on this rank

without differentiating between the two processes, it will conclude that this rank is accessed “moderately”, thus might

make less-than-optimal power management decisions. However, by making the memory controller context-aware, the

PMU can easily detect that process 1(2) rarely(frequently) accesses this rank, and therefore, can select more suitable

thresholds depending on which process is currently executing. The problem, however, is that unlike in the case of

per-rank management, the memory controller is totally oblivious to the concept of a process, which ironically, to a

large extent, determines how the memory is being accessed.

This improvement to make the PMU context-aware can be easily augmented with a very small amount of hardware

modifications in the PMU and would only require minor changes to the system software. For the system software,

in addition to saving the processor context (i.e., registers) onto the stack of the switched-out process at each con-

text switch, in parallel, we would also need to save the values of the history-keeping registers used by the PMU as

shown in Figure 6(b) (Ignore the PAVM line for now). Subsequently, when this process is switched back in a later

context
switch

Real Time

222 22 2 1 2 222 22Rank 0

process 1's
memory
access

process 2's
memory
access

1 1 1

Process 1 Virtual Time

222 22 2 2 222 22

Process 2 Virtual Time

1 1

context
switch

context
switch

Rank 0

Unaware of processes

Aware of processes

Figure 7: An example that gives some intuition on why it is beneficial to make the memory controller context-aware.

9

time, both the processor context and the PMU context associated with this process are restored. The PMU context

saving/restoring operations can be done synchronously by the processor, or it can be done asynchronously by the

memory controller when the processor sends it a context-switching signal and gives it a physical memory region for

saving/restoring the PMU context. On the hardware side, only a simple I/O interface needs to be implemented for

saving and restoring the PMU context. Essentially, this allows the memory controller to more efficiently manage the

DRAM power for each process when it is executing as the PMU can now make power management decisions solely

based upon this process’s past memory access behavior.

3.3 PAVM

Power-Aware Virtual Memory (PAVM) was first proposed and implemented by Huang et al. in [19]. It leverages

OS-level information and can make very accurate power management decisions, thus only negligibly affecting perfor-

mance when performing power management. We discovered that the information collected by PAVM in the operating

system can be used by the PMU to turn off unnecessary monitor/predictor circuits and reduce performance impact in

PMU’s power management. Its detail is provided in Section 3.3.2, but first we will give a brief overview of PAVM to

see how the system software can be used to complement hardware in its power management mechanism.

3.3.1 PAVM Basics

Since all page allocation/deallocation and mapping/demapping operations are handled by the OS, where PAVM re-

sides, PAVM knows precisely when and which ranks may be accessed by a process. This is accomplished by keeping

track of a set of ranks, called the active ranks [19], for each individual process. Since the total number of ranks in a

system is usually small, ranging from only a few in small embedded systems to up to 256 in large server systems, time

and space overheads of keeping track of this information is shown to be negligible. To save energy, at each context

switch, PAVM puts all inactive ranks of the newly-scheduled process in a low-power state. As a process can only

access memory regions residing within its active ranks, powering down all other ranks will not incur any performance

penalty as these ranks will not be accessed by this process. To avoid performance penalty when accessing active

ranks, these ranks are put to the most-ready state at the earliest possible time during each context switch. Further-

more, an energy-efficient page allocator is implemented to effectively group allocated memory resources so that they

are aggregated within a minimum number of ranks, allowing more ranks to be in low-power states without affecting

performance.

In this work, due to the availability of a full-system simulator, we can run real workloads under PAVM-enabled

Linux kernel and observe the memory access behavior when running these workloads. We found that a small but also

10

a non-negligible number of memory accesses goes to ranks that are outside of the running process’ set of active ranks.

These were later found to be memory accesses incurred by the kernel (i.e., through system call, interrupt, exception)

while in user process’ context. This was resolved by tagging all pages that are used only by the kernel and aggregating

them onto the first rank in the system and always keep this rank in most ready state. In our experiment, a single 64MB

memory rank seems to be much more than enough to do the job.

3.3.2 PAVM-to-Hardware Interface

As indicated in Section 3.2, even though only a small amount of modifications is needed to implement the aforemen-

tioned energy-conserving mechanisms in the hardware, but the additional hardware does not come for free — a small

but non-negligible additional power is dissipated. To amortize this cost, PAVM can inform the PMU which are the

active ranks used by the running process so that the PMU can completely gate off all the monitor/predictor circuits

and history-keeping registers for those inactive ranks without affecting the effectiveness of the power management

mechanism. This information is passed down from the PAVM control path shown in Figure 6.

Cooperations with PAVM also have certain performance benefit. So far, we have only discussed policies and

mechanisms to power down ranks but not to power them up. As premature power-ups waste energy, we currently do

not consider any power-up heuristics in the PMU hardware. Instead, we rely on a simple and more accurate power-up

mechanism implemented in PAVM. Since many memory accesses occur immediately after a context switch due to

cold cache misses, if PAVM can instruct the memory controller to power up the active ranks of the to-be-run process

as early as possible, some re-synchronization penalties can be avoided.

3.4 Summary

Through the new PMU design and the cooperation from the system software, we can partition the memory traffic —

both spatially (by rank) and temporally (by process) — so that the observed memory traffic can be translated more

easily and accurately by the PMU into more power-efficient management decisions. This requires only small changes

in the PMU hardware and a minimal collaboration from the system software. Additionally, we have also proposed the

techniques where PAVM is able to pass information down to the PMU for the purpose of (i) amortizing the energy

cost of the additional hardware in the PMU and (ii) reducing wake-up latency due to cold cache misses, thus allowing

more efficient use of energy.

11

4 Evaluation

We now evaluate the effectiveness of the proposed SW–HW power management technique and compare it against

the previously proposed techniques. Section 4.1 describes the simulation environment and the methodology that we

used to collect and analyze results. Section 4.2 provides detailed simulation results using both synthetic and SPEC

benchmarks (SPECjbb2000 and SPEC CPU2000).

4.1 Simulation Setup

To the best of our knowledge, the proposed PMU architecture is not available in any commercial systems to date.

Therefore, the best one can do is to use a machine simulator; we choose to use Mambo [37] in this project. Mambo

is a full-system simulator for PowerPC machine architectures, and it was originally developed as a derivative of

the PowerPC extension to SimOS [36]. Currently, it is in active use by multiple research and development efforts

at IBM. It emulates both 32-bit and 64-bit PowerPC processors and also supports many system architectures and

components including VMX, complex cache hierarchies, SLBs, TLBs, disks, Ethernet controllers, UART devices,

etc. The simulated system is easily configurable, and very different systems can be quickly set up and simulated by

simply changing a few parameters. We used a modified 2.6.5-rc3 Linux kernel, running on top of a Mambo simulated

machine (parameterized as shown in Table 1), to run all our benchmarks.

Component Parameter

Processor 64-bit 1.6GHz PowerPC
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way SA

L2-Cache 1.5MB 4-way SA
DTLB 512 entries 2-way SA
ITLB 512 entries 2-way SA

DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries

Memory 400Mhz 768MB(64Mbx8) DDR

Linux Kernel 2.6.5-rc3 w/ PAVM patch

Table 1: System parameters used in Mambo. All cache lines are 128 Bytes long.

To evaluate various power management techniques, we could have modified the Mambo-simulated memory con-

troller device to study how threshold affects a system’s performance and energy consumption at runtime. However,

as this is an exploratory study and there is a very large solution space to search, re-running the workload in Mambo

for each solution point is too computational expensive to do. Instead, we first use Mambo to record all main mem-

ory traffic (i.e., filtered by the L1 and L2 caches) into a trace file, and then feed it into a trace-driven main memory

simulator to simulate various power management decisions that could have been made by the memory controller at

runtime. This memory simulator not only gives power and timing information at the DRAM device level, but it can

12

also simulate detailed activities (e.g., contention and queuing) at the memory controller, at synchronous memory in-

terfaces and on various buses. Using this approach allows us to more thoroughly explore a large solution space with

much less computing time.

4.2 Simulation Results

In Section 4.3, we use a synthetic workload consists of two streaming processes, with the first process’ memory

accesses all going to the cache, and the second one’s all missing in the cache and going to the main memory. In

Section 4.4, we evaluate and compare these power management techniques when running more complex and realistic

workloads — SPECjbb2000 and SPEC CPU2000.

4.3 Synthetic Benchmark

4.3.1 Energy

The machine configuration used for this benchmark is the same as that shown in Table 1, except that the memory

capacity is reduced to only one 64MB rank. The two streaming processes are scheduled interleavingly by the Linux

task scheduler. Without any power management, the instantaneous power dissipated by this rank is shown in Fig-

ure 8(a1). From this figure, one can clearly see when each process is scheduled. In Figure 8(a2), we break the average

power dissipated down to various components. Power consumed by activation, read, write operations and data queues

are due to DRAM devices doing useful works and cannot easily be reduced. There are previous works that studied

open-page and close-page policies to reduce this type of power dissipation, however, it is not the focus of this paper.

In this work, we look for ways and opportunities to reduce the idle power that is wasted when no work is done. Most

of this idle power is dissipated in precharge standby mode, active standby mode, and by the PLL and the registered

buffers as shown in Figure 8(a2).

First, we consider the simplest static hardware techniques, which tries to put the rank to either Power Down

or Self Refresh mode immediately at the end of each memory request. Results are shown in Figures 8(b1,b2) and

Figures 8(c1,c2), respectively. As we can see, power reduction opportunity arises when the low-memory referencing

process starts to execute. Immediate Power Down (IPD) can significantly reduce power dissipated in Standby mode,

whereas Immediate Self Refresh (ISR) can take additionally advantage of also powering down the PLL and the

registered buffers. We will look at their performance implications shortly.

Next, Figure 8(d1) shows the results when power management decisions is purely made by the hardware (e.g.,

PMU in the memory controller). We assume IPD is implemented in the memory controller by default as it has a

significant energy benefit and with only a very small performance impact (shown later). Additionally, past accesses

13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Po
w

er
 (W

at
t)

Run Time (processor cycle)

No Power Management

0

1

2

3

4

5

6

7

P
o

w
e
r

(W
a
tt

)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(a1) (a2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Po
w

er
 (W

at
t)

Run Time (processor cycle)

Immediate PowerDown

0

1

2

3

4

5

6

7

P
o

w
e
r

(W
a
tt

)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(b1) (b2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Po
w

er
 (W

at
t)

Run Time (processor cycle)

Immediate SelfRefresh

0

1

2

3

4

5

6

7

P
o

w
e
r

(W
a
tt

)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(c1) (c2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Po
w

er
 (W

at
t)

Run Time (processor cycle)

HW-only

0

1

2

3

4

5

6

7

P
o

w
e
r

(W
a
tt

)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(d1) (d2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Po
w

er
 (W

at
t)

Run Time (processor cycle)

HW-SW Cooperative

0

1

2

3

4

5

6

7

P
o

w
e
r

(W
a
tt

)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(e1) (e2)
Figure 8: The first column gives the instantaneous power for a zoomed-in portion of the synthetic workload under (a) no
power management (b) Immediate Power Down (c) Immediate Self Refresh (d) HW-only and (d) HW-SW techniques. The
second column shows the breakdown of the average power dissipated.

14

are kept track in the PMU’s registers and then are used to dynamically predict threshold values, which are used to

determine after how long of an idle period before Self Refresh mode should be entered. It uses a moving window size

of 500 µsec, which we believe is a reasonable sized window that can both avoid over-compensation and also provide

good adaptability in realistic workloads. However, the result shows that it only outperforms the IPD strategy by

approximately 6% in power. The reason is that when the hardware tries to make power management decisions based

upon its observation of the past memory access behavior, it gets confused when two processes with very different

access behaviors interleavingly accessing the same rank. One can argue that if the window size is reduced to 50 µsec

or even 1 µsec, we can adapt more quickly. However, shrinking the window size is a double-edged sword, having better

adaptability runs at a higher chance to over-aggressively predict threshold values from observing transient behaviors

at runtime. Shrinking the window size can benefit this synthetic workload, but for realistic workloads, it can cause

more harms than benefits. Furthermore, as more and more systems are switching to smaller scheduling quantas (e.g.,

from 10 msec to 1 msec or even smaller) to increase responsiveness in the system, higher context switching rate will

make the hardward predictor’s job more difficult.

Finally, in Figure 8(e1) we show that if the system software can inform the PMU in the memory controller of

which process is currently running, more aggressive and accurate power management decisions can be made. The

PMU used here is exactly the same as that described above, but with additional capabilities to keep past access history

for each process and to save/restore the history-keeping registers at each context switch. In this figure, we can see that

immediately after the low memory intensive process starts to run, the PMU is able to instantaneously put the rank to

Self Refresh, thus saving more energy. Unlike in the case of the HW-only technique, the cooperative technique will

not be affected when scheduling quanta becomes smaller.

4.3.2 Performance

So far, we have only considered energy implications. Performance implication is more difficult to quantify, as it

is limited by the trace-driven nature of this study. From a memory trace, we can identify exactly which memory

reference is delayed and by how long due to power management. However, the memory dependency information was

already lost when the memory trace was originally collected. Therefore, there is no way for us to know whether a

delayed memory transaction will also delay the next memory reference. To measure performance implication, instead,

we use the average response time (service time) for each memory reference. This is shown in Table 2. In this table,

we also summarized the results that were presented in Figures 8(a–e).

From this table, we can see that using IPD is clearly beneficial. Compared to no power management, which has an

average response time of 96.92 cycles per memory reference and consumes 10.34 J, IPD has an average response time

15

Total Simulated Cycles 3,442,155,784 cycles
Number of Read 10,906,196

Number of Writes 11,055
No Power Immediate Immediate Self

HW-only HW-SWManagement Power Down Refresh

Energy Consumption 10.34 J 7.83 J 6.04 J 7.35 J 6.18 J
Average Power 6.01 W 4.55 W 3.51 W 4.27 W 3.59 W

Average Response Time 96.92 cycles 105.04 cycles 894.01 cycles 107.20 cycles 106.81 cycles
Delayed Accesses Due to PD 0 10,486,433 0 10,391,535 10,531,756
Delayed Accesses Due to SR 0 0 603,389 16,340 8,044

Table 2: Summary of the synthetic benchmark. All cycles are in unit of processor cycles.

of 105.04 cycles (+8.4%) and consumes only 7.83 J (-24.3%). A few percent increase in the average response time

not usually not a big problem for server-type workload as most are typically bandwidth-limited. On the other hand,

using Immediate Self Refresh as shown in the ISR column gives additional energy benefit (6.04 J, -41.6%), but as

expected it also comes with a prohibitively high response time (894.01 cycles, +822.42%). The HW-SW cooperative

technique clearly shows energy benefits over the HW-only approach. Specifically, it consumes 15.9% less energy and

has a slightly better average response time than the HW-only approach. In Table 2, we have also shown the number of

delayed requests due to exiting Power Down (PD) and Self Refresh (SR). Exiting PD is only 5 nsec, whereas exiting

SR is much more expensive — 1000 nsec. One of the reasons that the HW-SW technique consumes less energy and

has lower response time than the HW-only approach is that it can more accurately predict threshold values to go to

Self Refresh, and this is apparent from observing that HW-SW has much fewer number of delayed requests due to

exiting from SR mode.

This synthetic benchmark is not meant to be realistic, but through this simple example, we can illustrate the

potential benefit in making the memory controller context-aware. Furthermore, using this simple scenario, we can

also see more clearly what are the energy and performance implications of various power management techniques.

In the next section, we study these power management techniques in more detail with more realistic workloads by

running some of the SPEC benchmarks.

4.4 SPEC Benchmarks

One of the benchmarks we used in our evaluation is the SPECjbb2000 [40] benchmark. It is implemented as a Java

program emulating a 3-tier server system with emphasis on the middle tier. The tiers simulates a typical business

application, where users in Tier 1 generate inputs that result in the execution of business logic in the middle tier (Tier

2), which calls to a database on the third tier. In a benchmark run, one can instantiate multiple warehouses, each with a

3-tier system. Each warehouse then executes as a separate Java thread within the JVM. However, since all warehouses

are essentially running the same type of workload and they all share the same memory address space within the

16

Benchmarks Total Runtime % of Read % of All Write % of All Context
(processor cycles) Total Runtime Operations Reads Operations Writes Switches

Low memory intensive benchmark
SPECjbb warehouse 1 470,662,157 4.5% 495,849 5.95% 148,964 4.67% 283
SPECjbb warehouse 2 430,865,647 4.1% 463,402 5.56% 150,847 4.73% 233
SPECjbb warehouse 3 614,658,695 5.9% 500,704 6.01% 151,581 4.75% 350
SPECjbb warehouse 4 389,326,169 3.7% 499,898 6.00% 146,077 4.58% 218
SPECjbb warehouse 5 544,571,120 5.2% 511,707 6.14% 141,688 4.44% 309
SPECjbb warehouse 6 330,170,302 3.2% 421,781 5.06% 110,106 3.45% 197
SPECjbb warehouse 7 1,694,958,880 16.3% 1,281,690 15.39% 212,097 6.65% 921
SPECjbb warehouse 8 396,145,352 3.8% 333,236 4.00% 100,222 3.14% 255
256.bzip2 2,591,125,601 24.9% 2,899,595 38.81% 1,467,012 46.00% 1,258
186.crafty 2,714,572,432 26.1% 692,731 8.32% 293,069 9.19% 1,259
Total (benchmarks) 10,177,056,355 97.7% 8,100,593 97.24% 2,921,633 91.61% 5,283
Total (all observed) 10,416,416,544 100.0% 8,330,756 100.00% 3,189,337 100% 10,148

High memory intensive benchmark
SPECjbb warehouse 1 510,607,464 4.6% 704,477 1.29% 194,867 1.31% 734
SPECjbb warehouse 2 535,188,637 4.8% 772,954 1.41% 223,225 1.51% 478
SPECjbb warehouse 3 510,438,599 4.6% 581,688 1.06% 186,979 1.26% 465
SPECjbb warehouse 4 529,700,398 4.7% 768,019 1.40% 221,891 1.50% 420
SPECjbb warehouse 5 941,338,844 8.5% 1,167,305 2.13% 303,557 2.05% 550
SPECjbb warehouse 6 473,391,039 4.2% 776,669 1.42% 309,628 2.09% 715
SPECjbb warehouse 7 808,101,475 7.3% 1,041,908 1.90% 277,971 1.88% 508
SPECjbb warehouse 8 1,716,733,458 15.5% 2,092,407 3.82% 1,016,140 6.86% 1,379
181.mcf 2,853,500,163 25.8% 13,953,894 25.50% 7,004,631 47.26% 1,089
179.art 2,163,757,139 19.6% 32,453,738 59.31% 5,012,884 33.82% 1,089
Total (benchmarks) 11,042,757,216 99.8% 54,313,059 99.25% 14,751,773 99.53% 7,427
Total (all observed) 11,065,594,944 100% 54,721,075 100.00% 14,820,760 100.00% 12,342

Table 3: Summary of the low memory intensive and high memory intensive benchmarks. SPECjbb is ran with 8
warehouses, each spawned as a separate Java thread.

JVM, we will only observe a small amount of variation in how memory is accessed between context switches among

these Java threads. In such systems, the benefit of using the HW-SW power management technique is fair limited.

However, in real server systems, where the processor time is shared among multiple users, their applications, server

processes, and various daemon processes, we can expect memory access behavior to change constantly when context

switching between these processes at a fine granularity. To emulate such system, we decided to run a few SPEC

CPU2000 benchmarks with well known execution behavior in parallel with the SPECjbb workload. We classified

these benchmarks as either “high memory intensive” or “low memory intensive”, based on L2 miss rates [9]. For the

low memory intensive workload, we run SPECjbb having 8 warehouses in parallel with 256.bzip2 and 186.crafty, and

for the high memory intensive workload, we run SPECjbb in parallel with 181.mcf and 179.art.

4.4.1 Results

The runtime statistics of the two workloads are shown in Table 3. For each process in our benchmark, we kept track

of the amount of CPU time it consumed, the number of read and write operations, and the number of times it was

scheduled by the Linux task scheduler. We kept the system idle before we start each run. To verify that those non-

benchmark processes in the system, e.g., shell, background daemons, etc, did not interfere with our runs and results,

we compare the total CPU time, total number of read and write operations and total number of context switches

17

incurred by all benchmark processes with the total number observed during the entire experimental run. For the low

memory intensive workload, benchmark processes consumed 97.7% of the total CPU time, and are responsible for

97.2% of all read requests and 91.6% of all write requests in the system. For the high memory intensive workload,

benchmark processes consumed 99.8% of the total CPU time, and are responsible for 99.2% of all read requests,

99.5% of all write requests in the system. The total number of context switches into the benchmark processes is

significantly smaller than the total number for the entire run is because of the keyboard device driver that periodically

wakes up and goes back to sleep. From these runtime statistics, we can see SPECjbb benchmark is more memory

intensive than bzip2 and crafty, but much less than mcf and art.

In Figure 4.4.1(a) and Figure 4.4.1(b), we show the instantaneous power dissipated during the entire run of the

low memory intensive and high memory intensive workloads, respectively, for various power management techniques.

Here, we do not show results for Immediate Power Down (IPD) and Immediate Self Refresh (ISR). ISR is not useful

in practice due to obvious performance reasons. IPD is assumed to be implemented in the memory controller for

all power management techniques that we will evaluate. Here, we compare three techniques against each other —

SW-only (PAVM), HW-only, and HW-SW. The resulting power, energy, and response time are summarized in Table 4

and Table 5.

For the low memory intensive benchmark, HW-SW consumes 17.3% less energy than HW-only, and 25.8% less

energy than SW-only. Furthermore, HW-SW has only a slightly higher response time (160.28 cycles) than SW-only

(158.18 cycles), but it has a better response time than HW-only (161.93 cycles). For the high memory intensive bench-

mark, HW-SW consumes 14.2% less energy than HW-only, and 16.0% less energy than SW-only. It has a slightly

higher response time (187.5 cycles) than both SW-only (179.98 cycles) and HW-only (183.17 cycles) approaches.

No Power SW-only
HW-only HW-SWManagement (PAVM)

Energy Consumption 282.96 J 92.407 J 82.91 J 68.61 J
Average Power 54.33 W 17.74 W 15.92 W 13.17 W

Average Response Time 136.26 cycles 158.13 cycles 161.93 cycles 160.28 cycles
Delayed Accesses Due to PD 0 5676163 6563589 5666469
Delayed Accesses Due to SR 0 1149 11842 6108

Table 4: Summary of low memory intensive benchmark.

No Power SW-only
HW-only HW-SWManagement (PAVM)

Energy Consumption 314.36 J 106.40 J 104.20 J 89.43 J
Average Power 56.82 W 19.23 W 18.83 W 16.16 W

Average Response Time 157.93 cycles 179.98 cycles 183.17 cycles 187.50 cycles
Delayed Accesses Due to PD 0 14,439,123 18,636,413 14,422,931
Delayed Accesses Due to SR 0 479 19,274 7,294

Table 5: Summary of high memory intensive benchmark.

18

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5e+09 1e+10

P
ow

er
 (

W
at

t)

Run Time (processor cycle)

Low Memory Intensive Workload

No Power Management
SW-only (PAVM)

HW-only
HW-SW

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5e+09 1e+10

P
ow

er
 (

W
at

t)

Run Time (processor cycle)

High Memory Intensive Workload

No Power Management
SW-only (PAVM)

HW-only
HW-SW

(a) (b)
Figure 9: (a) Instantaneous power for low memory intensive SPEC benchmarks. (b) Instantaneous power for high memory
intensive SPEC benchmarks.

4.4.2 RDRAM

RDRAM is a new memory architecture that has emerged in the recent years. It has interesting power management

features. A question one might ask is how would the result differ if RDRAM is used instead of DDR in this study.

Actually, not much. It has been shown previously in [19] that the finer-grained level of control gives RDRAM

a significant advantage over DDR and SDR in embedded and PC systems, where the number of power controllable

memory units (i.e., DDR ranks or RDRAM devices) is small, but it has also been shown that as we increase the number

of power controllable units in a system (as in the case of large server systems), there is an effect of diminishing return.

Therefore, this work is directly applicable to RDRAM memory architecture, but with a slightly adjusted threshold

predictor to suite RDRAM’s power and performance characteristics.

5 Related Work

Recent research has demonstrated that a significant amount of energy can be saved by exploiting power management

capabilities built in modern hardware components. In particular, a large body of the existing work has focused on

reducing processor energy consumption. Weiser et al. [44] first demonstrated the effectiveness of using Dynamic

Voltage Scaling (DVS) to reduce power dissipation in processors. Later work [32, 3, 15, 17, 18, 28, 33, 35, 34] further

explored the effectiveness of DVS techniques in both real-time and general-purpose systems.

There is also a large body of work that focused on reducing power in other system components, including wireless

communication [42, 20, 23, 14], disk drives [26, 6, 5, 24], flash devices [4, 30], cache [1, 22, 43], and main memory [8,

12, 13, 10, 11, 19], while some others [16, 46, 29, 39] explored system-level approaches to extend/target the battery

19

lifetime of the system, as opposed to simply save energy for individual components.

Among power management techniques for DRAM, there are two main types of approaches — hardware and

software-controlled. Among the hardware-controlled approaches, Lebeck et al. [8, 12] studied the effects of various

static and dynamic memory controller policies to reduce power with extensive simulation in a single-process environ-

ment. In another paper [13], they used stochastic Petri Nets to explore more complex policies. Delaluz et al. took a

similar approach in [10], where they studied various flavors of threshold predictors and evaluated their energy impli-

cations. The techniques proposed in this paper is orthogonal to the works described above and can be used to improve

the accuracy in some of these previously proposed threshold prediction mechanisms. However, unlike previous works,

the techniques proposed in this paper are especially designed and optimized for a multitasking environment, which

most of today’s systems are. Furthermore, we have also taken into account of various OS effects, which were shown

to be also important in practice [19].

Among the software-controlled approaches, Delaluz et al.[11] demonstrated a simple scheduler-based power man-

agement policy. Huang et al. [19] later implemented Power-Aware Virtual Memory (PAVM) to improve upon this

work. PAVM modifies the underlying physical page allocator to make it more energy-efficient by collaborating with

the VM through a NUMA management layer so that the energy footprint of each process is reduced. To cope with

various dynamics in real systems, PAVM leverages advanced techniques, such as library aggregation and page mi-

gration. Delaluz et al.[10] have also proposed a compiler-directed approach, where power management decisions are

statically determined. Due to its static nature, this approach is not very appropriate for most complex systems, but

may be applicable in some embedded systems where workloads are more deterministic.

There are advantages and disadvantages in the two types of approaches. The cooperative technique that we pro-

posed in this paper offers the best features in both. With minimal help from the system software, we were able to

show that the PMU in the memory controller can more accurately monitor memory traffic and thus more efficiently

managing power. In other research contexts, using software and hardware collaboration [38, 2, 7, 27] has also been

shown to be beneficial in terms of improving performance and security, and providing new functionalities. Addition-

ally, we were able to show PAVM is able to provide other useful information to the PMU such that more energy can

be conserved without affecting the effectiveness of the power management mechanism.

6 Conclusion

In this paper, we have proposed a novel power management technique that makes use of cooperation between the

system software and the memory controller hardware so that the energy is more efficiently utilized by the main

20

memory. By exporting a small amount of information from the system software to the memory controller, we are

able to demonstrate a significant improvement in the accuracy of the PMU’s threshold prediction logic, thus saving

more energy. Using a full-system simulator, we have shown that the cooperative approach consumes 14.2–17.3% less

energy than the hardware-only technique and 16.0–25.8% less energy than the software-only technique.

In this work, we have only explored software-assisted hardware power management techniques. Vice versa, we

can imagine scenarios where hardware can provide feedbacks to the system software to create additional energy saving

opportunities. For example, the hardware can inform the OS how “hot” each physical page is being accessed, and

the OS can use this information to rearrange memory pages with each process’ address space. This allows us to

either (i) balance power dissipation on each memory rank, or (2) run hot ranks hotter and cold ranks colder to create

more power saving opportunities on the cold ranks. Additionally, we would also like to explore direct cooperation

between applications and the PMU. As applications themselves know more precisely about their future memory access

behavior than the OS, such information can prove to be beneficial to the memory controller in its prediction logic,

thus can be used to further enhance the proposed cooperative HW-SW system.

References
[1] R. Bahar, G. Albera, and S. Manne. Power and performance tradeoffs using various caching strategies. In International Symposium on Low Power

Electronic Design (ISLPED), pages 64–69, 1998.

[2] Edouard Bugnion and et al. Compiler-directed page coloring for multiprocessors. In Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1996.

[3] T. D. Burd and R. W. Brodersen. Energy efficient CMOS microprocessor design. In Proceedings of the 28th Annual Hawaii International Conference
on System Sciences. Volume 1: Architecture, pages 288–297. IEEE Computer Society Press, 1995.

[4] F. Douglis, R. Caceres, M. F. Kaashoek, K. Li, B. Marsh, and J. A. Tauber. Storage alternatives for mobile computers. In Operating Systems Design
and Implementation (OSDI), pages 25–37, 1994.

[5] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk spin-down policies for mobile computers. In Proc. 2nd USENIX Symp. on Mobile and
Location-Independent Computing, 1995.

[6] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the power-hungry disk. In USENIX Winter, pages 292–306, 1994.

[7] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exokernel: An operating system architecture for application-level resource management. In 15th ACM
Symposium on Operating Systems Principles (SOSP), 1995.

[8] A. R. Lebeck et al. Power aware page allocation. In Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages
105–116, 2000.

[9] Karthikeyan Sankaralingam et. al. Exploiting ilp, tlp, and dlp with the polymorphous trips architecture. In ISCA, 2003.

[10] V. Delaluz et al. DRAM energy management using software and hardware directed power mode control. In International Symposium on High-
Performance Computer Architecture, pages 159–170, 2001.

[11] V. Delaluz et al. Scheduler-based DRAM energy power management. In Design Automation Conference 39, pages 697–702, 2002.

[12] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory controller policies for DRAM power management. In International Symposium on Low Power
Electronics and Design (ISLPED), pages 129–134, 2001.

[13] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling of DRAM power control policies using deterministic and stochastic petri nets. In Workshop on
Power-Aware Computer Systems, 2002.

[14] L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In IEEE
INFOCOM, 2001.

[15] K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance-setting for dynamic voltage scaling. In Proceedings of the 7th Conference on
Mobile Computing and Networking (MOBICOM), pages 260–271, 2001.

21

[16] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In 17th ACM Symposium on Operating Systems Principles
(SOSP), pages 48–63, 1999.

[17] K. Govil, E. Chan, and H. Wassermann. Comparing algorithms for dynamic speed-setting of a low-power CPU. In Proceedings of the 1st Conference
on Mobile Computing and Networking (MOBICOM), 1995.

[18] F. Gruian. Hard real-time scheduling for low energy using stochastic data and DVS processors. In Proceedings of the International Symposium on
Low-Power Electronics and Design (ISLPED), 2001.

[19] H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware virtual memory. In USENIX Annual Technical Conference, pages
57–70, 2003.

[20] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. Chen. A survey of energy efficient network protocols for wireless networks. Wireless Networks,
7(4):343–358, 2001.

[21] Y. Joo and el al. Energy exploration and reduction of SDRAM memory systems. In DAC, pages 892–897, 2003.

[22] M. Kamble and K. Ghose. Energy-efficiency of VLSI caches: A comparative study. In Proc. of International Conference on VLSI Design, 1997.

[23] R. Kravets and P. Krishnan. Power management techniques for mobile communications. In Proceedings of the 4th Conference on Mobile Computing
and Networking (MOBICOM), 1998.

[24] P. Krishnan, P. Long, and J. Vitter. Adaptive disk spin-down via optimal rent-to-buy in probabilistic environments. In Proc. of International
Conference on Machine Learning, pages 322–330, 1995.

[25] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and Tom Keller. Energy management for commercial servers. In IEEE Computer, pages
39–48, Dec 2003.

[26] K. Li, R. Kumpf, P. Horton, and T. E. Anderson. A quantitative analysis of disk drive power management in portable computers. In USENIX Winter,
pages 279–291, 1994.

[27] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. Implementing an untrusted operating system on trusted hardware. In 19th ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[28] J. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with PACE. In Proceedings of the ACM SIGMETRICS 2001 Conference,
pages 50–61, 2001.

[29] Y. H. Lu, L. Benini, and G. De Micheli. Operating-system directed power reduction. In International Symposium on Low Power Electronics and
Design (ISLPED), pages 37–42, 2000.

[30] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file caching for mobile computers. In Proceedings of the 27th Hawaii Conference on Systems
Science, 1994.

[31] Micron. http://www.micron.com.

[32] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic power-aware scheduling for real-time applications. In Workshop on
Compilers and Operating Systems for Low-Power, 2000.

[33] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the lpARM microprocessor system. In Proceedings of the International Symposium on
Low-Power Electronics and Design (ISLPED), 2000.

[34] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In 18th ACM Symposium on Operating
Systems Principles (SOSP), pages 89–102, 2001.

[35] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power microprocessor. In Proceedings of the 7th Conference on Mobile
Computing and Networking (MOBICOM), pages 251–259, 2001.

[36] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod. Using the SimOS machine simulator to study complex computer systems. In ACM Transaction
on Modeling and Computer Simulation, volume 7, pages 78–103, 1997.

[37] H. Shafi, P. J. Bohrer, J. Phelan, C. A. Rusu, and J. L. Peterson. Design and validation of a performance and power simulator for PowerPC systems.
In IBM Journal on Research and Development, volume 47, 2003.

[38] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using hardware and software page placement. In ACM International Conference on
Supercomputing, pages 155–164, 1999.

[39] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic power management for portable systems. In International Conference on Mobile
Computing and Networking, pages 11–19, 2000.

[40] Standard Performance Evaluation Corporation (SPEC). http://www.specbench.org/jbb2000/.

[41] Standard Performance Evaluation Corporation (SPEC). http://www.specbench.org/osg/cpu2000/.

[42] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network interfaces in hand-held devices. IEICE Transactions on
Communications, vol.E80-B, no.8, p. 1125-31, E80-B(8):1125–31, 1997.

[43] C. Su and A. Despain. Cache design tradeoffs for power and performance optimization: A case study. In International Symposium on Low Power
Electronic Design (ISLPED), pages 63–68, 1995.

22

[44] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In Proceedings of the First Symposium on Operating Systems
Design and Implementation (OSDI), pages 13–23, 1994.

[45] W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious. Computer Architecture News, 23(1):20–24, 1995.

[46] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. Ecosystem: Managing energy as a first class operating system resource. In International
Conference on Archtectural Support for Programming Languages and Operating Systems, 2002.

23

