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Abstract

We propose a simple family of classification models, based on the
Kikuchi approximation to free energy. We note that the resulting product
of potentials is not normalized, but for classification it is easy to perform
the normalization for each instance separately. We propose a learning
method based on including those initial regions that would otherwise be
significantly different from those estimated directly. We observe that this
algorithm outperforms other methods, such as the tree-augmented naı̈ve
Bayes, but that the inclusion of regions may increase the approximation
error, even in cases when adding a region does not yield loopy dependen-
cies.

1 Introduction

In this paper, we focus on the problem of building probabilistic classifiers from data. Since
in high-dimensional domains, it is impossible to reconstruct the true global probabilistic
model from a limited amount of data (and even with potentially unlimited data, the model
complexity might be too high), various approximations techniques are used. A common
approach is to use local models: namely, every joint model that fits the data globally should
also fit the data when marginalized to any subset of attributes. We need not build an in-
tractable globally consistent model, but instead an ensemble of submodels, each modelling
a region of the attributes.

One approach to reintegrating the submodels into a single global model is to consider each
submodel a constraint and seek a joint probability mass function (pmf) conforming to them
[4]. For example, the maximum entropy approach is to seek the global model with the
highest entropy of those consistent with the constraints, essentially assuming that no infor-
mation is to be assumed by the model beyond that provided by the constraints. Approaches
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such as iterative scaling are typically used in order to find a max-entropy distribution satis-
fying such constraints [2]. However, the disadvantage of iterative scaling is that the com-
plete complex global model itself needs to be modelled explicitly.

The cluster variation method was originally proposed as a way of estimating the entropy of
the whole complex system model, by only having information about its parts [5]. Recently,
the Kikuchi approximation to free energy has been shown to be a special case of region
graph approximations, and the probability distributions inferred by the algorithms of the
belief propagation family are at the stationary points of the Kullback-Leibler divergence
between the region-based approximation of the joint probability density function and the
inferred pmf (probability mass function) []. Thereby, each submodel corresponds to a
region of attributes, and can be represented with a region graph. Interestingly, for tractable
region graphs, the models obtained through the chain rule, the MaxEnt approach and with
the cluster variational method are identical.

In this paper, we will focus on a very simple inferential task of classification, where the
query attribute is the label, and all the other attributes are the evidence. No approximate
marginalization method is needed. We will not use the cluster variation method to model
entropy but instead to model the global pmf directly. We will employ the interaction test-
ing approach to determine the submodels required for good predictive performance with-
out restricting ourselves to tractable hierarchical, graphical or decomposable probabilistic
models.

There was plenty of work, but whenever they got overlapping regions, they had to merge
them into a single humongous region. The novelty of our approach is that we’re using
Kikuchi to handle the overlap: sometimes exactly, sometimes approximately.

The second novelty is that most of the learning around NIPS is done with respect to KL-
divergence, without correct regard for the risk and chance. We’re using significance testing
to show how it applies.

The third novelty is the focus on assuring the local fit, and rely on approximation to do its
work. We do not do global model selection, because it’s so arbitrary and because it is not
consistent on projections.

2 Notation and Definitions

Let X = {X1, ..., Xn} be a set of observed random variables, calledattributes, and let
x = (x1, ..., xn) be a vector of values assigned to the variables inX. Herein, we assume
discrete-valued attributes, i.e.x ∈ X = {X1 × ... × Xn} where eachXi is a set of
possible values ofXi. LetC denote an unobserved random variable called theclass, where
c ∈ C, |C| = m}. The set of attributes together with the class is denotedY = X ∪ {C}.
An assignmenty = (x, c) of values to the attributes and the class is called aninstance, or
example. The set of all possible instances is denotedΩ = X1 × ... × Xn × C. We will
use a short notationP (y) = P (x, c) = P (x1, ..., xn, c) to describe the joint probability
distributionP (X1 = x1, ..., Xn = xn, C = c). A subset of variablesR ∈ Y is called a
region(or cluster), and a value assignment toR is denotedyR.

A classifier is a mappingh : X → C that assigns a class value to any given instance.
Particularly, theBayes classifierh∗(x) = arg maxc P (c|x) = arg maxc P (x, c) selects
the most-likely value of class given the observed attributes, and is provably optimal (i.e. has
the lowest error probability, or lowestrisk, among all classifiers). However, in practice, the
true underlying distributionP (c,x) (or, respectively,P (c|x)) is not available, and is hard
to estimate from a limited set of training instances, especially in case of high-dimensional
vectors of attributes.
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A common approach to this problem is to assume a certain simplified class of joint proba-
bility mass functionsP̂ (c,x) that approximateP (c,x). For example, one of the simplest
and perhaps most popular probabilistic classifiers is thenäıve Bayesthat assumes attribute
independence given the class, thus approximatingP (x, c) by P̂ (x, c) =

∏
i P (xi|c)P (c).

Other approaches include less restrictive assumptions on the structure ofP̂ , such as trees
(e.g., Tree-Augmented Naı̈ve Bayes (TAN) or, more generally, Bayesian networks [3]. We
will use undirected graphical models such asMarkov networks.

Markov networks. Given a set of random variablesX, a Markov network(also called
undirected graphical modelor Markov random fieldfor X), is defined as a pair(G, S)
whereG is an undirected graph andS = (Φ1, . . . , Φm) is a set of (positive) functions
(calledpotentials), defined over each ofm cliques inG, such that the joint distribution
P (x) is factorized over the set of these cliques, i.e.P (x) = (1/Z)

∏
i Φ(xi) where Z is a

normalization constant.1

3 Main Idea

Note that typical probabilistic classifiers (e.g., Naı̈ve Bayes, TAN, Bayesian networks)
build anexplicit probabilistic modelP̂ (c,x) by assuming a certain structure of the prob-
ability distribution (e.g., a tree-structure in TAN, or a particular factorization ofP̂ (c,x)
according to the Bayesian network structure). These assumptions may introduce an unnec-
essary bias.

In this paper, we propose an alternative approach that modelsP̂ (c,x) implicitly by using
a collection of marginal distributions defined over (potentially all) subsets, or clusters, of
the variables (clearly, the subset size is limited to a reasonable value to make the approach
tractable). Briefly, this approach can be viewed as modellingP̂ (c,x) by an undirected
graph (a Markov network) defined by the selected clusters, rather than by a directed graph,
or a Bayesian network. While other approaches to learning Markov networks aim at con-
structing a network of bounded treewidth (e.g., Chow-Liu tree learning approach and its
generalization by [6]), so that probabilistic inference will be easy in such networks, we
are not concerned with bounding the treewidth as we only use the resulting network for
computingP̂ (c|x) which turns out to be an easy inference problem. We are only con-
cerned with bounding the clique size in the original (non-triangulated) network. Of course,
since our networks are not triangulated, we are unable, in general, to provide an explicit
(normalized) joint distribution function; however, we can still computeP̂ (c|x) from such
unnormalized distributions.

There are several advantages to our approach. First, the model construction is much easier:
given a boundk on the cluster size, we only need to compute a polynomial (O(nk)) number
of marginal probabilities2, while finding an optimal Bayesian network structure with a
boundk > 1 on the number of parents is known to be NP-hard [1]. Second, this approach
allows to take into account any subset of (significant)k-way interactions (or even all of
them), instead of limiting ourselves to interactions consistent with a certain graph structure
(e.g., a particular set of families in a Bayesian network). Finally, while generic inference
in Markov networks is generally hard, and often requires approximations such as belief
propagation and its generalizations [7], computingP̂ (C|X1, . . . , Xn) is easy because it
does not require normalization in̂P (x) = (1/Z)

∏
i φ(xi), as shown by the following

lemma.

1Without loss of generality we could restrict the set of all cliques to the set of allmaximalcliques.
2Actually, the number of all marginals ofk variables is lower:n!/k!(n− k)!.
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Theorem 1 Given a set of random variablesY = X ∪ {C}, a setR = {R|R ⊆ Y}
of subsets (regions) ofY, where C belongs to at least one region, and a productΦ(y) =
Φ(x, c) =

∏
R⊂R Φ(yR) of non-negative functions (potentials) defined on these regions,

let P̂ (y) = (1/Z)Φ(y) be the corresponding joint probability distribution overY, where
Z is a normalization constant. Then:

1. Computing P̂ (c|x) does not require normalization, i.e. P̂ (c|x) =
Φ(y)/

∑
c Φ(y);

2. Bayesian classifier can be computed using only a product of potentials that con-
tain C, i.e. h∗(x, c) = arg maxc

∏
{R⊂R|C∈R} Φ(yR).

Proof. The first claim follows from P̂ (c|x) = P̂ (x, c)/P̂ (x) =
(1/Z)Φ(x, c)/

∑
c(1/Z)Φ(x, c), since by definitionΦ(y) = Φ(x, c). The second claim is

easily obtained from the definition of Bayesian classifier,h∗(x) = arg maxc P̂ (c|x), and
the following observation:

P̂ (c|x) =
Φ(y)∑
c Φ(y)

=

∏
{Q⊂R|C /∈Q} φ(yQ)∑

c Φ(y)

∏

{R⊂R|C∈R}
Φ(yR), (1)

where
∏
{Q⊂R|C /∈Q} Φ(yQ)∑

c Φ(y) is independent ofC.

Given a set of data, the question is how to select a factorized approximation ofP (y), i.e.
how to select a set of regions and potentials over these regions. Our approach to region
selection is inspired by thecluster-variation method(CVM) [7], also known asKikuchi
approximationof free energy [5]. An overview of our learning approach is given below:

Kikuchi-Bayes algorithm:

1. GivenY = X∪{C}, and a boundk on region size, select an initial set of regions
M = {M |M ⊆ Y} using significance test described in Section 5 and estimate
marginal pmfsPM = P (yM ).

2. GivenM and {PM}, compute an extended set of regionsR ⊇ M using the
cluster-variation method(see Section 4) and a set of marginalsP (yR). Approxi-
mateP (y) by (unnormalized) product asΦ(y) =

∏
R⊂R P (yR)cR wherecR is a

counting numberfor regionR (see next section).

3. Classify:c∗(x) = arg maxc P (c|x) = arg maxc
Φ(y)∑
c Φ(y) .

In the following two section we elaborate on the first two steps of the algorithm (we start
with the approximation step given a set of initial regions, and then describe the initial region
selection).

4 Kikuchi Approximation to Probability Distributions

Let us consider a problem of approximating a jointP (Y) by the product of marginals over
subsets ofn + 1 random variablesY = {X1, X2, . . . , Xn, C}.
Task: Given a set ofl initial subsets ofY (regions)M = {M1,M2, . . . , Ml}, and a joint
pmf for each region,PM = P (yM ) = P (yM,1, yM,2, . . . , yM,k), find an (unnormalized)
approximationΦM(y) of the intractableP (y) using a set of{P (yM )|M ∈M}.
Approach: our approach to region selection is inspired by thecluster-variation method
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(CVM) [7], also known as Kikuchi approximation of free energy [5]3. We apply clus-
ter variation method [7] on the set of initial regionsM to obtain a properregion graph
{〈R, cR〉} whereR = {R} is a new set of regions that includes the initial set of re-
gions, their intersections, intersections of intersections, and so on. For each region
R, there is a correspondingcounting number{cR}, that account for region overlaps
(to avoid double-counting) when using theregion-based approximationof the free en-
ergy which is defined asFR = UR − HR, whereUR and HR are the region-based
approximations of the average energy and the entropy, respectively, and are given by:
UR =

∑
R∈R cRUr(bR), andHR =

∑
R∈R cRHR(bR), wherebR is some marginal prob-

ability distribution overR, UR(bR) =
∑

yR
bR(yR)ER(yR) is the average energy, and

HR(bR) =
∑

yR
bR(yR) ln bR(yR) is the entropy of a region, respectively [7]. Region-

based approximation using CVM is considered a good approximation to the (intractable)
true free energy, because it accounts for the overlaps between the regions. When true
PR = P (yR) are used instead ofbR (as in our case where they are obtained from ’true’
empirical distribution), the region-based average energy is exact (although region-based
entropy is still an approximation).

Example: ConsiderY = {A,B, C} and a region graph (a set of regions with count-
ing numbers){〈1, {A,B}〉, 〈1, {B, C}〉, 〈1, {A, C}〉, 〈−1, {A}〉, 〈−1, {B}〉, 〈−1, {C}〉}.
The region-based approximate entropy is given byĤR = H(A,B) + H(B,C) +
H(A,C)−H(A)−H(B)−H(C), and the (unnormalized) approximation toP (A, B,C)
is given by Φ(A,B, C) = P (A,B)P (B, C)P (A,C)/(P (A)P (B)P (C)). Note that
ĤR(Y) = −∑

a,b,c P (a, b, c) ln Φ(a, b, c). In general, it is easy to show that:

Theorem 2 The region-based approximate entropy can be expressed asĤR =
−∑

y P (y) ln Φ(y) where P (y) is the true joint pmf overY and Φ(y) =∏
R∈R P (yR)cR .

Proof. ĤR = −∑
R∈R cR

∑
yR

P (yR) ln P (yR) = −∑
R∈R cR

∑
y P (y) ln P (yR) =

= −∑
y P (y) ln

∏
R∈R P (yR)cR = −∑

y P (y) ln Φ(y).

This motivates us to use cluster-variation method for constructing regionsR from an initial
setM, and to approximateP (y) by using a set ofP (yR) as follows4:

ΦM(y) =
∏

R∈R
P (yR)cR . (2)

Note that the approximation in the equation 2 has a nice property: if the region graph has
no cycles,P (y) = ΦM(y), i.e. the approximation becomes exact [7]; of course, this is
not true in general, when there are cycles in the region graph – in this case normalization
constraint may not hold (

∑
y Φ(y) 6= 1).

5 Selection the Initial Set of Regions

Task: Given a set ofN i.i.d. instancesYN = {y1, . . . ,yN}, whereyi ∈ Ω = X × C,
determine the set of initial regionsM = {M1,M2, . . . ,Ml} so that theΦ(y) obtained
using estimatesPMi = P (yMi) and a region graph constructed usingM will be a ’good’
approximation ofP (y) (in a sense explained below).

3Note that we only use the cluster selection part of the method, and do not perform an iterative
belief propagation over the selected set of regions, since classification is an easy inference problem
of computingP (c|x) given that all variablesX are observed.

4Note thatP (yR) is computed by marginalization of someP (yM ) whereR ⊆ M . Since each
PM is a marginal of someP (y), we get uniqueP (yR) when using differentM ∈M, R ⊆ M .
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Assume that we have a candidate approximationΦM based on a set of initial regionsM.
It is an intractable problem trying to comparêPM(y) = (1/Z)ΦM andP (y) directly
if y is of high dimensionality. It is possible, though, to compare their marginalsP̂ (yR)
andP (yR) within a tractable regionR. We will denote byxR the projection ofR ⊆
Y = X ∪ {C} on variables inX. If the two are significantly different, regionR should
be included among the initial regions, for whichP (yR) is estimated directly from the
data and not approximated. We question the quality of the predicted class distribution
D(P (c|xR)||P̂ (c|xR)).

Significance: Since KL-divergence between these two marginals is exceedingly rarely
zero, it would seem thatP and P̂ are always different. We need a different criterion:
when areP andP̂ significantlydifferent.P (yR) is estimated from the instance vectorYN

(which we denote byP (yR|YN )). Now assume thatYN itself is a sample fromP (yR).
The idea of nonparametric bootstrap is random sampling with replacement fromYN gen-
erates resamples that are equally likely and of the same size asYN . Given a particular
resampleỸN , we can compute theself-lossD(P (yR|ỸN )||P (yR|YN )). This way, even
the correct model will often end up with a particular loss on a finite sample. In fact, we can
speak of a probability distribution of self-loss:Pr{D(P (yR|ỸN )||P (yR|YN )) ≤ d}.
The key idea of goodness-of-fit testing, as originated by K. Pearson, is that the difference
betweenP andP̂ issignificantif it is unlikely that the self-loss ofP would be as large as the
observed approximation lossD(P ||P̂ ). Using the distribution of self-loss as a reference,
we can estimate thep-valueγ of the difference betweenP andP̂ :

γ = Pr{D(P (yR|ỸN )||P (yR|YN )) ≥ D(P (yR|YN )||P̂ (yR|YN ))}

When we are working with a potentialΦ rather than with the approximate pmf̂P (y) =
(1/Z)Φ(y), the potentialΦ needs to be normalized if the divergence is to be meaningful.
In case the normalization ofΦ(c|xR) is needed, it can always be performed locally without
having to seek̂P . We denote this way of computing conditionalKL-divergence withD̂:

D̂(P (c|xR)||Φ(c|xR)) ,
∑
xR

∑
c

P (xR, c) log
P (xR, c)

∑
c′ Φ(xR, c′)

P (xR)Φ(xR, c)
.

Building Models: We start with a single initial region which only includes the label at-
tributeM = {C}, M1 = {M}. In the first stage, we verify on all clusters of size 2 that
include the label that the approximation based on this initial region alone is not signifi-
cantly worse than the true model. Therefore, for each attributeX, we compare the self-loss
of P (c|x) with the loss ofP̂M1(c|x) = P (C). If the loss ofP̂ is significant, the region
{X, C} is included in the set of candidates. However, we do not make use of these candi-
dates until the end of the stage, as this would imply the undesirable relevance of the order
of testing individual attributes. In the second phase, we add the set of candidates into the
set of initial regions, obtainingM2, possibly removing the regions that are mere subsets
of the new candidates. For all pairs of attributesXi, Xj , we examine the goodness of fit of
P̂M2(c|xi, xj) to P (c|xi, xj).

In general, at levelk, for all k-tuples of attributesXk ∈ P(X), |Xk| = k, the significance
of including the regionR = {C}∪Xk is validated by comparing the the trueP (c|xk) with
the approximation based on the region graph constructed from the set of initial regions
from the set of at levels lower thank that intersect withR: {S ∩R; S ∈ M,S ∩R 6= ∅}.
All those regionsR where the approximation is significantly different are added to the set
of initial regions. We refer to this algorithm as Kikuchi-Bayes levelk.
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Classification error Average negative log-likelihood
NB K1 TN TK K2 win NB K1 TN TK’ K2 win

NB 0.3 -0.6 -0.4 -0.2 29.5 0.4 0.1 0.1 0.5 9.1
K1 -0.3 -1.0 -0.7 -0.6 47.7 -0.4 -0.3 -0.3 0.1 29.5
TN 0.6 1.0 0.2 0.4 20.5 -0.1 0.3 0.1 0.4 27.3
TK 0.4 0.7 -0.2 0.2 15.9 -0.1 0.3 -0.1 0.3 13.6
K2 0.2 0.6 -0.4 -0.2 29.5 -0.5 -0.1 -0.4 -0.3 34.1
lose↑ 22.7 20.5 25.0 20.5 31.8 18.2 15.9 34.1 11.4 22.7

Table 1: The percentage of the domains in which a particular algorithm achieved the best
or the worst result according to a particular criterion appears in bold. The expected differ-
ence in rank between each pair of methods appears within each matrix. For example, the
expected gain in rank of K1 versus NB measured by classification accuracy is 0.3.

6 Experiments

We have compared the following algorithms on 44 classification domains, most were from
the UCIKDD repository: a) Kikuchi-Bayes level 1 with thep-value cutoffγ at0.1 (K1) can
be seen as an approach to feature selection for the naı̈ve Bayesian classifier. b) Kikuchi-
Bayes level 2 withγ = 0.1 (K2). c) Kikuchi-Bayes level 2 withγ = 0.1 which does not
include a candidate region if it would cause a cycle (TK). d) Kikuchi-Bayes level 2 with
γ = 1.0, which includes all possible clusters of two attributes and the label (K2’). e) The
näıve Bayesian classifier (NB), which corresponds to K1 withγ = 1.0 and consequently
no cluster selection. f)The tree-augmented naı̈ve Bayesian classifier [3] (TN).

All continuous attributes were discretized beforehand with the Fayyad-Irani discretiza-
tion procedure. All the missing attribute values were handled as special values. The
Laplacean prior was employed for estimating the probability density function from the
data within each region. The generalization error of the algorithms was tested us-
ing 5-fold cross-validation replicated twice. To evaluate the calibration of probabilis-
tic predictions for each test instance〈x, c〉, the negative log-likelihood is computed as
log

∑
c′ Φ(x, c′) − log Φ(x, c), and is averaged over all the instances. The average ranks

of the methods across the data sets are:

Classification error Average negative log-likelihood
NB K1 TN TK K2 K2’ NB K1 TN TK K2 K2’

rank 2.93 2.65 3.52 3.30 3.15 5.453.38 2.98 3.19 3.13 2.85 5.48

The rank of a method depends strongly on the criterion used for comparing the classifiers.
Overall, Kikuchi-Bayes level 1 has best performance in classification, and Kikuchi-Bayes
level 2 wins in probability estimation. There are some distinct differences: the naı̈ve Bayes
excels in classification even if it is a rather bad probability estimator. On the other hand,
Kikuchi-Bayes level 2 achieves good probability estimation performance, but this does
not always reflect in superior classification performance. The heuristic that we used for
determining which regions to include in the model was the Kullback-Leibler divergence,
not the classification error. It is therefore unsurprising that the improvement was greater
with respect to the log-likelihood criterion. The morale is that one should employ that
heuristic that maximizes the preferred criterion of final evaluation. For example, if the
final evaluation of the methods employs classification accuracy and cross-validation, then
the learning should not employ the KL-divergence with the bootstrap, but cross-validation
with some measure of class ordering.

The most striking aspect of the results is the frequently inferior performance of the full
unpruned Kikuchi-Bayes level 2 model without cluster selection. However, based on the
detailed results excluding it in Table 1, we cannot claim the inherent superiority of any
other method. It is therefore sensible to examine the reasons for success or failure on a few
domains where the differences between methods are most accentuated. We will disregard
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the generalization error and focus on the bias, the approximation error assessed on the
training set itself, illustrating that the addition of clusters may deteriorate the performance.

Although the full Kikuchi-Bayes level 2 algorithm generally yielded dismal performance,
it excelled on domains like ‘tic-tac-toe’, which resembles the task of graphical pattern
recognition, and on the synthetic benchmark ‘monk-2’. We plotted the performance of
K1, K2 and de-cycled K2 (TK) at differing levels of the significance testing parameterγ.
Figure 1 illustrates ‘tic-tac-toe’, where K2’ wins due to usefulness of almost each pair of
attributes: the restrictions of K1 and TK prevent the utilization of these pairs.

In spite of significant clusters, there is deterioration to addition of clusters in ‘voting’. After
the initial gains (based on two cliques of 3 and one clique of 4 attributes), additional clusters
result in larger cliques and a large approximation errors, in spite of significant clusters.
Unfortunately, significance only indicates the reliability of the probability estimate, not the
reduction in estimation error, and the local learning neglects the additional approximation
error that arises from cycles.

The tree-based model is better than K2 at any setting ofγ, but adding edges into the tree
does not improve the performance monotonically. It is incorrect to viewγ as a domain-
dependent tuning parameter:γ does affect how many clusters will get included, but it
has meaning of its own that should remain unrelated to the issue of approximation error.
Modelling approximation error in Kikuchi-Bayes remains an open issue.
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Figure 1: We graphically illustrate the dependence of classification performance on the
type of the model and the significance testing thresholdγ. The horizontal scale indicates
the logit-transformed value of the thresholdlog(γ/(1−γ)) used as a parameter for Kikuchi-
Bayes learning.

References
[1] D.M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks: Search methods and experimental results. In

Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics, page 112, 1995.

[2] J. N. Darroch and D. Ratcliff. Generalised iterative scaling and maximum likelihood.The Annals of Mathematical Statistics,
43(5):1470–1480, 1972.

[3] N. Friedman, D. Geiger, and Goldszmidt M. Bayesian network classifiers.Machine Learning, 29:131–163, 1997.

[4] C. T. Ireland and S. Kullback. Contingency tables with given marginals.Biometrika, 55(1):179–188, 1968.

[5] R. Kikuchi. A theory of cooperative phenomena.Physical Review, 81(6):988–1003, 1951.

[6] N. Srebro. Maximum likelihood bounded Tree-Width markov networks. InProceedings of the 17th Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 504–511, 2001.

[7] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations and generalized belief propagation
algorithms. Technical Report TR2004-040, MERL, 2004.

8



A Appendix (may be ignored at the discretion of the program
committee)

R0 ← ∅ {The set of initial regions, without redundancies.}
for all S ∈ M do {for each initial region}

if ∀S ′ ∈ R0 : S * S ′ then
R0 ←R0 ∪ {S} {S is not redundant.}

end if
end for
R ← {〈S, 1〉; S /∈ R0} {The output region graph with counting numbers.}
k ← 1
while |Rk−1| > 1 do {there are feasible subsets}
Rk ← ∅
for all S1,S2 ∈ Rk−1, S1 ∩ S2 6= ∅, S1 ∩ S2 3 Rk do {all overlapping pairs of
regions}

c ← 1 {the counting number}
for all 〈S ′, c′〉 ∈ R, S1 ∩ S2 ⊆ S ′ do

c ← c − c′ {consider the counting numbers of all submodels containing the
intersection}

end for
R ← R∪ {〈S1 ∩ S2, c〉}
Rk ← Rk ∪ {S1 ∩ S2}

end for
end while

Algorithm 1: Cluster variation method for constructing the set of submodels using the initial set of
regionsM = {S1,S2, . . . ,SN}.
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Classification error Average negative log-likelihood
domain NB K1 TN TK K2 K2’ NB K1 TN TK K2 K2’
anneal 18.4 17.8 47.8 21.5 60.4 100.0 0.64 0.60 1.49 0.61 2.67 11.51
audiology 89.2 55.3 89.4 88.5 76.8 100.0 5.35 2.20 5.03 5.18 3.47 11.51
australian 14.5 14.5 14.9 14.9 15.2 44.7 0.45 0.45 0.39 0.36 0.38 1.32
balance-scale 8.8 8.8 17.8 17.0 8.8 32.4 0.52 0.52 0.59 0.58 0.52 0.70
breast-LJ 28.0 27.8 28.8 28.3 29.0 43.7 0.62 0.61 0.57 0.59 0.61 0.86
breast-wisc 2.5 2.5 4.8 3.1 48.8 96.3 0.20 0.20 0.14 0.11 3.07 9.08
bupa 35.5 39.4 33.2 33.3 34.9 32.2 0.63 0.67 0.61 0.61 0.62 0.61
car 14.0 14.1 14.8 14.4 6.0 94.6 0.33 0.33 0.50 0.49 0.26 5.99
cmc 47.8 47.8 46.4 46.9 45.7 58.7 1.00 1.00 0.95 0.95 0.95 1.38
crx 13.7 13.5 14.4 14.0 14.9 39.1 0.45 0.44 0.40 0.37 0.41 1.35
ecoli 44.2 35.7 64.0 61.3 35.7 99.7 1.24 1.03 2.06 1.65 1.03 10.00
german 25.7 25.6 27.7 27.8 24.9 40.9 0.53 0.53 0.59 0.58 0.55 1.18
glass 28.7 30.8 31.1 31.1 31.1 99.5 0.83 0.84 0.92 0.92 0.84 10.31
hayes-roth 17.8 15.6 32.8 34.4 15.6 41.9 0.56 0.55 0.71 0.72 0.55 0.96
heart 44.4 44.5 47.3 47.4 44.9 84.1 1.22 1.20 1.19 1.31 1.23 5.83
hepatitis 14.8 15.5 18.4 18.4 16.5 84.8 0.61 0.48 0.46 0.70 0.53 6.53
horse-colic 65.0 52.6 96.1 91.7 74.0 99.2 3.68 2.51 8.17 7.31 3.79 11.40
ionosphere 9.7 9.7 10.0 9.3 68.7 77.1 0.77 0.77 0.55 0.58 6.73 10.13
iris 5.7 5.7 5.0 5.3 5.7 99.3 0.16 0.16 0.22 0.17 0.16 4.01
krkp 12.2 12.0 7.9 6.2 6.9 21.3 0.29 0.29 0.19 0.16 0.22 0.93
lenses 12.5 31.2 29.2 45.8 25.0 95.8 0.62 0.63 0.91 0.96 0.60 1.65
lung-cancer 46.9 43.8 53.1 57.8 64.1 92.2 2.23 1.27 2.54 3.35 5.19 10.36
lymphography 42.9 35.5 94.9 67.6 43.2 100.0 1.79 1.03 3.99 2.70 1.51 11.51
monk1 25.4 25.4 0.0 0.0 0.0 16.7 0.50 0.49 0.15 0.12 0.10 0.36
monk2 37.9 34.3 34.9 33.3 30.8 26.5 0.65 0.65 0.62 0.60 0.55 0.52
monk3 3.6 3.6 1.7 1.4 1.1 4.4 0.20 0.20 0.11 0.10 0.09 0.16
mushroom 4.7 4.7 0.0 0.0 3.9 4.3 0.14 0.14 0.00 0.00 0.39 0.43
o-ring-erosion 13.0 17.4 15.2 13.0 15.2 15.2 0.59 0.60 0.51 0.50 0.59 0.53
pima 21.9 21.9 21.9 22.9 22.7 25.9 0.49 0.49 0.46 0.48 0.48 0.52
post-operative 36.4 28.4 39.8 39.8 30.1 47.7 0.72 0.61 0.78 0.75 0.69 1.02
primary-tumor 84.7 72.1 88.5 88.3 72.9 100.0 3.85 2.64 4.49 4.26 2.67 11.38
promoters 9.9 9.9 21.2 23.6 30.7 66.0 0.28 0.21 0.78 0.85 1.39 7.20
segment 8.9 8.9 84.2 65.6 100.0 100.0 0.45 0.45 4.09 3.23 11.50 11.51
shuttle-control 6.7 6.7 2.6 3.0 3.6 43.1 0.17 0.19 0.27 0.18 0.14 0.58
soybean-large 9.8 9.8 51.1 29.3 9.8 96.3 0.73 0.73 1.75 1.21 0.73 11.51
soybean-small 0.0 0.0 1.1 3.2 0.0 100.0 0.00 0.00 0.02 0.09 0.00 11.51
tic-tac-toe 30.1 29.1 22.0 26.4 25.6 20.6 0.55 0.55 0.49 0.53 0.50 0.41
titanic 22.1 22.1 21.1 21.1 21.2 21.2 0.52 0.52 0.48 0.48 0.48 0.48
vehicle 39.1 39.1 32.0 31.0 82.0 83.3 1.80 1.80 0.71 0.92 8.94 9.06
voting 10.0 9.9 5.5 6.4 79.1 84.6 0.59 0.59 0.19 0.21 7.77 9.38
wdbc 4.2 4.2 5.8 3.2 91.9 94.2 0.22 0.22 0.16 0.17 10.00 10.74
wine 1.1 1.1 19.9 3.7 1.1 100.0 0.03 0.03 0.58 0.10 0.03 11.51
yeast-class 0.3 0.3 2.7 0.5 0.3 66.9 0.01 0.01 0.14 0.03 0.00 11.51
zoo 8.4 5.4 12.4 12.9 5.9 100.0 0.16 0.14 0.36 0.30 0.14 11.51
avg rank 2.93 2.65 3.52 3.30 3.15 5.45 3.38 2.98 3.19 3.13 2.85 5.48

Table 2: NB - näıve bayes, K1 - kikuchi level 1, TN - tree-augmented naı̈ve bayes, TK -
kikuchi level 2 without loops, K2 - kikuchi level 2, K2’ - kikuchi level 2 without signif-
icance testing. Outrageous error rates (100%) indicate numerical instabilities caused by
repeated multiplication of near-zero probabilities (making a probability distribution impos-
sible to normalize), which were handled as misclassifications.
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k ← 1 {Size of the candidate regions}
M ← {C} {Set of initial regions}
while k ≤ K do
M′ ← ∅ {Candidate regions of cardinalityk}
for all Xk ∈ P(X), |Xk| = k do {for each candidate}
F ← {C} ∪Xk {The consistency focus always includes the label.}
R′ ← CV A({S ∩ F ; S ∈ M,S ∩ F 6= ∅}) {The local region graph within the focus.}
Φ′(C,Xk) =

∏
〈XR,cR〉∈R′ P (XR)cR

if Pr{D(P ′(C|Xk)||P (C|Xk)) > D̂(P (C|Xk)||Φ′(C|Xk))} < γ then
M′ ←M′ ∪ {F} {A significant improvement, include the candidate region.}

end if
end for
M←M∪M′

k ← k + 1
end while
R← CV A(M)

Algorithm 2: General framework of the Kikuchi-Bayes levelK algorithm for learning aK-
consistent initial region structure from the data for predicting the labelC, given a set of attributes
X and their potential setP(X). P ′ is a model estimated on a bootstrap resamples of the original data
(explained in Sect. 5), and thep-valueγ was used as the significance threshold.
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