RC23314 (W0408-175) August 30, 2004
Computer Science

IBM Research Report

Kikuchi-Bayes: Factorized Models for Approximate
Classification in Closed Form

Alex Jakulin*, Irina Rish, Ivan Bratko*
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

*Faculty of Computer and Information Science
University of Ljubljana
Trzaska cesta 25
SI-1001 Ljubljana, Slovenia

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home



Kikuchi-Bayes: Factorized Models for
Approximate Classification in Closed Form

Aleks Jakulin Irina Rish
Faculty of Computer and Information Science IBM T.J. Watson Research Center
University of Ljubljana, Tza8ka cesta 25 19 Skyline Drive
SI-1001 Ljubljana, Slovenia Hawthorne, NY 10532, USA
jakulin@acm.org rish@us.ibm.com
Ivan Bratko

Faculty of Computer and Information Science
University of Ljubljana, TEa8ka cesta 25
SI-1001 Ljubljana, Slovenia
ivan.bratko@fri-uni.lj.si

Abstract

We propose a simple family of classification models, based on the
Kikuchi approximation to free energy. We note that the resulting product
of potentials is not normalized, but for classification it is easy to perform
the normalization for each instance separately. We propose a learning
method based on including those initial regions that would otherwise be
significantly different from those estimated directly. We observe that this
algorithm outperforms other methods, such as the tree-augmerited na
Bayes, but that the inclusion of regions may increase the approximation
error, even in cases when adding a region does not yield loopy dependen-
cies.

1 Introduction

In this paper, we focus on the problem of building probabilistic classifiers from data. Since
in high-dimensional domains, it is impossible to reconstruct the true global probabilistic
model from a limited amount of data (and even with potentially unlimited data, the model
complexity might be too high), various approximations techniques are used. A common
approach is to use local models: namely, every joint model that fits the data globally should
also fit the data when marginalized to any subset of attributes. We need not build an in-
tractable globally consistent model, but instead an ensemble of submodels, each modelling
a region of the attributes.

One approach to reintegrating the submodels into a single global model is to consider each
submodel a constraint and seek a joint probability mass function (pmf) conforming to them
[4]. For example, the maximum entropy approach is to seek the global model with the
highest entropy of those consistent with the constraints, essentially assuming that no infor-
mation is to be assumed by the model beyond that provided by the constraints. Approaches



such as iterative scaling are typically used in order to find a max-entropy distribution satis-
fying such constraints [2]. However, the disadvantage of iterative scaling is that the com-
plete complex global model itself needs to be modelled explicitly.

The cluster variation method was originally proposed as a way of estimating the entropy of
the whole complex system model, by only having information about its parts [5]. Recently,
the Kikuchi approximation to free energy has been shown to be a special case of region
graph approximations, and the probability distributions inferred by the algorithms of the
belief propagation family are at the stationary points of the Kullback-Leibler divergence
between the region-based approximation of the joint probability density function and the
inferred pmf (probability mass function) []. Thereby, each submodel corresponds to a
region of attributes, and can be represented with a region graph. Interestingly, for tractable
region graphs, the models obtained through the chain rule, the MaxEnt approach and with
the cluster variational method are identical.

In this paper, we will focus on a very simple inferential task of classification, where the
query attribute is the label, and all the other attributes are the evidence. No approximate
marginalization method is needed. We will not use the cluster variation method to model
entropy but instead to model the global pmf directly. We will employ the interaction test-
ing approach to determine the submodels required for good predictive performance with-
out restricting ourselves to tractable hierarchical, graphical or decomposable probabilistic
models.

There was plenty of work, but whenever they got overlapping regions, they had to merge
them into a single humongous region. The novelty of our approach is that we're using
Kikuchi to handle the overlap: sometimes exactly, sometimes approximately.

The second novelty is that most of the learning around NIPS is done with respect to KL-
divergence, without correct regard for the risk and chance. We’re using significance testing
to show how it applies.

The third novelty is the focus on assuring the local fit, and rely on approximation to do its
work. We do not do global model selection, because it's so arbitrary and because it is not
consistent on projections.

2 Notation and Definitions

Let X = {X;,...,X,} be a set of observed random variables, cafitdbutes and let
x = (x1,...,2,) be a vector of values assigned to the variableXinHerein, we assume
discrete-valued attributes, i.ex € X = {AX} x ... x X,} where each¥; is a set of
possible values ak;. LetC denote an unobserved random variable calledthss where
¢ € C,|C| = m}. The set of attributes together with the class is dendfed X U {C}.
An assignmeny = (x, ¢) of values to the attributes and the class is callethatance or
example The set of all possible instances is dendfed= X; x ... x X, x C. We will
use a short notatio®(y) = P(x,c¢) = P(x1,...,x,,c) to describe the joint probability
distribution P(X; = x4, ..., X;, = x,,C = ¢). A subset of variableg € Y is called a
region(or clustep, and a value assignment idis denotedy .

A classifieris a mappingh : X — C that assigns a class value to any given instance.
Particularly, theBayes classifieh*(x) = argmax. P(c|x) = argmax. P(x, c) selects

the most-likely value of class given the observed attributes, and is provably optimal (i.e. has
the lowest error probability, or lowessk, among all classifiers). However, in practice, the
true underlying distributiorP(c, x) (or, respectivelyP(c|x)) is not available, and is hard

to estimate from a limited set of training instances, especially in case of high-dimensional
vectors of attributes.



A common approach to this problem is to assume a certain simplified class of joint proba-
bility mass functionst(c, x) that approximate®(c, x). For example, one of the simplest
and perhaps most popular probabilistic classifiers isdiee Bayeshat assumes attribute
independence given the class, thus approximakifg, ¢) by P(x, ¢) = [L; P(zilc)P(c).

Other approaches include less restrictive assumptions on the structlresoth as trees
(e.g., Tree-Augmented [z Bayes (TAN) or, more generally, Bayesian networks [3]. We
will use undirected graphical models such\arkov networks

Markov networks. Given a set of random variabl@§, a Markov network(also called
undirected graphical modedr Markov random fieldor X), is defined as a paifG, S)
whereG is an undirected graph anl = (®4,...,®,,) is a set of (positive) functions
(called potentialg, defined over each of. cliques inG, such that the joint distribution
P(x) is factorized over the set of these cliques, Réx) = (1/2) [[, ®(x;) where Zis a
normalization constant.

3 Main ldea

Note that typical probabilistic classifiers (e.g., i@ Bayes, TAN, Bayesian networks)
build anexplicit probabilistic modelP (¢, x) by assuming a certain structure of the prob-

ability distribution (e.g., a tree-structure in TAN, or a particular factorizatior?(ﬁ, X)
according to the Bayesian network structure). These assumptions may introduce an unnec-
essary bias.

In this paper, we propose an alternative approach that md?{els:) implicitly by using

a collection of marginal distributions defined over (potentially all) subsets, or clusters, of
the variables (clearly, the subset size is limited to a reasonable value to make the approach
tractable). Briefly, this approach can be viewed as modelitig x) by an undirected
graph (a Markov network) defined by the selected clusters, rather than by a directed graph,
or a Bayesian network. While other approaches to learning Markov networks aim at con-
structing a network of bounded treewidth (e.g., Chow-Liu tree learning approach and its
generalization by [6]), so that probabilistic inference will be easy in such networks, we
are not concerned with bounding the treewidth as we only use the resulting network for
computing P(c|x) which turns out to be an easy inference problem. We are only con-
cerned with bounding the clique size in the original (non-triangulated) network. Of course,
since our networks are not triangulated, we are unable, in general, to provide an explicit
(normalized) joint distribution function; however, we can still compﬁ‘t(e:|x) from such
unnormalized distributions.

There are several advantages to our approach. First, the model construction is much easier:
given a bound: on the cluster size, we only need to compute a polynortiéh{)) number

of marginal probabilities while finding an optimal Bayesian network structure with a
boundk > 1 on the number of parents is known to be NP-hard [1]. Second, this approach
allows to take into account any subset of (significamtyay interactions (or even all of
them), instead of limiting ourselves to interactions consistent with a certain graph structure
(e.g., a particular set of families in a Bayesian network). Finally, while generic inference

in Markov networks is generally hard, and often requires approximations such as belief

propagation and its generalizations [7], computﬁ’\gﬂXl, ..., X,) is easy because it

does not require normalization iR(x) = (1/Z) [L; #(x:), as shown by the following
lemma.

lwithout loss of generality we could restrict the set of all cliques to the set ofatimalcliques.
2Actually, the number of all marginals éfvariables is lowern!/k!(n — k)!.



Theorem 1 Given a set of random variable§ = X U {C}, asetR = {R|R C Y}
of subsets (regions) &, where C belongs to at least one region, and a prodbgt) =
®(x,c) = [[rcr ®(yr) Of non-negative functions (potentials) defined on these regions,

let P(y) = (1/Z)®(y) be the corresponding joint probability distribution ov&t, where
Z is a normalization constant. Then:

1. Computing P(c|x) does not require normalization, i.e. P(c]x) =

(y)/ 2. 2(y);

2. Bayesian classifier can be computed using only a product of potentials that con-
tain C,i.e. h*(x,c) = argmaxc [ [ periceny P(YR)-

Proof. The first claim follows from P(c|x) = P(x,¢)/P(x) =
(1/2)®(x,¢)/ >..(1/Z2)®(x, c), since by definitiond(y) = ®(x, c). The second claim is
easily obtained from the definition of Bayesian classifi¢fx) = arg max. P(c|x), and
the following observation:

~—

o) = 20 _ liecriceqy 90a) I

=T ay) >, 0(y) 2yn), @)

{RCR|CER}

whereH{QCgcg‘gy})@(yQ) is independent of’. m

Given a set of data, the question is how to select a factorized approximatidfyof i.e.

how to select a set of regions and potentials over these regions. Our approach to region
selection is inspired by theluster-variation methodCVM) [7], also known asKikuchi
approximationof free energy [5]. An overview of our learning approach is given below:

Kikuchi-Bayes algorithm:

1. GivenY = X U{C1}, and a bound on region size, select an initial set of regions
M = {M|M C Y} using significance test described in Section 5 and estimate
marginal pmfsPy; = P(yar).

2. Given M and { Py}, compute an extended set of regioRs> M using the
cluster-variation methogsee Section 4) and a set of margin&i§/r). Approxi-
mateP(y) by (unnormalized) product a&(y) = [[ - P(yr)‘® Wherecr is a
counting numbefor region R (see next section).

3. Classify:¢*(x) = argmax. P(c|x) = arg max, %.

In the following two section we elaborate on the first two steps of the algorithm (we start
with the approximation step given a set of initial regions, and then describe the initial region
selection).

4 Kikuchi Approximation to Probability Distributions

Let us consider a problem of approximating a jaff{tY') by the product of marginals over
subsets ofi + 1 random variableY = {X;, X»,..., X,,C}.

Task: Given a set of initial subsets ofY (regions)M = {M;, M>, ..., M;}, and a joint
pmf for each regionPy = P(ym) = P(ym1, a2, - - -, Yak), find an (unnormalized)
approximation® ,4(y) of the intractable”(y) using a set of P(y )| M € M}.
Approach: our approach to region selection is inspired by thester-variation method



(CVM) [7], also known as Kikuchi approximation of free energy 5] We apply clus-

ter variation method [7] on the set of initial regiond to obtain a properegion graph
{{(R,cr)} whereR = {R} is a new set of regions that includes the initial set of re-
gions, their intersections, intersections of intersections, and so on. For each region
R, there is a correspondingounting number{cr}, that account for region overlaps

(to avoid double-counting) when using tiregion-based approximatioof the free en-

ergy which is defined a’r = Ur — Hg, whereUgx and Hy are the region-based
approximations of the average energy and the entropy, respectively, and are given by:
Ur = > per crRU-(br), andHr = 3 p . cRHR(br), whereby is some marginal prob-
ability distribution overR, Ur(br) = >, br(Yr)Er(yr) is the average energy, and
Hp(br) = >, br(yr)Inbr(yr) is the entropy of a region, respectively [7]. Region-
based approximation using CVM is considered a good approximation to the (intractable)
true free energy, because it accounts for the overlaps between the regions. When true
Pr = P(ygr) are used instead @f; (as in our case where they are obtained from 'true’
empirical distribution), the region-based average energy is exact (although region-based
entropy is still an approximation).

Example: ConsiderY = {A4,B,C} and a region graph (a set of regions with count-
ing nUmberS){<1, {A7 B}>7 <1a {B7 C}>7 <17 {A> C}>? <_A17 {A}>7 <_1? {B}>7 <_15 {C}>}
The region-based approximate entropy is given®y = H(A,B) + H(B,C) +
H(A,C)—H(A)— H(B)— H(C), and the (unnormalized) approximation®¢A, B, C')

is given by ®(A, B,C) = P(A,B)P(B,C)P(A,C)/(P(A)P(B)P(C)). Note that
Hr(Y) = — >apeP(a,b,c)In®(a,b,c). Ingeneral, itis easy to show that:

Theorem 2 The region-based approximate entropy can be expressedHas
-2y P(y)ln®(y) where P(y) is the true joint pmf overY and ®(y)

HReR P(yRr)°®.

Proof. Hr = =Y peg cr Yoy, PYR) I P(YR) = — Y per ¢r >y P(y)InP(yr) =
=2, Py)In[]ger P(yr)® = =23, P(y) n®(y). m

This motivates us to use cluster-variation method for constructing re@ldram an initial
setM, and to approximat(y) by using a set of’(y) as follows*:

®mly) = [ Pyr)™. 2

RER

Note that the approximation in the equation 2 has a nice property: if the region graph has
no cycles,P(y) = ®(y), i-e. the approximation becomes exact [7]; of course, this is
not true in general, when there are cycles in the region graph — in this case normalization
constraint may not hold)C, ®(y) # 1).

5 Selection the Initial Set of Regions

Task: Given a set ofV i.i.d. instancesY™ = {yi,...,yn}, Wherey; € Q = X x C,
determine the set of initial regionst = {M;, Mo, ..., M;} so that thed(y) obtained
using estimate®,;, = P(y,) and a region graph constructed usifg will be a 'good’
approximation ofP(y) (in a sense explained below).

3Note that we only use the cluster selection part of the method, and do not perform an iterative
belief propagation over the selected set of regions, since classification is an easy inference problem
of computingP(c|x) given that all variableX are observed.

“Note thatP(yr) is computed by marginalization of soniy ) whereR C M. Since each
Py is a marginal of somé(y), we get uniqueP(y r) when using differeni/ € M, R C M.



Assume that we have a candidate approximadign based on a set of initial regions.

It is an intractable problem trying to compafd,(y) = (1/Z)® . and P(y) directly

if y is of high dimensionality. It is possible, though, to compare their margiﬁajsg)

and P(yg) within a tractable regiorz. We will denote byxy the projection ofR C

Y = X U {C} on variables inX. If the two are significantly different, regioR should

be included among the initial regions, for whiéhyr) is estimated directly from the
data and not approximated. We question the quality of the predicted class distribution

D(P(clxp)||P(clxr))-

Significance: Since KL-divergence between these two marginals is exceedingly rarely
zero, it would seem thaP and P are always different. We need a different criterion:
when areP and P significantlydifferent. P(y ) is estimated from the instance vecf¥
(which we denote byP(yz|Y?)). Now assume thaY " itself is a sample fronP(yr).

The idea of nonparametric bootstrap is random sampling with replacemenffomen-
erates resamples that are equally likely and of the same si¥asGiven a particular
resampleY ™, we can compute theelf-lossD(P(yz|Y™)||P(yr|Y")). This way, even

the correct model will often end up with a particular loss on a finite sample. In fact, we can

speak of a probability distribution of self-losBr{ D(P(yz|[Y™)||P(yr|Y™N)) < d}.

The key idea of goodness-of-fit testing, as originated by K. Pearson, is that the difference
betweenP andP is significantif it is unlikely that the self-loss of would be as large as the
observed approximation lod3(P||P). Using the distribution of self-loss as a reference,
we can estimate thevaluey of the difference betweeR and P:

v =Pr{D(P(yr[Y™)||P(yr[Y")) > D(P(yr|Y™)||P(yrlY™))}

When we are working with a potentidl rather than with the approximate prﬁ’f(y) =
(1/Z2)®(y), the potentiak> needs to be normalized if the divergence is to be meaningful.
In case the normalization df(c|xr) is needed, it can always be performed locally without

having to seel®. We denote this way of computing conditiorfglL.-divergence withD:

D(P(clxp)||®(c|xr)) £ Y D Plxr,c)log P(Xfljé)zz%éixc};, =

Building Models: We start with a single initial region which only includes the label at-
tribute M = {C}, My = {M}. In the first stage, we verify on all clusters of size 2 that
include the label that the approximation based on this initial region alone is not signifi-
cantly worse than the true model. Therefore, for each attrilyt@e compare the self-loss

of P(c|z) with the loss ofPy, (c|z) = P(C). If the loss of P is significant, the region

{X, C} is included in the set of candidates. However, we do not make use of these candi-
dates until the end of the stage, as this would imply the undesirable relevance of the order
of testing individual attributes. In the second phase, we add the set of candidates into the
set of initial regions, obtaining 15, possibly removing the regions that are mere subsets
of the new candidates. For all pairs of attribufes X ;, we examine the goodness of fit of

Py, (¢, ;) to P(c|ai, x;).

In general, at levet, for all k-tuples of attributeX;, € P(X), |Xx| = &, the significance

of including the regioR = {C'} UX}, is validated by comparing the the tri¥c|x;) with

the approximation based on the region graph constructed from the set of initial regions
from the set of at levels lower thdnthat intersect with?: {SNR; S € M, SNR # 0}.

All those regionsk where the approximation is significantly different are added to the set
of initial regions. We refer to this algorithm as Kikuchi-Bayes lekel



Classification error Average negative log-likelihood

NB K1 TN TK K2 win NB K1 TN TK K2 win
NB 03 -06 -04 -0.2 295 0.4 0.1 0.1 05 91
K1 -0.3 -1.0 -07 -06 47.7| -04 -0.3  -0.3 0.1 295
TN 0.6 1.0 0.2 04 205 | -01 0.3 0.1 04 273
TK 0.4 0.7 -0.2 0.2 159 | -0.1 03 -01 0.3 136
K2 0.2 06 -04 -02 295 | -05 -0.1 -04  -0.3 34.1
loset | 227 205 250 205 3138 18.2 159 341 114 227

Table 1: The percentage of the domains in which a particular algorithm achieved the best
or the worst result according to a particular criterion appears in bold. The expected differ-
ence in rank between each pair of methods appears within each matrix. For example, the
expected gain in rank of K1 versus NB measured by classification accuracy is 0.3.

6 Experiments

We have compared the following algorithms on 44 classification domains, most were from
the UCIKDD repository: a) Kikuchi-Bayes level 1 with thevalue cutoffy at0.1 (K1) can

be seen as an approach to feature selection for the iBayesian classifier. b) Kikuchi-
Bayes level 2 withy = 0.1 (K2). c) Kikuchi-Bayes level 2 withy = 0.1 which does not
include a candidate region if it would cause a cycle (TK). d) Kikuchi-Bayes level 2 with
~ = 1.0, which includes all possible clusters of two attributes and the label (K2'). e) The
nave Bayesian classifier (NB), which corresponds to K1 wite= 1.0 and consequently

no cluster selection. f)The tree-augmentetvadBayesian classifier [3] (TN).

All continuous attributes were discretized beforehand with the Fayyad-Irani discretiza-
tion procedure. All the missing attribute values were handled as special values. The
Laplacean prior was employed for estimating the probability density function from the
data within each region. The generalization error of the algorithms was tested us-
ing 5-fold cross-validation replicated twice. To evaluate the calibration of probabilis-
tic predictions for each test instance, ¢), the negative log-likelihood is computed as
log) ., ®(x,c') —log ®(x,c), and is averaged over all the instances. The average ranks
of the methods across the data sets are:

Classification error Average negative log-likelihood
NB KiI TN TK K2 K2 NB KT TN TK K2 K2
rank 293 265 352 330 3.15 545338 298 319 313 285 5.48

The rank of a method depends strongly on the criterion used for comparing the classifiers.
Overall, Kikuchi-Bayes level 1 has best performance in classification, and Kikuchi-Bayes
level 2 wins in probability estimation. There are some distinct differences: ikie Bayes
excels in classification even if it is a rather bad probability estimator. On the other hand,
Kikuchi-Bayes level 2 achieves good probability estimation performance, but this does
not always reflect in superior classification performance. The heuristic that we used for
determining which regions to include in the model was the Kullback-Leibler divergence,
not the classification error. It is therefore unsurprising that the improvement was greater
with respect to the log-likelihood criterion. The morale is that one should employ that
heuristic that maximizes the preferred criterion of final evaluation. For example, if the
final evaluation of the methods employs classification accuracy and cross-validation, then
the learning should not employ the KL-divergence with the bootstrap, but cross-validation
with some measure of class ordering.

The most striking aspect of the results is the frequently inferior performance of the full
unpruned Kikuchi-Bayes level 2 model without cluster selection. However, based on the
detailed results excluding it in Table 1, we cannot claim the inherent superiority of any
other method. It is therefore sensible to examine the reasons for success or failure on a few
domains where the differences between methods are most accentuated. We will disregard



the generalization error and focus on the bias, the approximation error assessed on the
training set itself, illustrating that the addition of clusters may deteriorate the performance.

Although the full Kikuchi-Bayes level 2 algorithm generally yielded dismal performance,
it excelled on domains like ‘tic-tac-toe’, which resembles the task of graphical pattern
recognition, and on the synthetic benchmark ‘monk-2’. We plotted the performance of
K1, K2 and de-cycled K2 (TK) at differing levels of the significance testing parameter
Figure 1 illustrates ‘tic-tac-toe’, where K2’ wins due to usefulness of almost each pair of
attributes: the restrictions of K1 and TK prevent the utilization of these pairs.

In spite of significant clusters, there is deterioration to addition of clusters in ‘voting’. After
the initial gains (based on two cliques of 3 and one clique of 4 attributes), additional clusters
result in larger cliques and a large approximation errors, in spite of significant clusters.
Unfortunately, significance only indicates the reliability of the probability estimate, not the
reduction in estimation error, and the local learning neglects the additional approximation
error that arises from cycles.

The tree-based model is better than K2 at any setting ot adding edges into the tree
does not improve the performance monotonically. It is incorrect to views a domain-
dependent tuning parametet: does affect how many clusters will get included, but it
has meaning of its own that should remain unrelated to the issue of approximation error.
Modelling approximation error in Kikuchi-Bayes remains an open issue.

tic-tac-toe voting
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Figure 1. We graphically illustrate the dependence of classification performance on the
type of the model and the significance testing threshold’he horizontal scale indicates

the logit-transformed value of the threshbig(~/(1—~)) used as a parameter for Kikuchi-
Bayes learning.

References
[1] D.M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks: Search methods and experimental results. In
Proceedings of the Fifth International Workshop on Artificial Intelligence and Statigtagse 112, 1995.

[2] J.N. Darroch and D. Ratcliff. Generalised iterative scaling and maximum likeliibloel Annals of Mathematical Statistjcs
43(5):1470-1480, 1972.

] N. Friedman, D. Geiger, and Goldszmidt M. Bayesian network classifiéashine Learning29:131-163, 1997.
] C.T.lIreland and S. Kullback. Contingency tables with given margirgitsmetrika 55(1):179-188, 1968.

[5] R. Kikuchi. A theory of cooperative phenomerghysical Review81(6):988—-1003, 1951.
]

N. Srebro. Maximum likelihood bounded Tree-Width markov networksProceedings of the 17th Conference on Uncer-
tainty in Artificial Intelligence (UAI) pages 504-511, 2001.

[7] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations and generalized belief propagation
algorithms. Technical Report TR2004-040, MERL, 2004.



A Appendix (may be ignored at the discretion of the program
committee)

Ro < 0 {The set of initial regions, without redundancies.
forall S € M do {for each initial regiof
if VS € Ro: S ¢ S’ then
Ro — Ro U{S} {S is not redundant.
end if
end for
R — {(S,1); S ¢ Ro} {The output region graph with counting numbérs.
k—1
while |Rj_1| > 1 do {there are feasible subséts
Rk — @
forall $1,82 € Ri—1, S1NSe # 0, S NSy o Ry, do {all overlapping pairs of
regiong
¢ « 1 {the counting numbér
forall (S',¢) e R, S1 NS, C S do
¢ «— ¢ — ¢ {consider the counting numbers of all submodels containing the
intersectior}
end for
R+—RU {<81 082,C>}
Ri — Ry U {81 082}
end for
end while

Algorithm 1: Cluster variation method for constructing the set of submodels using the initial set of
regionsM = {81782, . 7S]\]}.



Classification error Average negative log-likelihood

domain NB K1 TN TK K2 K2’ NB K1 TN TK K2 K2’
anneal 184 178 478 215 60.4 100.00 0.64 0.60 1.49 0.61 2.67 1151
audiology 89.2 553 894 88.5 76.8 100.00 5.35 2.20 5.03 5.18 3.47 11.51
australian 145 145 149 14.9 15.2 44.7| 0.45 0.45 0.39 0.36 0.38 1.32
balance-scale 8.8 8.8 178 17.0 8.8 324 | 052 052 059 058 0.52 0.70
breast-LJ 28.0 27.8 288 28.3 29.0 43.7) 0.62 0.61 0.57 0.59 0.61 0.86
breast-wisc 25 25 4.8 3.1 48.8 96.3| 0.20 0.20 0.14 0.11 3.07 9.08
bupa 35.5 39.4 33.2 33.3 349 322 | 0.63 0.67 0.61 0.61 0.62 0.61
car 14.0 14.1 14.8 14.4 6.0 94.6 | 0.33 0.33 0.50 049 0.26 5.99
cmc 478 478 46.4 469 457 58.7 | 1.00 1.00 0.95 0.95 0.95 1.38
crx 13.7 135 144 14.0 14.9 39.1| 0.45 0.44 0.40 0.37 0.41 1.35
ecoli 442 357 64.0 61.3 35.7 99.7 | 1.24 103 2.06 1.65 1.03 10.00
german 25,7 256 27.7 278 249 409 | 053 053 059 0.58 0.55 1.18
glass 28.7 308 31.1 311 31.1 99.5 0.83 0.84 0.92 0.92 0.84 10.31
hayes-roth 17.8 156 328 344 156 419 | 056 055 0.71 072 055 0.96
heart 444 445 47.3 47.4 44.9 84.1 1.22 120 119 131 1.23 5.83
hepatitis 148 155 18.4 18.4 16.5 84.8 0.61 0.48 0.46 0.70 0.53 6.53
horse-colic 65.0 526 96.1 91.7 74.0 99.2| 3.68 251 817 7.31 3.79 1140
ionosphere 9.7 9.7 10.0 9.3 68.7 77.1| 0.77 0.77 055 0.58 6.73 10.13
iris 5.7 5.7 5.0 53 5.7 99.3| 0.16 0.16 0.22 0.17 0.16 4.01
krkp 12.2 120 79 6.2 6.9 21.3| 029 029 019 0.16 0.22 0.93
lenses 125 31.2 29.2 45.8 25.0 95.4 0.62 0.63 0.91 0.96 0.60 1.65

lung-cancer 469 438 53.1 5738 64.1 92.2| 223 127 254 3.35 519 10.36
lymphography | 429 355 949 67.6 432 100.0 1.79 1.03 399 270 151 1151

monk1 25.4 25.4 0.0 0.0 0.0 16.7 | 0.50 0.49 0.15 0.12 0.10 0.36
monk2 379 343 349 333 308 265 | 065 065 0.62 0.60 0.55 0.52
monk3 3.6 3.6 1.7 1.4 1.1 4.4 | 0.20 0.20 0.11 0.10 0.09 0.16
mushroom 4.7 47 0.0 0.0 3.9 43| 014 014 0.00 0.00 0.39 0.43
o-ring-erosion | 13.0 174 152 13.0 15.2 152 | 059 0.60 051 0.50 0.59 0.53
pima 21.9 219 219 229 22.7 25.9| 0.49 049 046 048 0.48 0.52

post-operative | 36.4 28.4 39.8 39.8 30.1 477 0.72 061 0.78 0.75 0.69 1.02
primary-tumor | 84.7 721 885 883 729 100.0f 3.85 264 449 4.26 2.67 11.38

promoters 9.9 99 212 236 30.7 66.00 0.28 0.21 0.78 0.85 1.39 7.20
segment 8.9 89 842 656 1000 100.0 0.45 045 4.09 323 1150 1151
shuttle-control 6.7 6.7 2.6 3.0 3.6 43.1| 0.17 019 027 018 0.14 0.58

soybean-large | 9.8 9.8 511 2§.3 9.8 963 | 073 073 175 121 0.73 1151
soybean-small| 0.0 0.0 11 3.2 0.0 100.0| 0.00 0.00 0.02 0.09 0.00 1151

tic-tac-toe 301 291 220 264 256 206 | 055 055 049 0.53 0.50 041
titanic 221 221 211 211 212 21.2| 052 052 048 048 048 0.48
vehicle 39.1 391 320 31.0 82.0 83.3| 180 180 0.71 0.92 8.94 9.06
voting 10.0 9.9 55 6.4 79.1 846| 059 059 019 0.21 7.77 9.38
wdbc 4.2 4.2 58 32 91.9 942 | 022 022 016 0.17 10.00 10.74
wine 11 1.1 199 3.7 1.1 100.0 | 0.03 0.03 058 010 0.03 1151
yeast-class 0.3 0.3 2.7 0.5 0.3 669 | 001 0.01 014 0.03 0.00 1151
Z00 8.4 54 124 129 59 100.0f 0.16 0.14 0.36 0.30 0.14 1151
avg rank 293 265 352 330 3.15 545 338 298 319 3.13 2.85 5.48

Table 2: NB - néve bayes, K1 - kikuchi level 1, TN - tree-augmentedveabayes, TK -
kikuchi level 2 without loops, K2 - kikuchi level 2, K2’ - kikuchi level 2 without signif-
icance testing. Outrageous error rates (100%) indicate numerical instabilities caused by
repeated multiplication of near-zero probabilities (making a probability distribution impos-
sible to normalize), which were handled as misclassifications.
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k < 1 {Size of the candidate regiops
M — {C} {Set of initial region$
while £ < K do
M’ — (@ {Candidate regions of cardinality}
for all X € P(X),|Xx| = k do {for each candidate
F — {C} U X} {The consistency focus always includes the Igbel.
R — CVA{SNF; S € M,SNF # 0}) {The local region graph within the focys.
(I)/(C’ Xy) = H(XR,cR>eR’ P(XRg)"

it Pr{D(P'(C|X)||P(C|X4)) > D(P(C|Xy)||®'(C|Xk))} < ~then
M — M’ U {F} {A significant improvement, include the candidate regjon.
end if
end for
M= MuM
k—k+1
end while
R — CVAM)

Algorithm 2: General framework of the Kikuchi-Bayes lev&l algorithm for learning ak-
consistent initial region structure from the data for predicting the l&heajiven a set of attributes

X and their potential sé®(X). P’ is a model estimated on a bootstrap resamples of the original data
(explained in Sect. 5), and thevaluey was used as the significance threshold.
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