
RC23316 (W0408-191) August 31, 2004
Computer Science

IBM Research Report

A Smart Hill-Climbing Algorithm for
Application Server Configuration

Bowei Xi
Department of Statistics
University of Michigan

Ann Arbor, MI

Zhen Liu, Mukund Raghavachari, Cathy H. Xia, Li Zhang
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Smart Hill-Climbing Algorithm for Application Server
Configuration

Bowei Xi
Department of Statistics
University of Michigan

Ann Arbor, MI

xbw@stat.purdue.edu

Zhen Liu
IBM T.J. Watson Research

Center
Hawthorne, NY 10532

zhenl@us.ibm.com

Mukund Raghavachari
IBM T.J. Watson Research

Center
Hawthorne, NY 10532

raghavac@us.ibm.com

Cathy H. Xia
IBM T.J. Watson Research

Center
Hawthorne, NY 10532

cathyx@us.ibm.com

Li Zhang
IBM T.J. Watson Research

Center
Hawthorne, NY 10532

zhangli@us.ibm.com

ABSTRACT
The overwhelming success of the Web as a mechanism for facilitat-
ing information retrieval and for conducting business transactions
has led to an increase in the deployment of complex enterprise ap-
plications. These applications typically run on Web Application
Servers, which assume the burden of managing many tasks, such
as concurrency, memory management, database access, etc., re-
quired by these applications. The performance of an Application
Server depends heavily on appropriate configuration. Configura-
tion is a difficult and error-prone task due to the large number of
configuration parameters and complex interactions between them.
We formulate the problem of finding an optimal configuration for
a given application as a black-box optimization problem. We pro-
pose a Smart Hill-Climbing algorithm using ideas of importance
sampling and Latin Hypercube Sampling (LHS). The algorithm is
efficient in both searching and random sampling. It consists of es-
timating a local function, and then, hill-climbing in the steepest de-
scent direction. The algorithm also learns from past searches and
restarts in a smart and selective fashion using the idea of importance
sampling. We have carried out extensive experiments with an on-
line brokerage application running in a WebSphere environment.
Empirical results demonstrate that our algorithm is more efficient
than and superior to traditional heuristic methods.

Categories and Subject Descriptors
Performance of Systems [Optimization]

General Terms
Performance,Algorithm, Management

Keywords
System Configuration, Automatic Tuning, Importance Sampling,
Simulated Annealing, Gradient Method

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

1. INTRODUCTION
The Web has emerged as the central mechanism for the inter-

change of information and for the transaction of commerce. To
streamline interactions with businesses, consumers, and employ-
ees, organizations have undertaken the development of web-based
applications for many of their core business processes. Such appli-
cations range from online stores and brokerage to human resource
applications to supply-chain management applications. The perfor-
mance and availability of these applications, especially in situations
of heavy demand, are essential to the operation of an organization.

An enterprise application can be difficult to develop and deploy.
It requires the integration of complex business logic with a pre-
sentation layer that provides an intuitive web-based front to the
application, and with legacy systems and databases. To facilitate
the rapid deployment of such applications, which is a central con-
cern of businesses, frameworks such as Java 2 Enterprise Edition
(J2EE) and .NET have been developed. In these frameworks, ap-
plication developers are presented with high-level abstractions that
simplify the development of enterprise applications. Programmers
are shielded from handling issues such as transactions, database in-
teractions, concurrency, memory, etc., explicitly. These issues are
handled by theapplication server, a complex software system on
which enterprise applications developed in these frameworks are
deployed and executed.

The performance of an application server depends heavily on
appropriate configuration. An application developer must config-
ure an application server so that it can manage, for example, the
concurrency of an enterprise application appropriately. In general,
configuration is a difficult and error-prone task [12] due to the large
number of configuration parameters and complex interactions be-
tween them — an application server may have more than a hun-
dred parameters that can be modified. Examples of the parameters
include the configuration of multiple thread pools, queues, cache
size, timeouts and retry values, and of memory.

Consider Figure 1 which shows an instance of a J2EE-based ap-
plication server and the components with which interacts. Typ-
ically, HTTP and Web Service requests flow through a Web (or
HTTP) Server to an application server. An application server can
be thought of consisting of three components: a Web Container, the
component corresponding to the presentation layer, where JSPs,

1

static HTML pages, and servlets execute, an EJB Container, the
component corresponding to the business logic layer, where En-
terprise Java Beans (EJBs) execute, and the Data Source layer, an
abstraction of a database or other back-end, where transactions and
interactions to persistent data stores are handled. Requests gener-
ally flow from Web Containers to EJB containers to Data Sources
(and from there to a database), but other access patterns are possible
as well.

Figure 1: System Model

Each of these components has configurable parameters that can
have a significant effect on performance. For example, the Web
container maintains a thread pool to process inbound HTTP re-
quests for servlet and Web services, which controls how many re-
quests are active at any time. Enterprise beans are generally in-
voked by servlets and their execution is managed by the Object
Request Broker (ORB) inside the EJB container. The ORB thread
pool size can also be customized. The size of the Data Source
Connection Pool can affect the amount of concurrent access to the
database. In addition to the parameters that affect the behavior of
the components, one can also configure the Java Virtual Machine
(JVM) on which the application server executes, for example, to set
the size of the heap available to the application server.

Not all configuration parameters will be relevant for any given
application, but determining the relevant parameters and setting
them appropriately can have a significant effect on the performance
of an application (and sometimes, determines whether the applica-
tion executes at all). The system performance often depends on
these parameters in a non-linear non-convex way, which further
complicates reasoning about them. Furthermore, once these param-
eters are set, it is often impossible to change them without bringing
down the system or the application services, generally an unaccept-
able option.

Despite the importance of configuration, the setting of these pa-
rameters is a black art in practice today. Developers either use
rules-of-thumb, heuristics, along with best practice guidelines pro-
vided by software vendors to derive these settings. The configu-
ration of an application server, however, depends heavily on the
particular application being deployed and its expected workload.
Furthermore, the configuration of an application server may depend
on that of the systems, such as databases, with which it interacts,
and the overall infrastructure in which the application server exe-
cutes. Trial-and-error efforts may assist with the determination of
appropriate configuration settings, but this testing process requires
a significant amount of expert knowledge about the system and the
applications being tested. The trial-and-error process may also re-
quire a considerable amount of time. A typical test run under a
given setting can take20 to 30 minutes. Therefore, efficient sys-
tematic methods for finding close to optimal system configurations
automatically are useful in practice. In this paper, we investigate

several sampling and search algorithms for finding the best config-
uration setting with a small number of test runs.

There has been little previous work on the optimal configuration
for Web application servers. In the context of HTTP servers, which
have less complex interactions than Web Application Servers, [11]
describes an Apache implementation that manages web server re-
sources based on maximizing revenue. This approach requires sub-
stantial modifications to the Apache resource management schemes.
[8] uses layered-queueing modeling to model business process ap-
plications. The method basically requires thorough knowledge about
the software architecture and can be expensive and time-consuming.
[16] describes an approach that combines queueing theory and con-
trol theory for response time regulation, the approach can be used to
handle a limited and small number of parameters. Using feedback
control systems, [2, 9] studied the problem of regulating system
performance within specified QoS value. The approach works well
for a small number of tuning parameters with some linear depen-
dency assumptions.

We formulate the problem of finding an optimal configuration of
an application server for a given application as a black-box opti-
mization problem. We then propose a Smart Hill-Climbing algo-
rithm based on the ideas of importance sampling and Latin Hyper-
cube Sampling (LHS). The algorithm is efficient in both searching
and random sampling. Note that a similar black-box approach has
been used in [19] for large-scale network parameter configuration
using on-line simulation, where a random recursive algorithm was
proposed to search for a reasonably good solution. Our experi-
mental results demonstrate that our algorithm is significantly more
efficient and superior.

The rest of the paper is organized as follows. Section 2 presents
the black-box optimization formulation and reviews existing meth-
ods solving such a problem. Section 3 presents our Smart Hill-
Climbing algorithm in detail. Section 4 demonstrates the efficiency
of our algorithm using test functions. Section 5 provides experi-
mental results on a WebSphere environment. Finally we present
concluding remarks in Section 6.

2. BLACK-BOX OPTIMIZATION
It is natural to consider the system performancey as a function

g of a given number of tunable parametersx1, · · · , xN and some
other fixed environment settings and the load condition. That is,
y = g(x), wherex = (x1, · · · , xN). We assume that the perfor-
mance can be measured through a single-dimension metric. Such
a metric can be throughput, response time, system utilization, or a
combination of them. For example, if one needs to optimize both
response time and throughput, an artificial formula could be intro-
duced to tie the two together as a single metric. LetIi denote the
parameter range for parameterxi, andI = I1 × · · · × IN . The
parameter tuning problem is to find the parameter settingx∗ that
achieves the the best performance, i.e.:

x∗ = argmin
x∈I

g(x). (2.1)

We assume that the parameter spaceI is a compact set inIRN , and
the functiong is continuous onI. Hence, the existence of optima
x∗ in the searching spaceI is guaranteed.

In practice, the performance functiong(x) is often unknown or
does not have a closed-form. Certain function evaluation can be
obtained through experiments or simulation. We therefore have
to model the above problem as a black-box optimization problem
where the objective function is a black-box with limited function
evaluation.

Black-box optimization problems, also known asglobal opti-

2

mization[17] problems, arise commonly in many areas such VLSI
design, performance engineering, inventory management, and med-
ical treatment planning. The challenge is to obtain the global opti-
mal solution, since the objective function is usually high-dimension,
highly non-linear, non-convex and multi-modal, where a local op-
timum is typically not the global optimal solution.

WhenI is large, findingx∗ is generally hard. In addition, func-
tion evaluation for each individual parameter settingx can be ex-
pensive and time consuming, requiring effort in setting up the ex-
periments and data collection. One simply cannot afford to carry
out too many of these experiments. Therefore,efficiencyis one of
the greatest concerns in solving the problem. What is required is
an efficient search algorithm that obtains agood solution with a
minimum numberof experiments.

Many heuristic search algorithms are in the above spirit, attempt-
ing to find near-optimal orbest-possiblesolutions instead of global
optima. These include simulated annealing [14], random recur-
sive search [18], genetic algorithms [6], Tabu search [5], and hill-
climbing [15, 1]. The first three are generally applicable as they re-
quire little a priori knowledge of the problem. When the objective
function has an explicit form, Hill-climbing could quickly reach an
optimal point by following the local gradients of the function. We
now review some of these algorithms which are more relevant to
our problem setting and to the new algorithm that we propose later.

Simulated annealing is a search heuristic commonly used to solve
global optimization problems, especially in the presence of many
false minima. It was motivated by the annealing process for a ma-
terial to reach the thermal equilibrium [7]. A simulated annealing
optimization starts with a Metropolis Monte Carlo simulation at a
high temperature. This means that a relatively large percentage of
the random steps that result in an increase in the energy will be
accepted. After a sufficient number of Monte Carlo steps, or at-
tempts, the temperature is decreased. The Metropolis Monte Carlo
simulation is then continued. This process is repeated until the fi-
nal temperature is reached. The way in which the temperature is
decreased is known as the cooling schedule. When the cooling
schedule is controlled appropriately, the algorithm is guaranteed to
achieve a global optimum [4]. Despite its many successful appli-
cations, using simulated annealing efficiently is a bit of an art —
convergence can be slow.

Recursive random search [18] utilizes pure random sampling.
The algorithm uses initial random sampling to identify promising
areas, and then, starts recursive random sampling processes in these
areas which shrink gradually to local optima. The algorithm then
restartsrandom sampling, trying to find a more promising area to
repeat the local recursive search. The algorithm in general pro-
duces a local optimum and has no guarantee to be optimal or near-
optimal. Moreover, since the algorithm uses naive random sam-
pling, it may waste effort on restarts.

In the next section, we propose aSmart Hill-Climbingalgorithm
based on the ideas of importance sampling and Latin Hypercube
Sampling (LHS). The algorithm is efficient in both searching and
random sampling. It consists of estimating a local function and then
in Hill-Climbing in the steepest descent direction. The algorithm
also learns from past searches and restarts in a smart and selective
fashion using importance sampling. Empirical results demonstrate
that our algorithm is efficient and superior than traditional heuristic
methods.

3. SMART HILL-CLIMBING
The Smart Hill-Climbing algorithm introduced in this paper has

the same basic structure as the recursive random search algorithm.

The algorithm has two main phases, a global search phase and a
local search phase. The goal of the global search phase is to cover
the search space as broadly as possible in order to identify a good
start for the local search phase. The local search phase then starts
from the starting point selected in the global search and applies a
gradient-based sampling method to search around its neighborhood
for a better solution. The size of the neighborhood becomes smaller
as the local search progresses. The algorithm’s performance de-
pends on the efficiency of both the global and the local search algo-
rithms. For the global search phase, we employ Latin Hypercube
Sampling (LHS) which generally provides high quality sampling
coverage. We have further extended LHS with importance sam-
pling. This extension takes advantage of correlation factors to en-
sure that the algorithm samples more frequently from the region
that is likely to provide better results. For the local search phase,
gradient-based searching algorithms usually converge quickly to
local optimal solutions. We apply a gradient algorithm based on
constructing locally fitted quadratic functions, which leads to better
convergence for the overall algorithm. We now provide a detailed
description of our Smart Hill-Climbing algorithm.

3.1 Latin Hypercube Sampling
One of the important components in our Smart Hill-Climbing

algorithm is the sampling strategy. As pointed out in [18], “the dis-
advantage of random sampling is its apparent lack of efficiency”.
Since the dimension of the problem we are dealing with is usually
high, naive sample methods can become very expensive. We there-
fore rely on the Latin Hypercube Sampling (LHS) scheme [10].

LHS is considered to be an extremely efficient space-filling sam-
pling strategy for handling high dimensions. It is considered more
powerful than pure random Monte Carlo sampling. The basic idea
of LHS is to divide probability distributions into intervals of equal
probabilities and take one sample from each interval. Specifically,
the general LHS algorithm for generatingK random vectors (or
configurations) of dimensionN can be summarized as follows:

1. GenerateN random permutations of{1, ..., K}, denoted
by ~P 1, ..., ~P N , where~P i = (P i

1 , ..., P i
K)′.

2. For thei-th dimension (i = 1, · · · , N), divide the parameter
rangeIi into K non-overlapping intervals of equal probabil-
ities.

3. Thekth sampled point is anN dimensional vector, with the
value for dimensioni uniformly drawn from theP i

k-th inter-
val of Ii.

Figure 2 illustrates two sets of such LHS samples, one denoted
by dots and the other by triangles, both generated5 random samples
of dimension2. Note that a set of LHS sample withK vectors
will have exactly one point in every interval on each dimension.
That is, LHS attempts to provide a coverage of the experimental
space as evenly as possible. Compared to pure random Monte Carlo
sampling, LHS provides a better coverage of the parameter space
and allows a significant reduction in the sample size to achieve a
given level of confidence without compromising the overall quality
of the analysis [3].

Given the above advantages of LHS, we use LHS in our Smart
Hill-Climbing algorithm whenever there is a need to do random
sampling. In the following sections, we shall show that by using
LHS instead of purely random sampling, one can achieve better ef-
ficiency gains even in existing search algorithms such as simulated
annealing or random recursive search.

3

Figure 2: LHS Samples from2 Variables

3.2 Weighted Latin Hypercube Sampling
We have extended the standard Latin Hypercube Sampling al-

gorithm to take into account knowledge about the correlations be-
tween parameters and system performance. System performance is
often correlated with certain parameters. This kind of correlation
corresponds to a linear approximation of the objective function,
which can be estimated using the sampled points. The correlation
information can be combined with the Latin Hypercube Sampling
to generate skewed random search samples that are likely to lead to
more efficient searches.

The weighted LHS incorporates the correlation between the pa-
rameters and the performance function to generate the intervals
for each dimension and to sample points from a given range. As-
sume at a given point in time, we have carried outS experiments,
(note thatS increases as the algorithm proceeds), wherexs =
(xs

1, . . . , x
s
N) is the vector of parameter setting at experiments,

s = 1, . . . , S, andys is the corresponding function value of the
black-box objective function. For example,ys could be the client
response time. We then have for the unknown functiong,

ys = g(xs), s = 1, . . . , S.

We first analyze the correlation structure based on these mea-
surements. For simplicity, we study the correlation between the
performance and each individual tuning parameter. Let

Y = (y1, ..., yS), and Xi = (x1
i , ..., x

S
i), i = 1, . . . , N.

HereXi collects all used values for parameteri in the pastS ex-
periments.

We perform linear regression to analyze the relationship between
the performance and parameteri. That is, we obtain estimates for
ai andbi, i = 1, . . . , N based on the pastS measurements:Y =
aiXi + bi. Notice that

ai = ρi std(Y) / std(Xi), (3.1)

whereρi is the correlation coefficient between the performance and
parameteri.

One of the key ideas in designing the Smart Hill-Climbing al-
gorithm is that new samples should follow the correlation pattern
exhibited by the past measured points. If the past measurements
show that smaller values of parameteri tend to make the perfor-
mance better (i.e., a strong positive correlation), then smaller val-
ues are moreimportantthan larger ones. Hence we should sample
more on the smaller values for parameteri. We call this sampling
strategy asimportance sampling.

To realize the above importance sampling idea, we use an trun-
cated exponential density function for generating the samples. For
each dimensioni, i = 1 . . . N , we assume a truncated exponential

density function of the form:

f(c, d, x) = de−acx, (3.2)

on sampling rangex ∈ [A, B], wherea is determined by (3.1) and
represents the correlation between performance and a parameter
through all past observations. Parameterc is used to reflect how
aggressive the user wants the importance sampling to be. Parameter
d is the normalizing factor so thatf(c, d, x) is a density function,
thus

d =
ac

e−acA − e−acB
.

We would like to divide the interval[A, B] into K intervals with
equal probability1/K. Let zj be thejth dividing point, withj =
1, . . . , K, andz0 = A andzK = B. Then,

j

K
=

∫ zj

z0

f(c, d, x)dx.

This leads to the solution forzj :

zj = − log
(

e−acA − acj
dK

)
ac

. (3.3)

We now need to draw one pointξj from given interval[zj , zj+1]
which follows the conditional probabilityf(c, d, x)/h, whereh is
the scaling constant. It is easy to solve forh from the normalizing
equation,

1 =

∫ zj+1

zj

f(c, d, x)

h
dx.

Therefore, the expression forh is,

h =
d(e−aczj − e−aczj+1)

ac
.

We first draw a random numberu, from the uniform distribution in
[0, 1]. We need to draw the pointξj such that,

u =

∫ ξj

zj

f(c, d, x)

h
dx

After standard algebraic manipulations, the expression forξj be-
comes:

ξj = − log
(
e−aczj − u

(
e−aczj − e−aczj+1

))
ac

(3.4)

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025
g*exp(−acx), c=5, Web−Container

Figure 3: Importance Sampling using the Correlation Struc-
ture

4

Figure 3 illustrates that for a particular parameter with a positive
correlation withρ ∼ 0.6, the importance sampling strategy using
the truncated exponential density function (3.2), would therefore
divide the sampling space[1, 120] into 3 equi-probability intervals.
Clearly smaller values are stressed more under importance sam-
pling. The constantc in (3.2) can be determined through some pre-
liminary studies. Largerc would naturally result in more aggressive
importance sampling.

REMARK 1. We emphasize that the concept of important sam-
pling so as to take advantage of past observations is applicable in a
much more general context than the one described above. The im-
portance can be based on other metrics (rather than correlation),
also one can choose other density functions rather than exponential
to realize similar concept of assigning different weights on different
sampling regions.

The weighted LHS algorithm for generatingK random vectors
(or configurations) of dimensionN can be summarized as follows:

1. GenerateN permutations of{1, . . . , K}, ~P 1, . . . , ~P N , where
~P i = (P i

1, . . . , P
i
K)′.

2. For theith dimension (i = 1, . . . , N), divide the parameter
range intoK non-overlapping intervals with equal probabil-
ity 1/K. The dividing points are given by equation (3.3).

3. Within thekth interval (for theith dimension), generate a
random sample,ξi

k, following the truncated exponential dis-
tribution, according to equation (3.4).

4. Thejth sampled point is anN dimensional vector, with the
value for dimensioni equal toξi

P i
j
, i = 1, . . . , N .

3.3 Algorithm: Smart Hill-Climbing
The Smart Hill-Climbing is similar to the recursive random search

procedure in that it draws random global samples at the beginning
and the restarting phase. The global sampling can be performed
using either LHS, or for more efficiency, weighted LHS. From the
candidate points selected in the global sampling phase, further lo-
cal searches are performed. The local search phase also takes ad-
vantage of knowledge of sampled points to guide local searches.
Quadratic approximations based on sampled points guide the local
search procedure so that it converges quickly to an optimal solu-
tion. After generating a predefined number of samples within a
neighborhood, a quadratic fitting curve is constructed based on the
existing local samples. The optimal point on the quadratic curve is
the next candidate for the best solution. This fitting procedure is
repeated a number of times until no better solutions can be found,
after which the size of the sampling neighborhood is reduced. Af-
ter the size of the sampling neighborhood is reduced to be within
a threshold, the algorithm restarts the global sampling procedure
from the beginning.

We are now ready to describe the Smart Hill-Climbing algorithm
in detail. The algorithm initially samplesm points and picks the
point with the best performance. Let~Xmin be the best perfor-
mance point. We then sample a set ofn points using the weighted
Latin Hypercube Sampling around a pre-specified neighborhood of
~Xmin. Along each dimension, we find the best quadratic curve
to fit all the points in the neighborhood. We obtain the minimum
point for the fitted quadratic curve within the neighborhood range.
Combining the minimum points along all the dimensions we obtain
the next candidate sampling point. If this new point is better than
the existing points, we then shift the center of the neighborhood

to be around this new point and repeat the local sampling. If this
new point is worse than the existing best point, we then shrink the
size of the searching neighborhood, and repeat the local sampling.
The local sampling procedures stops when the searching neighbor-
hood is smaller than a predefined threshold. This means that it is
unlikely that there are any better points in the local range. The pro-
cedure then restarts. During the restart phase, the algorithm follows
the local neighborhood search from a newly sampled point only if
this point is better than a certain fraction, say 70%, of the existing
points.

The algorithm is described as follows:

[Smart Hill-Climbing Algorithm]:

1. Initialize sampling parameterm, n, andl. Set the size for the
local search neighborhood, threshold for neighborhood size
and shrink factorα.

2. Take an initial sample of sizem using weighted LHS. Find
the point with best performance and set it to be the center of
neighborhood for local search.

3. Generaten samples from the local neighborhood using the
weighted LHS. Update the best configuration information.

4. For each dimension,
- Collect the points within the local neighborhood and obtain
the best fit quadratic curve.
- Generate the minimal point according to the quadratic curve.
- Combine the minimal points for all the dimensions to form
the next candidate.

(a) If the candidate point is better than all other points, up-
date the center of the local search neighborhood. Go to
step3.

(b) Else repeat fitting including the new sampled point, and
generate an updated candidate sampling point.

i. If the candidate point is better than all other points,
update the center of the local search neighborhood.
Go to step3.

ii. Else shrink the size for the local neighborhood.
A. If size of local neighborhood larger than a thresh-

old, go to step3.
B. Else go to step5 to restart.

5. Restart: Take a set of weighted Latin Hypercube Sample of
sizel.

(a) If the best point in the sample is better than a specified
fraction of existing points, go to step3.

(b) Else repeat step5.

The parameters in the initialization step should be chosen ac-
cording to the budget on the total number of samples on can afford.
In real applications, one can typically perform a couple of exper-
iments per hour, which leads to a total of only tens or a couple
of hundred experiments at most. Over the total experiments, one
would like the algorithm to drill down the local neighborhood to a
local optima a number of times. One could use around5% of the to-
tal number of expected runs as the initial sample sizem. The restart
sample sizel for the LHS can be the same or smaller. The neighbor-
hood sampling sizen can be a little smaller thanm. The neighbor-
hood for the local search can usually start from half of the original
searching space, and then shrink at a rate around75-85%. Once

5

the neighborhood size is smaller than10% of the original search-
ing range, then the algorithm stops the neighborhood search and
restarts. This corresponds to7 ∼ 8 times of consecutive shrinkage
for a shrink factorα = 80%. These are very crude guidelines from
our numerical experiences. In practice, one can perform a couple
of experiments to get a initial feeling and refine these parameters
for later experiments.

One of the major ingredients of the algorithm is that it takes ad-
vantage of the global trend and correlation information when gen-
erating samples from the global level. This is consistent with the
intuition that the system performance may depend on certain pa-
rameters in a rough monotonic fashion on a global level. Another
key advantage of the algorithm is that it estimates the local gradient
properties and uses these estimates to guide the local search proce-
dure. These two key properties allow our algorithm to quickly find
the high quality solutions. This is demonstrated by the experimen-
tal results in Section 5.

4. NUMERICAL EXPERIMENTS
In this section, we carry out a series of numerical experiments

to demonstrate the efficiency of the proposed Smart Hill-Climbing
algorithm. We further compare the algorithm with other existing
algorithms such as simulated annealing [14], and the random re-
cursive search algorithm introduced in [18]. To better evaluate and
understand the performance of different algorithms, we assume the
black-box function has an explicit form. We use one of the standard
benchmark functions, the Rastrigin function [13], which is defined
as:

f(x) = N · β +

N∑
i=1

(x2
i − β · cos(2πxi)). (4.1)

Figure 4 provides a 3D view of the Rastrigin function withN = 2
andβ = 0.8 on the range[−1, 1] × [−1, 1]. Note that this bench-
mark function has many local minima which makes it suitable for
testing the performance of the algorithms. The global minima is at
the origin(0, 0).

Figure 4: Two-dimensional Rastrigin Function

Figures 5, 6, and 7 provide the search results on the above Rast-
rigin surface for simulated annealing, random recursive search and
our proposed Smart Hill-Climbing algorithms. Each algorithm car-
ried out1, 000 search steps. The parameter settings for simulated
annealing and random recursive search are based on the guide-

lines provided in [14] and [18], respectively. For the Smart Hill-
Climbing algorithm, we setm = 4, n = 6, l = 4, the neighbor-
hood shrink factor isα = 5/6. the stopping threshold on neighbor-
hood search is10% of the original searching space,

−1 −0.5 0 0.5 1

−1

0

1
0

0.5

1

1.5

2

2.5

3

Variable 1

Simulated Annealing

Variable 2

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Accepted
Not Accepted

Figure 5: Simulated Annealing

Figure 5 shows that the simulated annealing algorithm explored
the whole space quite evenly and exhaustively. The sampled points
do have specific concentrations. This behavior is consistent with
the random sampling nature of the simulated annealing algorithm.
The random recursive search algorithm, as plotted in Figure 6,
shows some improvement over the simulated annealing algorithm.
It spends a number of the searches on the good neighborhood.
However, the most of its searches are still exhaustive and uniformly
across the whole space.

−1 −0.5 0 0.5 1

−1

0

1
0

0.5

1

1.5

2

2.5

3

Variable 1

Recursive Random Search

Variable 2

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Neighborhood
Whole Space

Figure 6: Random Recursive Search

The searches in Figure 7 under the Smart Hill-Climbing algo-
rithm are much more guided. The weighted Latin Hyper Sampling
strategy guides much more samples from the neighborhood close to
the local or global minima. With a relative small set of initial sam-
ples, the algorithm soon learns the correlation structure, adjusts its
importance sampling strategy. As shown in Figure 7, the algorithm
quickly directs the samples to the first valley (local minimum). The
sampling in the restart process also has focused slightly more on

6

important regions. Once the restart process reveals that there are
better parameter regions (close to the origin), the algorithm quickly
climbed (slipped) to the new valley (global minimum), as shown
by the triangles in Figure 7. The improved performance is from the
gradient following and correlation estimation features of the Smart
Hill-Climbing algorithm.

−1

0

1

−1−0.500.51
0

0.5

1

1.5

2

2.5

3

Variable 1

Smart Hill Climbing: C = 0.1

Variable 2

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Neighborhood
Whole Space
Fitted

Figure 7: Smart Hill-Climbing with weighted LHS

The advantage of the Smart Hill-Climbing algorithm becomes
even clearer when dealing with higher dimensional problems. Fig-
ure 8 shows the testing results on a 20-dimensional Rastrigin func-
tion with N = 20, β = 88, and the range[−6, 6] for each dimen-
sion. Here each algorithm carried out1, 000 search steps. The pa-
rameter settings for the Smart Hill-Climbing algorithm are:m = 6,
n = 8, l = 6, the first local search starts with a neighborhood
that is1/2 of the total searching space, and then shrinks at fac-
tor α = 5/6, the threshold on neighborhood size is10% of the
original searching space. To take into account the stochastic na-
ture of the search algorithms, tests are repeated for50 times for
each algorithm, and the average of the results are presented. Ob-
serve from Figure 8 that the Smart Hill-Climbing algorithm con-
sistently outperforms the other two. The Smart Hill-Climbing al-
gorithm quickly generates high quality samples in its initial set of
searches, thus it has the potential to be highly efficient in achieving
good performance in limited time frame. This makes the algorithm
very promising in practice, especially when experiments are ex-
tremely expensive. which is demonstrated in the case study in the
next section.

5. A CASE STUDY: OPTIMAL TUNING FOR
WEBSPHERE

In this section, we examine the application of the Smart Hill-
Climbing algorithm to the configuration of the IBM WebSphere
Application Server1. We also compare the efficacy of the Smart
Hill-Climbing Algorithms with previous search algorithms, such
as simulated annealing and random recursive search.

5.1 Experiment Setup: System Environments
Our experimental testbed mimics a production system for an on-

line brokerage application. The setup consists of client machines,

1http://www.ibm.com/software/info1/websphere

0 200 400 600 800 1000 1200 1400 1600 1800 2000
400

600

800

1000

1200

1400

1600

1800

Function Evaluation

M
ea

n
of

 T
he

 S
ea

rc
h

R
es

ul
ts

20−Dimensional, 50 Replicates for Each Algorithm

Smart Hill Climbing
Random Recursive Search
Simulated Annealing

Figure 8: With 20 parameters

application server machines and database machines. Since we fo-
cus on application server configuration, we do not use an HTTP
server in our experiments, but access the application server directly.
All the servers involved are 1.8GHz Pentium III machines running
Linux version 7.3, with 1GB of memory. The application server
is IBM WebSphere Application Server (WAS) version 5.0.2. The
database server is DB2 version 7.1. The machines are connected
on a same local area network with 100Mbps Ethernet.

We use the Trade (version 3) application as a benchmarking ap-
plication. Trade is an end-to-end web application modeled after an
online brokerage. It leverages J2EE components such as servlets,
JSPs, EJB, and JDBC to provide a set of user services such as lo-
gin/logout, stock quotes, buy, sell, account details, etc., through
standards-based HTTP and Web Service protocols. The Trade ap-
plication accesses a database that contains stock and user account
information. Users perform transactions on the database through
servlets running on the application servers. The client machines
generate a number of users who repeatedly generate random re-
quests and transactions. There is a think-time distribution that each
user uses to determine how long to wait between requests.

We conduct test runs and collect throughput and response time
data for each system configuration. Each test typically lasts around
fifteen minutes. Test runs have consistently shown that the sys-
tem performance stabilizes fairly quickly. Fifteen minutes is suf-
ficient to obtain good estimates for the system performance mea-
sures, such as throughput and response time.

As discussed earlier, our focus is on system parameters for the
WebSphere Application Server. As illustrated in Figure 1, each
component of an application server has configuration parameters
that can affect its performance. We will focus, in our experiments,
on four of these parameters:

• WebMax: The maximum number of threads in the Web Con-
tainer thread pool. This parameter limits the concurrency of
the Web Container.

• OrbThreadMax: The maximum number of threads in the EJB
Container thread pool. This parameter limits the concurrency
of the EJB Container.

• DSMax: The maximum number of connections to the database
in the Data Source Connection Pool.

• HeapMax: The maximum size of the Java Virtual Machine
(JVM) on which WebSphere runs (in Megabytes).

7

The goal of the experiments is to tune each parameter in coordina-
tion automatically so as to achieve minimize the average response
time of users, while maintaining overall system stability. The pa-
rameter ranges used for tuning each parameter are listed in Table 1.

HeapMax WebMax OrbMax DsMax
[256,768] [1,120] [1,120] [1,120]

Table 1: Parameter Ranges for Configuration Parameters used
in Experiments

5.2 Experiment Results
For the Trade benchmark, the objective function can be eval-

uated for a given parameter setting by executing test runs for 20
to 30 minutes. Given that it is expensive and time consuming for
each function evaluation, in total we can only a couple of hundred
experiments. Because of the large number of variables involved,
our Smart Hill-Climbing algorithm can be readily applied. We
have also implemented two other optimization algorithms, simu-
lated annealing and recursive random search. Here we set the bud-
get on the total number of search steps to be120 for each algo-
rithm. The parameter settings for simulated annealing and random
recursive search are based on the guidelines provided in [14] and
[18], respectively. For the Smart Hill-Climbing algorithm, we set
m = 3, n = 4, l = 3. The neighborhood for the local search starts
from half of the original searching space, and then shrinks at rate
α = 2/3. The stopping threshold on neighborhood search is10%
of the original searching space.

We compare the results of Smart Hill-Climbing with that of the
other algorithms. Our experimental results show that by exploring
the local structure of the objective function, Smart Hill-Climbing is
the most efficient algorithm among the three black-box optimiza-
tion algorithms.

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

R
es

po
ns

e
T

im
e

Run Number

Simulated Annealing w. Pure Random Sampling

sampled
accepted
current best

Figure 9: Simulated Annealing under Simple Random Sam-
pling

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

R
es

po
ns

e
T

im
e

Run Number

Simulated Annealing with Simple LHS

sampled
accepted
current best

Figure 10: Simulated Annealing Combined with LHS

We present several sets of results. The first set illustrates the
power for the Latin Hypercube Sampling procedure. We imple-
ment the three black-box algorithms with and without the Latin Hy-
percube Sampling. Figures 9 and 10 plot the simulated annealing
algorithm with and without the LHS (both versions use the same
temperature cooling schedule). We observe that the simulated an-
nealing algorithm with LHS reached high quality solutions within
only twenty samples. The simple simulated annealing algorithm,
however, requires a significantly longer time and does not reach
a comparable performance level even after one hundred samples.
Although neither of the two simulated annealing experiments con-
verge (over 120 samples), the LHS version of the algorithm gener-
ates more high quality samples. A more detailed look at the actual
configuration parameter values reveal that it is easier to understand
the interactions between configuration parameters and system per-
formance with LHS sampling. In particular, the ordering structure
in the parameter setting is revealed clearly by LHS.

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

R
es

po
ns

e
T

im
e

Random Recursive Search with Simple LHS

Run Number

sampled
current best

Figure 11: Recursive Random Search Combined with LHS

Figure 11 shows the response time results for the recursive ran-
dom search combined with LHS. The algorithm took about100
runs to reach a high quality sample. Although the performance is
slightly better than that of simulated annealing with LHS sampling,
it took much longer to achieve the result. With one sample path
for each algorithm and no significant difference in performance, it
is not conclusive whether the simulated annealing or the recursive
random search is more efficient.

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

Run Number

R
es

po
ns

e
T

im
e

Smart Hill Climbing w. Simple LHS

global LHS
local LHS
fitted
current best

Figure 12: Smart Hill-Climbing with Simple LHS

For the Smart Hill-Climbing algorithm, Figure 12 depicts the
sampling sequence for Smart Hill-Climbing with LHS sampling.
The plot show the global sampling (or restart) phase and the local
sampling phase during the whole process. We observe that the algo-
rithm quickly generates high quality samples in the local sampling
phases. The samples in the local searching phases are of consis-
tently high quality. Furthermore, it took the algorithm less than 10
samples to obtain a near best sample. The sample path shows that
there were4 improvements in the experiment and one of them is the
result of the fitting process. This confirms the power of our refined
local search procedure.

8

To compare the performance of Smart Hill-Climbing using the
Weighted LHS for sampling, we have performed an experiment that
applies weighted LHS in the restart step. The samples selected by
the algorithm are shown in Figure 13. Although the initial global
sampling is slightly worse than that of Smart Hill-Climbing with
LHS, there are9 improvements during the whole run; the restart
global searching process generates more high quality samples. Fur-
thermore, the final result of the search is better than that of Smart
Hill-Climbing with LHS. This experiment validates the effective-
ness of the weighted LHS combined with the Smart Hill-Climbing.

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

Run Number

R
es

po
ns

e
T

im
e

Smart Hill Climbing w. Weighted LHS

global
local
weighted LHS
fitted
current best

Figure 13: Smart Hill-Climbing with weighted LHS

We have also plotted the response time vs. WebMax in Fig-
ure 14. This plot shows a smooth curve which describes the gen-
eral correlation between the response time and the WebMax pa-
rameter. The response times can vary for the same WebMax value
because the values of other parameters could be different. This
plot not only shows a global trend for the WebMax parameter, the
relative smoothness of the curve provides strong support for us-
ing the quadratic approximations. Clearly, the Smart Hill-Climbing
quickly discovered the best parameter region for WebMax regard-
less of other parameters. This proves the power of the weighted
LHS procedure to adapt quickly to correlation properties.

0 20 40 60 80 100 120

1.6

1.8

2

2.2

2.4

2.6

WebMax

R
es

po
ns

e
T

im
e

Response Time vs. WebMax for Weighted LHS

sampled
best

Figure 14: Response Time vs. WebMax in Smart Hill-Climbing
with Weighted LHS

5.3 Further Insights
Based on our experiments, we perform further statistical analysis

to understand the underlying properties of a good configuration for
Trade on WebSphere. Overall, the following rules of thumb can be
used as guidelines:

Correlation Structure: Table 2 shows the correlation with re-
sponse times for each of the four tuning parameters.WebMaxis
the one that has most impact on performance. Besides WebMax,
the other three parameters have relatively mild correlation with re-
sponse times. The negative correlation of HeapMax with response
times indicate that larger Heap Size is preferred in order to have
better performance.

HeapMax WebMax OrbMax DsMax
-0.13 0.60 0.18 0.15

Table 2: Correlation with Response Time

WebMax should be small:Given that WebMax has strong pos-
itive correlation with response times, clearly WebMax should be
small. However setting WebMax (the maximum number of threads
for WebContainer) too small may not be beneficial, since time-
sharing and parallel processing do have performance advantages.
In fact, the optimal value of WebMax is around8-10. Observe
from Figure 14 that smaller WebMax values are sampled more fre-
quently than high values, indicating the algorithm has learned from
the correlation structure and directed its importance sampling strat-
egy accordingly.

Order matters: In the current experiment setting, most trading
transactions go through the complete sequence as specified in Fig-
ure 1. That is, most transactions visit the Web container, EJB con-
tainer, Data source, and Database sequentially. Note that a thread
at the Web container is only released until the required information
returns from the EJB container, and the same is true, for threads in
the EJB container. Therefore, in order to avoid blocking, the num-
ber of threads at any downstream station should be always larger
than its upper stream. In other words, the three parameters con-
trolling number of threads at each layer should be in the increasing
order as follows:

WebMax< OrbMax< DsMax.

50 100 150 200 250
30

35

40

45

50

55

Number of Clients

T
hr

ou
gh

pu
t

Permutations for Normal Volume

20 30 40
20 40 30
30 20 40
30 40 20
40 20 30
40 30 20

Figure 15: Permutations of WebMax OrbMax DsMax under
Normal Volume Trade

This observation has been further confirmed by many of our ex-
periment results. Figure 15 gives one such example where the sys-
tem throughput is plotted as a function of the number of concurrent

9

clients, six different permutations of(20, 30, 40) for configuring
the above three parameters (WebMax, OrbMax, DsMax) are ex-
perimented. Observe that the increasing order outperforms almost
always outperforms the other permutations.

6. CONCLUSION
We have studied the problem of optimal system configuration for

Web application servers. We formulate the problem of finding an
optimal configuration for a given set of applications as a black-box
optimization problem. We then proposed a Smart Hill-Climbing al-
gorithm using ideas of importance sampling and Latin Hypercube
Sampling. The algorithm is efficient in both searching and ran-
dom sampling. It consists of estimating a local function, and then,
Hill-Climbing in the steepest descent direction. The algorithm also
learns from past searches and restarts in a smart and selective fash-
ion using the idea of importance sampling. We have carried out
extensive experiments with an on-line brokerage application run-
ning in a WebSphere environment. Empirical results demonstrate
that our algorithm is efficient and superior than traditional heuris-
tic methods. Further insights and rules of thumb for the optimal
configuration are also discussed.

Further research directions include ways of improving the pro-
posed method through the use of analytical models. The idea here
is to consider various components of the system and build para-
metric/analytic models of such components. We can then derive
structural/qualitative properties of these components in order for
the higher level optimization algorithm to reduce the search space.
Another direction of research would be the development of stochas-
tic optimization techniques for such complex systems, for example,
Markov decision processes. The challenge here is to deal with the
size and dimension of the problem. All these issues are the subjects
of our on-going work.

7. REFERENCES
[1] Boyan, J. and Moore, A. (2000). Learning evaluation

functions to improve optimization by local search.Journal of
Machine Learning Research, 1:77-112.

[2] Diao, Y., Gandhi, N., Hellerstein, J. L., Parekh, S. and
Tilbury, D. (2002). Using MIMO feedback control to enforce
policies for interrelated metrics with application to the
Apache Web server.Proceedings of the Network Operations
and Management Symposium 2002.

[3] Helton, J. C. (1993). Uncertainty and sensitivity analysis
techniques for use in performance assessment for radioactive
waste disposal.Reliability Engineering and System Safety,
Vol. 42, no. 2-3, 327-367.

[4] Geman, S. and Geman, D. (1984). Stochastic relaxation,
Gibbs distributions and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:721–742.

[5] Glover, F. and Laguna, M. (1993). Tabu search.Modern
Heuristic Techniques for Combinatorial Problems.Scientific
Publications, Oxford.

[6] Goldberg, D. E. (1989).Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
Reading, Mass.

[7] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983).
Optimization by Simulated Annealing,Science, 220,
671-680

[8] Liu, T. K., Behroozi, A. and Kumaran, S. (2003). A
Performance Model for a Business Process Integration
Middleware.IEEE International Conference on
E-Commerce (CEC 2003).

[9] Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J. L. and
Parekh, S. (2003). Online Response Time Optimization of
Apache Web Server. IWQoS 2003: 461-478

[10] McKay, M. D., Conover, W. J. and Beckman, R. J. (1979). A
Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer Code,
Technometrics, 21, 239-245

[11] Menascé, D. A., Almeida, V. A. F., Fonseca, R. and
Mendes, M. A. Business-oriented resource management
policies for e-commerce servers.Performance Evaluation,
42:223–239, 2000.

[12] Raghavachari, M., Reimer, D. and Johnson, R. D. The
Deployer’s Problem: Configuring Application Servers for
Performance and Reliability,ICSE 2003, Portland, OR.

[13] Muhlenbein, H.,Schomisch, M. and Born, J. (1991). The
parallel genetic algorithm as function optimizer. In Richard
K. Belew and Lashon B. Booker, editors,Proceedings of the
Fourth Intl. Conf. on Genetic Algorithms, pages 271-278,
Morgan-Kaufman.

[14] Romeijn, H. E. and Smith, R. L. (1994). Simulated
Annealing and Adaptive Search in Global Optimization,
Probability in the Engineering and Informational Sciences,
8, 571-590.

[15] Russell, S., and Norvig, P. (1995)Artificial Intelligence: A
Modern Approach. Prentice Hall.

[16] Sha, L., Liu, X., Lu, Y. and Abdelzaher, T. (2002). Queueing
Model Based Network Server Performance Control.IEEE
Real-Time Systems Symposium 2002, 81-90.

[17] Törn, A. andZ̆ilinskas, A. (1989).Global Optimization, vol.
350 ofLecture Notes on Computer Science. Springer-Verlag.

[18] Ye, T., and Kalyanaraman, S. (2003). A Recursive Random
Search Algorithm for Large-Scale Network Parameter
Configuration,SIGMETRICS 2003, San Diego, California.

[19] Ye, T., Kaur, H. T., and Kalyanaraman, S. (2002).
Large-scale network parameter configuration using on-line
simulation. Technical report, ECSE Department, Rensselaer
Polytechnic Institute, 2002.

[20] Zabinsky, Z. B., Smith, R. L., McDonald, J. F.,
Romeijn, H. E., and Kaufman, D. E. (1993). Improving Hit
and Run for Global Optimization,Journal of Global
Optimization, 3:171-192.

10

