
RC23322 (W0409-009) September 1, 2004
Computer Science

IBM Research Report

Document Models and XML Vocabulary Building
for Business Users

Susan L. Spraragen, Douglas Lovell
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 1

Document models and XML Vocabulary
Building for Business Users
Susan L. Spraragen
IBM Research
Douglas Lovell
IBM Research
Design
User Centered Design
Schema

Our work presents an experiment with a modeling tool that captures domain knowledge in a fashion
natural to business users while producing formal models for use in IT processes. We demonstrate the
use of this tool for designing XML Schemas.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 2

1 Introduction
Businesses rely on their enterprise data to make informed and correct decisions. XML Schema
technologies can be used to help ensure the correctness and validity of enterprise data. How do
business executives or content experts realize the benefits of a technology they can not immediately
see and understand? How do they know their data is in line with their current required business
constraints?

IBM Research is developing a tool to address this very issue. To make data and data modeling
accessible to the non-technical community is a considerable task. There is a constant debate as to
how much to expose to the non-technical end user while still providing a complete and correct XML
Schema for their IT department. The goal of our tool is to enable and include all constituents in the
process for accumulating the right data sources. For the executives or content experts, we don’t want
to burden them with syntactical specifications. At the same time for the IT professional we don’t want
to develop something so lightweight that the output from the tool, while containing all the business
knowledge obtained from subject matter experts, is still basically so useless to them that they need to
code from scratch as they would have done with out the use of any such tool. This paper will
describe how we approach this challenge.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 3

2 A data modeling tool
As a first approach to the problem of capturing and communicating data needs to others we chose a
very open model centered on the terms. Figure presents a UML class diagram that represents the
underlying data model for the tool.

inlinemediaobject

inlinemediaobject

Terms are the center of every interaction, and they are at the center of the model. The term, with its
name and description is the primitive element in the model that requires no further elaboration. All
of the other elements are optional. This way, modelers can easily enter terms without concern for
other details.

The tool has six ways to elaborate further information and relationships among terms. Figure shows
them arranged around the term. In clockwise order they are the Format, Composite, Relationship,
Kinds, Synonyms, and Group. The following sections explain these in further detail.

Our choice of names for these elaborations of terms was hotly debated. We attempted to respect the
terms familiar to those in the industry, even when they differed or seemed contrary to computer
science terms. Our primary goal was to lower the barrier to entry for data modeling and the power
behind it. We strove to make early investigations as to what language is currently in place by people
who actively perform data modeling. We believed that forcing a new terminology on the user would
be just like having them learn any new syntax that a diagrammatic modeling tool would present.

2.1 Format

The format of a term captures information about values. If a term has a format, it is likely an atomic
value. The formatType attribute captures whether the value is a number, some text, a date, time,

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 4

currency, phone number, postal code, etc. Text values may have a minimum and maximum number
of characters. Numeric values may have a minimum and maximum number of digits or values. The
model is permissive in allowing any string to describe the minimum and maximum values. A
modeler may enter the word “zero” or a “0” or “1.5” for example.

The isUnique field enables the modeler to specify whether this value is unique to other values that
may occur in the data. We do not currently capture any scope for the unique property. A modeler
may use the unique property as a reminder that this value is a kind of key.

A term can have only one format and the format, if specified, applies to only one term.

We added the format late in development, when we started to produce Schema from the tool. The
XML Schema [3] is very rich in capabilities for expressing data formats and constraints. We believed
some users would want to specify that a birth date field has exactly eight digits (works for the next
eight millennia), that a text field may have zero to thirty characters, or that a gender field is one
character limited to the values, M, F, U, C, A, X, 0, or 1.

2.2 Composite

The composite captures construction of data elements from other data elements. It captures
containment or structure. This is the first elaboration we provided for terms because it captures
information about what something is made of. It captures how the terms fit within one another. In
the language of XML Schema [4], this is how we capture the document model, or structure of
elements.

The composite has two relationships with terms. On one side, it has a one-to-one relationship with
the term that names the composite. On the other, it has one or more component terms that form the
internal structure or content of the composite. The model thus captures one or more terms that come
together to form a higher level term.

The type of the composite captures whether the component terms should appear in order, any order,
or whether they represent a choice. A choice presents a list of possible component terms, one of
which must be present within the term that names the composite.

The occurrence annotation captures the multiplicity of each component term within the term than
names the composite. A component may be optional in the composite or it may be required. It may
appear only once or it may occur some number of times or any number of times.

2.3 Relationship

Relations between terms capture connections between data other than containment. A term need not
participate in any relationships; but if it does, it participates with at least one other term. It takes two
to make a relationship.

The model captures a name for the relationship. It also captures role descriptions and multiplicity for
the two terms of the relationship.

Most of the lines in the UML logical class diagram (Figure) represent relationships.

We added relationships based on experience we had with a user who was familiar with the
construction of Entity-Relationship diagrams as an approach to modeling relational database tables.
The Schema generation currently does nothing with this information, but we believe we can capture
the semantics of relationships in a document Schema using ID and IDREF token data types.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 5

2.4 Kinds

The tool captures an inheritance relationship between terms by allowing any term to refer to zero or
more other terms as supertypes or subtypes. The model does not enforce a tree structure of
inheritance. A modeler may introduce cycles in which a term directly or indirectly becomes a
supertype and a subtype of itself.

We included kinds as a specialization-generalization mechanism for users familiar with
object-oriented analysis. Kinds maps to the XML Schema as a union data type in which the subtypes
are member types of the supertype.

2.5 Synonyms

Every term may join in zero or one synonym. A synonym groups some number of terms that are in
some way equivalent. A modeler may use the “whom” annotation to annotate each term with a
description of the context in which the term applies.

The Synonym model is the latest elaboration we have added in response to the requests of our users.
In many organizations data formats have proliferated through growth or through merger such that one
format gives one name to a data element and another format uses a different name. Our users wanted
to capture that relationship among multiple terms, expose it, and document it.

2.6 Groups

The last of the information maintained in our model is the group hierarchy. The group hierarchy is
like a directory of folders that may contain terms or other groups. The XML Schema output from the
tool does not in any way show the use of groups. We have had some discussion about using groups
to manage namespaces; but, have so far restrained from attaching any semantic meaning to groups.
Groups remain a convenience mechanism only, for separating a large space of terms into smaller
areas of concern. They are especially useful when the model contains a large number of terms.

A term may belong to any number of groups. A group may contain any number of terms or other
groups. A group may belong to only one parent group, thus enforcing the tree structure of groups.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 6

3 Drawing a Picture
All of the user interaction occurs through forms, buttons, dialogs, and menus. We chose this
deliberately over diagrammatic manipulation as a mode of interaction most familiar to people who
spend their time on a computer working with spreadsheet, word processing, and web applications.
Figure shows a screen shot of the interaction used to capture terms as one example. The user enters
one or more terms using the dialog, each of which appear in the tabular view of terms shown above
the dialog.

inlinemediaobject

inlinemediaobject

The tool captures and displays connections and elaborations of the data such as composition, kinds,
and relations with methods similar to that used for the terms.

Diagrams provide a great way to concisely visualize the network of relationships among terms. We
therefore determined early-on to provide diagrams and dynamically update them as users make
changes to their data models.

Figure shows an example diagram generated by the tool. It maps the connections to a currently
selected term, “pilot.” At a glance we can see that the “pilot” is one of the elements contained within
a “performance;” it is a kind of “participant;” and it has a relationship with “score.”

inlinemediaobject

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 7

inlinemediaobject

Our dynamic drawing display updates with the term currently selected for work rather than with a
display all of the relationships with all of the terms. There are a number of reasons for this:

• It is clean. The term of concern is simply presented without irrelevant clutter.

• It’s the easiest thing to do. It is hard to create an automatic layout of all of the terms and
relationships in the model without overlaps and crossing lines.

• It fits within limited screen real-estate. Complete diagrams require scrolling about when viewed at
a scale that makes text readable.

• It keeps focus where focus is wanted. The user sees only what is immediately relevant to the
selected term.

We found that users appreciated having the diagrammatic form for their terms. Some users have
requested an output that would provide the complete diagram as documentation of their work. Others
have suggested a more interactive form of the diagram. Exactly how useful these diagrams are for
understanding the model still requires some research [5], but our goals at this stage was to keep our
diagrams syntactically simple so as to not distract the modeler as they build their dictionary of terms.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 8

4 What we observed
By working with and observing people use our tool to solve a problem in their work, we have learned
the following about how to design a successful and useful data modeling tool.

First, we take a flexible design approach that will accommodate the needs of our users as they
become more proficient at using our tool. Initially we like to keep the interface simple, but it is
important to recognize that soon more advanced features, that may add complexity to the screen, may
be desired. For example, we debated about where to present the feature for adding format
information to the terms. As designers we did not want the user to feel required to add in all details
about data types just as they were entering their initial thoughts, but soon enough data types were
desired by our user and as such we made the feature more readily available. Now the user may add
format information while adding terms to the dictionary and while modifying terms in the dictionary,
if they select the format feature button in the interface (shown in Figure). This is just one of many
examples where we let the user decide how they would like to advance and work with the data
modeling tool. Incorporating the idea of offering various staging areas for reaching the same goal is a
sound design methodology for building successful user interfaces [1]

As a model grows it is helpful to keep track on which terms were linked to other terms. First we had
several columns with different icons in each column to represent whether or not each term had a
relationship, or a hierarchy, or a composition created with it. When users saw this they first asked –
what do these columns and icons mean? Clearly this was a distraction instead of an aid. So we
removed the columns and put in one column labeled connections that displays a numeric value for
the number of times each term is used in a connection. As such with a quick glance down this column
one can check for any “orphans” to make sure all terms are placed appropriately within the model.

As our tool evolves, we learn just what features are useful and what additional features may be
desired. Specifically, we found that the HTML output was used for presentation purposes,
communication purposes, and for viewing the model in its entirety. How the XML Schema was
reviewed also revealed aspects of model usage as the model grows. Users become curious about the
Schema generator and as they become more familiar with Schema, they may wish to integrate clues
into the model that would be used to generate better Schema. For instance, providing a method for
differentiating between elements and attributes became necessary.

To address this need requires care. Do we change the user interface to enable users to specify
whether a term should appear as an attribute or as an element; or, do we use heuristics within the
Schema generator to infer whether terms are elements or attributes?

Questions like this are the fulcrum for the balance we are maintaining between the simplicity in the
user interface and the functional completeness of the schema. It is encouraging to see how users who
may have had minimal exposure to Schema develop a curiosity about it through the use of our tool.
As such we like to support that curiosity.

One of the best testimonials we received about our tool was how easy it was to go back and make
modifications. As the modeler delved deeper into the model and checked it against requirement
documents he needed to adjust his initial thoughts about grouping terms into compositions. He
realized that in order to properly represent a business rule more completely, he had to join two
existing compositions by creating a third composition that included references of the other
compositions. Our tool does not require the user make changes or additions graphically and as such
our user noted: “I did not dread doing it as I would have in other modeling tools…”

A clear snapshot on how successful a tool may be is how willing a user is to go back and continue

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 9

using the tool and how much they consider and look forward to building more models with the tool.
When the user gets feedback about his model, he will be more willing to go back to the tool and
change the model to reflect the updates. As such the model becomes an ongoing tool for tracking
communication, as well as a Schema generator. Hence the impact of a successful modeling tool is
felt beyond the keyboard of a single user. Even with a small sample size, this kind of feedback sets the
direction of the development process for building tools that are truly useful and usable.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 10

5 Where our data modeling tool may be applied
We attempt to improve the accuracy of the data gathering process by putting a tool in the hands of the
domain expert, thereby capturing the kinds of knowledge based on both the user’s experience with
data and the facts associated with the data [6]. Our tool supports these concepts by offering a natural
interface for composing the domain dictionary. Future research and observations will lead to
determining the efficacy of the models and role they play in true domain understanding [7].

We have already observed how our tool can be used for consolidating several applications within an
enterprise. We see that once a model is developed, the various outputs of the model become a
vehicle for communicating key issues within the group whereby the same set of people who set out to
establish a set of requirements can determine if all that was discussed was indeed understood. By
documenting the data requirements with a model, the modeler, or designer, or IT architect has a
chance to organize all the ideas into a meaningful way. He can then verify his process by sharing the
HTML or Schema output from the model with his organization.

Other scenarios where we see this data modeling tool having a role include:

1. Capture knowledge from a subject matter expert during an interview process

2. Facilitate communications about a system when people are widely dispersed and have varied
technical backgrounds.

3. To capture decisions made at data management workshops

4. As a guide during standards discussions

5. To share knowledge about a domain with others unfamiliar with it

6. As a shared development platform for investigating all nuances of the domain and data
elements

7. To enable a non technical user to begin working with their data in a formal way, as they wish to
start the ball rolling - while they wait for the IT architect or developer – so when they finally do
meet their time will be better spent.

To further determine where the best match may be would require further field studies with users
trying to solve real data problems in their organization [2].

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 11

6 Conclusions
Working with real users on a real task is a critical element for designing better data modeling tools.
Following user centered design practices proved to be invaluable to shaping the data modeling tool
into an effective communication tool as well.

We target this tool towards the initial phases of software development: interviews, requirements
meetings, and recordings of the initial discussions where the accuracy of data and knowledge capture
is critical. We hope the tool will continue to enhance and advance these early stages so that we can
effectively measure the impact we might have on IT development costs.

Epic Editor Unformatted Print: Spraragen.xml Printed Mon Sep 20 21:00:47 2004 User: dcl Page: 12

Bibliography

[1] Spraragen, Susan, and Ribak, Amnon Flexible Software Interface Design, Ergonomics in Design,
Vol.7, No. 4,4-8, October 1999.

 [2] Greene, S.L. et al. Iterative development in the field, IBM Systems Journal, Vol. 42, No. 4,
594-612, (2003).

 [3] XML Schema Part 2: Datatypes. W3C Recommendation 02 May 2001.
http://www.w3.org/TR/xmlschema-2/

[4] XML Schema Part 1: Structures. W3C Recommendation 2 May 2001.
http://www.w3.org/TR/xmlschema-1/

 [5] Tilley, Scott and Huang ,Shihong A Qualitative Assessment of the Efficacy of UML Diagrams as
a Form of Graphical Documentation in Aiding Program Understanding Proceedings of SIGDOC03,
184-191, October 12-15 2003.

[6] Robillard, Pierre N., The Role of Knowledge in Software Development, Communications of the
ACM, Vol 42, No.1, 87-92, January 1999.

 [7] Gemino, Andrew and Wand, Yair Evaluating Modeling Techniques Based on Models of
Learning, Communications of the ACM, Vol.46, No. 10, 79 84 October 2003.

