RC23324 (W0409-027) September 3, 2004
Mathematics

IBM Research Report

On a Binary-Encoded ILP Coloring Formulation

Jon Lee
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Francois Margot
Carnegie Mellon University
Pittsburgh, PA 15213-3890

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home



On a Binary-Encoded ILP Coloring Formulation

Jon Lee! and Francois Margot?

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
jonlee@us.ibm.com
2 Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

fmargot@andrew.cmu.edu

Abstract. We further develop the 0/1 ILP formulation of Lee for edge
coloring where colors are encoded in binary. With respect to that for-
mulation, our main contributions are: (i) an efficient separation algo-
rithm for general block inequalities, (ii) an efficient LP-based separation
algorithm for stars (i.e., the all-different polytope), (iii) introduction of
matching inequalities, (iv) introduction of switched path inequalities and
their efficient separation, (v) a complete description for paths, and (vi)
promising computational results.

Introduction

Let G be a simple finite graph with vertex set V(G) and edge set E(G) and
let m := |E(G)|. For v € V(G), let 6(v) := {e € E(G) : e is incident to v}.
Let A(G) := max{|6(v)] : v € V(G)}. Let ¢ be a positive integer, and let
C:=1{0,1,...,c—1}.

A proper edge c-coloring of G is a function @ from E(G) to C, so that &
restricted to d(v) is an injection, for all v € V(G). Certainly, a proper edge
c-coloring can not exist if ¢ < A(G). Vizing [11] proved that a proper edge c-
coloring always exists when ¢ > A(G). Holyer [5] proved that it is NP-Complete
to decide whether G has a proper edge A(G)-coloring (even when A(G) = 3).

Lee [6] developed a 0/1 integer linear programming formulation of the fea-
sibility problem of determining whether G has a proper edge c-coloring based
on the following variables: For each edge e € E(G), we use a string of n 0/1-
variables to encode the color of that edge (i.e., the m-string is interpreted as
the binary encoding of an element of C). Henceforth, we make no distinction
between a color (i.e, an element of C') and its binary representation in {0, 1}%.

Let N :={0,...n — 1}. For X € RP(EXN e let z. denote the row of X
indexed by e and z denote the entry of X in row e and column j (e € E(G),
Jj € N). We define the n-bit edge coloring polytope of G as

Qn(G) = conv{XG{O,l}E(G)XN: z.#xy, V distinet e, f € §(v), Vv € V(G)} .
The graph G is a star if there is a v € V(G) such that E(G) =0(v). If G is a

star, then we call Q(m,n) := Q,(G) the all-different polytope (as defined in [6]).
In this case, we let M := E(G). For a general graph G, the all-different polytope



is the fundamental “local” modeling object for encoding the constraint that &
restricted to d(v) is an injection, for all v € V(G). Note that this type of con-
straint is present in several combinatorial problems besides edge coloring: vertex
coloring, timetabling, and some scheduling problems for example. Although the
focus of this paper is on edge coloring, the results of Sections 1 and 2 are relevant
in all such situations.

For determining whether G' has a proper edge c-coloring, we choose n :=
[log, c|, so we are using only ~ mlog ¢ variables, while the more obvious assign-
ment-based formulation would require mc variables. A rudimentary method for
allowing only ¢ of the possible 2™ colors encoded by n bits is given in [6]; A much
more sophisticated method for addressing the case where the number of colors
¢ is not a power of two (i.e., 2"~1 < ¢ < 2") can be found in [3].

One difficulty with this binary-encoded model is to effectively express the all-
different constraint at each vertex — that is, to give a computationally-effective
description of the all-different polytope by linear inequalities. In Sections 1 and
2, we describe progress in this direction. In Sections 3 and 4, we describe progress
for general graphs (i.e., not just stars). In Section 5, we describe our implemen-
tation and results of computational experiments.

We note that a preliminary extended-abstract version of this work appeared
as [8].

In the remainder of this section, we set some notation and make some basic
definitions. For z, € RY with 0 < z. <1, and 5,8’ C N with SN S" =0, we
define the value of (S,S5”) on e as

Xe(S,8) = al+ > (1-x)).
jeS jeSs’

When SUS’ = N, the ordered pair (S, S’) is a partition of N. A t-light partition
for z, € RY is a partition (S,S’) with x¢(S5,5’) < t. An active partition for
e € E(Q) is a 1-light partition. For B/ C E(G), we define the value of (S,S") on
E' as

xg (S, 8) =) %e(S, ).

eckE’

1 Separation for General Block Inequalities

For 1 < p < 2", p can be written uniquely as

t
n n

= ith 0 < .

P h+k2_0<k>’W1t O_h<(t+1>

The number ¢ (resp., h) is the n-binomial size (resp., remainder) of p. Then let

K(p,n) == (t+ 1)h + Zt: k(Z)

k=0



Let S, S5’ be a partition of N and let L be a subset of M. Then X € Q(m,n),
must satisfy the general block inequalities (see [6]):

(GBI) k(| L,n) < x0(S,5").

In fact, general block inequalities are facet-describing for the all-different poly-
tope when the n-binomial remainder of |L| is not zero [6].

Lemma 1. Let p satisfy 1 < p < 27, and let t be the n-binomial size of p. Then
for o € RN with 0 < 2, < 1, at most 4(n + 1)?p? + (n + 1)p partitions are
(t + 1)-light for x..

Proof. Let (S1,S5]) and (S2,5%) be two (t+1)-light partitions with d := |S; ASs|
maximum. Without loss of generality, we can assume that S; = () by replacing
2l by 1 — 2 for all j € S;. As

2(t+ 1) > Xe(51,57) + Xe(S2,55) > d,

we have that d < 2t+1. The number T of possible (¢+1)-light partitions satisfies
2641
T< .
<> (})
k=0

Using that, for all k& < n/2, (5;) < (2)2 and (") < (2)2 and that, for

nonnegative numbers a, b, we have a? + b2 < (a + b)?, we get

T < (2 §<Z>>2+§<Z>

By hypothesis, we have (,”,) < n(}) < np, and thus

t+1
o
> (k) <(@-h+np<(n+1)p.
k=0

The result follows. O

Note that computing all of the (¢ + 1)-light partitions for z, in the situation
of Lemma 1 can be done in time polynomial in p and n using Reverse Search [1]:
The number of partitions in the output is polynomial in p and n, and Reverse
Search requires a number of operations polynomial in p and n for each partition
in the output.

We are led then to the following

SEPARATION ALGORITHM FOR GBI

(0) Let X €[0,1]™*N "and let ¢ be the n-binomial size of m.
(1) For each e € M, compute the set T, of all (¢ + 1)-light partitions for z..



(2) Then, for each partition (S,5") in Ueeps Te:

(2.a) Compute F' C M such that, for each e € F, (S,5") is a (¢t + 1)-light
partition for z..

(2.b) Order F' = {eq,...,er} such that x,(S5,5") < xe
1., f—1

(2.c) If one of the partial sums Zle Xe; (S, 87), for k = 2,..., f is smaller
than x(k,n), then L := {e1,...,er} and (5, S’) generate a violated GBI
for X.

(5,95") for i =

i+1

By Lemma 1, it is easy to see that the algorithm is polynomial in p and n.
We note that a much simpler algorithm can be implemented with complexity
polynomial in p and 2" : Replace U.c g Te by the set of all 2" possible partitions.

Theorem 1. Let X € [0, 1)M*N_ [f the algorithm fails to return a violated GBI
for X, then none exists.

Proof. Suppose that L C M generates a violated GBI for partition (S, 5”). Let
s be the n-binomial size of |L|. Observe that (|L|,n) — k(|L| —1,n) < s+ 1. We
may assume that no proper subset of L generates a GBI for partition (S,.5").
Then x¢(5,5") < s+ 1 for all e € L. As s < ¢, this implies that (5,5) is a
(t + 1)-light partition for x., and the algorithm will find a violated GBI. O

We can sharpen Lemma 1 for the case of ¢ = 0 to obtain the following result.

Lemma 2. Lete € M and z. € RN with 0 < 2, < 1. Then there are at most
two active partitions for e. Moreover, if two active partitions, say (S1,S57) and
(So,5%) exist, then |S1ASs| = 1.

Proof. 2 > x¢(S1,S5]) + Xe(S2,55) > |S1ASs| implies that |S; ASs| = 1. More-
over, we can not have more that two subsets of NV so that the symmetric difference
of each pair contains just one element. a

Motivated by Lemma 2, we devised the following heuristic as a simple alter-
native to the exact algorithm.

SEPARATION HEURISTIC FOR GBI

(0) With respect to z., compute its (at most) two active partitions and their
values.
(1) Then, for each partition (S,S5’) of N:
(1.a) Compute the set T' of elements in M that have (S,S5’) as an active
partition.
(1.b) Sort the e € T according to nondecreasing X (S, S"), yielding the order-
ing T ={e1,...,et}.
(L.c) If one of the partial sums Zle Xe,(S,8"), for k = 2,...,t, is smaller
than k(k,n), then L := {e1,...,ex} and (S, S’) generate a violated GBI
for X.

The complexity is O(2"m log m). Note that the heuristic is an exact algorithm
if the n-binomial size of m is zero.



2 Exact LP-Based Separation

In this section we describe an exact separation algorithm for the all-different
polytope @Q(m,n). The algorithm is polynomial in m and 2™. In many situations
(e.g., edge coloring), we consider 2™ to be polynomial in the problem parameters
(e.g., A(G@)); so the algorithm that we describe may be considered to be efficient
in such situations. o

We call an inequality (II, X) =3, >, m/a] < o normalized if =1 < IT <1.
Clearly, if a valid inequality separating X from @Q(m,n) exists, then a normalized
inequality of this type exists as well. The following theorem shows how to find
a most violated normalized inequality separating X from Q(m,n).

Theorem 2. Let X be a point in [0, 1)M*N . There is an efficient algorithm that
checks whether X is in Q(m,n), and if not, determines a hyperplane separating
X from Q(m,n).

Proof. Consider first the problem of maximizing a linear function IT over Q(m, n).
It can be formulated as a maximum weight matching problem in a bipartite
graph, with vertices on one side of the bipartition corresponding to the 2™ colors
and vertices on the other side corresponding to the m rows of the matrix, with
the additional constraint that the vertices corresponding to the rows must be all
covered by the matching. If row ¢ is assigned color k, then the contribution to
the value of the solution is 4
>l - bit[k]

JEN
where bit ;[k] denotes bit j of the binary representation of k. Hence, optimiz-
ing over Q(m,n) may be expressed as the following linear program P:

max Z Z Z (ﬂ'f - bit, [k] zik.)

i€EM jEN keC

s.t. Z zik=1, VieM;
keC
Y zk<l, VkeC
ieM
zik >0, VieM,VkeC,

where the binary variable z;; indicates the assignment of color k to row 1.
The dual of P is D:

minZai—i—Zﬁk

ieM keC
st.oai+ B> Y @ -bity[k], VieM, VkeC;
JjEN

Br,>0, VYkeC.



Consider now the separation problem for X. We claim that it can be solved
using the following LP with variables IT € RM*N 5 c R, a € RM, g € R¢:

max Z Z Wffz —0
iEM jJEN
st. —1 <11 <1;

Zai+2ﬂkéaa

€M keC
ai+ B> >l bitj[k], Vie M, Ykec
JEN

Ok, >0, VEkeC.

Indeed, let (II,0,«,3) be an optimal solution of this LP. Note that it has a
positive value if and only if (II, X) > o. Moreover, («,(3) is a feasible solution
of D with value at most ¢ if and only if P has an optimal value at most o if and
only if the halfspace (I, X) < o contains Q(m,n).

It follows that this last inequality separates X from Q(m,n) if and only if
(I, 0,a, ) is a feasible solution with positive value of the LP. O

This approach yields a practical and efficient algorithm for producing max-
imally violated normalized cuts if any such cut exists. In Section 5, we refer to
cuts produced in this way as LP cuts (LPC). Note that in [8] we also proved The-
orem 2 by constructing an efficient algorithm, but that algorithm is not practical
for computation.

3 Matching Inequalities

Let S,S" be subsets of N with SN S = 0. The optimal colors for (S,S’) are
the colors x € {0,1}" that yield x(5,5’) = 0. The set of optimal colors for
(S,5’) is denoted by B(S,S’). Note that if (.5,5") is a partition of N, then there
is a unique optimal color which is the characteristic vector of S’. In general, if
IN'\ (SUS")| =k, then the set of optimal colors for (S, S’) has 2* elements (it
is the set of vertices of a k-dimensional face of [0, 1]"V). Note that if x € {0, 1}V
is a not an optimal color for (S,S"), then x(S,S") > 1.

Proposition 1. Let E' C E(G), and let F C E’ be a mazimum matching in the
graph induced by E’. Let (S,S’) be a partition of N. The matching inequality
(induced by E’)

OMI)  xe(S,8) > B\ F

is valid for Qn(G).

Proof. At most |F| edges in E’ can have the optimal color for (S, S’), and every
other edge has a color contributing at least one to the left-hand side. a



When E’ is an odd cycle, the matching inequalities reduce to the so-called
“type-I odd-cycle inequalities” (see [6] which introduced these latter inequalities
and [7] which provided an efficient separation algorithm for them).

A MI is dominated if it is implied by MI on 2-connected non-bipartite sub-
graphs and by GBI. The following proposition shows that it is enough to gener-
ate the non-dominated MI, provided that the GBI generated by the separation
heuristic for GBI of Section 1 are all satisfied.

Proposition 2. Let G’ be the graph induced by E'. The MI induced by E’ is
dominated in the following cases:

(i) G’ is not connected;

(i) G' has a vertex v saturated by every mazximum matching in G';
(i) G’ has a cut vertex v;

(iv) G’ is bipartite.

Proof. (i) The MI is implied by those induced by the components of G’.

(ii) The MI is implied by the MI on G’ — v and the GBI for §(v) N E'.

(iii) Let G1 and G2 be a partition of E’ sharing only vertex v. By (ii), we
can assume that there exists a maximum matching F' of G with v not saturated
by F. Then E(F)N E(G;) is a maximum matching in G; for ¢ = 1,2. The MI is
thus implied by the MI on G; and Gs.

(iv) By the Konig’s theorem, the cardinality of a minimum vertex cover of G’
is equal to the cardinality k of a maximum matching F' of G’. It is then possible
to partition the edges of G’ into k stars, such that star 7 has k; edges. If the GBI
inequalities for the stars are all satisfied, then summing them up yields:

k
xp(G)(S,8') =Y (ki = 1) = |B(G)| - k = |E(G)\ M|,

i=1
and the MI induced by E’ is also satisfied. O

Recall that a block of a graph is a maximal 2-connected subgraph. Proposition
2 is the justification of the following:

SEPARATION HEURISTIC FOR MI

(0) Let X be a point in [0, 1]F(G) >N,
(1) For each partition (S,5’) of N:
(l.a) Compute the edges T for which (5,5’) is an active partition.
(1.b) For each non-bipartite block of the graph G’ induced by T
(1.b.i) Compute a maximum matching F(G’) in G'.
(1.b.ii) Check if xgg(S,5") > |E(G") \ F(G")| is a violated matching in-
equality.



Complexity: Since each edge of G has at most two active partitions, all com-
putations of active partitions take O(nm) and all computations of non-bipartite
blocks take O(m). For one partition (.9,S’), computing the maximum matchings
takes O(4/|V(G)| m) [10]. The overall complexity is thus O(2"+/|V(G)| m).

Note that ignoring edges e for which (S,S’) is not an active partition does
not prevent generation of violated matching inequalities: Suppose that e ap-
pears in a violated matching inequality Xgg/)(S,5") < |[E(G’) \ F(G")|. Then
Xg(G)-e(9,8") < |(E(G") —e)\ F(G" —e)| is also violated, as the left-hand side
has been reduced by more than 1, while the right-hand side has been reduced
by at most 1. The algorithm is nevertheless not exact, as we should generate
MI for all 2-connected subgraphs, not only for blocks. In practice, the blocks
are very sparse and rarely contain more than a few odd cycles. Enumerating the
2-connected non-bipartite subgraphs might thus be feasible.

4 Switched Walk Inequalities

Let S,5" C N such that SNS = 0 and [SU S| > n — 1. Then (5,5) is a
subpartition of N.

Let (S1,S7) be a subpartition of N. Let (S3,5%) be a subpartition obtained
from (S1,S]) by performing the following two steps:

1) adding the only element not in S; US] (if any) either to S or to S7; call the
1 1
resulting partition (P, Pj).
(2) removing at most one element from P, or at most one element from Pj.

Then (Sa, 5%) is a switch of (S1,.57). Observe that |B(S1, S1)| < 2, that [B(S2,.5%)]
2 and that |B(S1,S]) N B(S2,5%)| > 1.

Let (f1,..., fr) be the ordered set of edges of a walk in G with r» > 2. For
i=1,...,7, let (S;,S]) be subpartitions of N such that

(a) |SiUS£:{n’ ifi:ll,ori:r;
n — 1, otherwise.
(b) Fori=1,...,7—1, (Sit1,57,;) is a switch of (S;, S}).
(c) Forall j € S; (resp., j € S}), if t is maximum such that for all ¢t +1 < ¢ < ¢
we have N — (S; U S}) = {j}, then j € Syy1 (resp., j € S}, ;) if and only if
t' —t is even.

Then the walk and the set of subpartitions (51, 57), ..., (Sy, S..) form a switched
walk.
Given a switched walk, the inequality

T

SWH Y x4 (S8 > 1

=1

is a switched walk inequality.

IN



Ezample 1. Let N := {0, 1,2}. Counsider the path of edges (f1, fa, f3, f4, f5). As-
sociated with the sequence of edges of the path is the switched walk: ({0}, {1,2}),
({0},{2}), ({1},{2}), ({1},{0}), ({1,2},4{0}). The given switched walk gives rise
to the SWI:
+29  +(1 —2]) +(1 - 2?)
+z9 +(1 — 23)
+ry (1 - x3)
+(1—29) +a}
+(1—22)  +ai +22  >1.

The only possibility for a 0/1 solution to violate this is to have each edge colored
with one of its optimal colors. This implies that the color of f; must be 011.
Then, of the two optimal colors for fo, the only one that is different from the
color of f; is 001. Similarly, f3 must get color 101 and f; gets 100. But this is
not different from the only optimal color for fs.

Next, we state a result indicating the importance of the switched walk in-
equalities.

Theorem 3. If P is a path and n > 2, then Q,(P) is described by the SWI and
the simple bound inequalities 0 < X < 1.

Theorem 3 was stated without proof in [8]. The proof, which we present here,
uses the following five lemmas.

Lemma 3. Ifa 0,1 polytope Q in R? is full dimensional and (7, x) > [ describes
one of its facets, then, for each i =1,...,q, there exists a 0,1 point T € Q with
Z; =1 (resp., T; = 0) satisfying (v, ) = G.

Proof. If this is not the case, then all points in @ satisfy z; = 0 (resp., x; = 1),
a contradiction with @ full dimensional. a

Lemma 4. If a polytope @Q in RY is full dimensional and {(v,z) >  describes
one of its facets F', then the orthogonal projection of F' onto any subset S of the
variables has dimension |S| or |S| — 1.

Proof. If this is not the case, then all points in F' satisfy at least two linearly
independent inequalities. One of these inequalities is not a positive multiple of
(v,z) > B, a contradiction. ad

Lemma 5. Ifn > 2, then Q,(P) is full dimensional.

Proof. Let f1,...,f be the ordered edges of path P. Set the color of f; to
0 € RY for all even i and to color 1 € RY for all odd i. Flipping any single bit
of this valid coloring gives another valid coloring, yielding 1 + n|E(P)| affinely-
independent valid colorings of P. a

For a matrix &, define @_ as the sum of its negative entries.



Lemma 6. Let fy,..., [, be the ordered edges of path P. Let ¢; be the vector
of coefficients associated with f; in a facet-describing inequality (®,X) > (.
Suppose that ¢; has at least one zero, for alli =2,...,r. Then 3 = ®_, and each
edge receives one of its optimal colors in any coloring X for which (&, X) = .

Proof. Each edge, except possibly fi; has at least two optimal colors. Hence,
starting by coloring fi; with one of its optimal colors, there exists a valid coloring
such that each edge is colored with one of its optimal colors. ad

Lemma 7. Let n > 2, and let (P, X) > 3 be a facet-describing inequality for
Qn(P). Assume that (P,X) > [ is not a positive multiple of a simple-bound
inequality 1 > 0 or —x] > —1. Let ey (resp., ey) be the first (resp., last) edge of
P for which ¢; is not the zero vector. If min{|¢?| | ¢7 # 0} = 1, then all nonzero
components of ¢ are 1, ¢1 and ¢ each have no 0, and ¢; has exactly one 0
foralli=2,... .k —1. Moreover, any two consecutive edges e; and e;y1 share
at least one optimal color, and B =1+ P_.

Proof. Note that k = 1 is impossible, as there exists a valid coloring of P with
edge e; receiving an arbitrary color. If k = 2, all colorings with e; and es receiving
distinct colors satisfy the inequality. Then the inequality must be a GBI for the
pair ej,eq, as the GBI give the convex hull of such colorings (see [6]). The
result thus holds. Otherwise, let e; € {es,...,ex—1}, Pr = {e1,...,e:—1}, and
Py ={ett11,...,er}. We call e;_q (resp., ery1) the shore of Py (resp., Py).

In this proof, the value of a coloring of any subset S of edges is always
computed with respect to the cost function obtained as the restriction of @ to
S. Also, X will always be an integral matrix in Q,,(P) satisfying (&, X) = 3.

For i = 1,2, let a; be the optimal value of a coloring of P;, and let b; be the
second best value of such a coloring (with a; < b;). Let A; (resp., B;) be the set
of colors for the shore of P; in all X achieving value a; (resp., b;). For edge e,
let a, b and ¢ be the three best values for a coloring, with @ < b < ¢ and with
corresponding color sets A, B and C.

As & induces a facet of Q,,(P), there exists a coloring X that does not induce
an optimal coloring of P;. Thus every optimal colorings of P; give to its shore
the color that e; has in X. A similar remark holds for P. It follows that |A4;| = 1
for i = 1,2 and that the color of the shore in any X is in A; U B; for i = 1,2.
Taking ¢ = 2 (resp., t = k — 1), this implies that ¢; (resp., ¢x) has no 0. Lemma
3 shows that all entries in ¢; (resp., ¢) must have the same absolute value.

Similarly, for some X, the color of e; in X does not have value a. This implies
that |A| < 3 and thus that ¢, has at most one 0. Also, we have that the color of
e; in X isin AUB if |A|+|B| >3 and in AUBUC if |A] = |B| = 1.

We say that X induces a pattern (Hy, H, Hs) on (e;_1,eq,e441) if the color
of e;_1 (resp., e, ;1) in X is in Hy (resp., H, Hy). Lemmas 4 and 5 imply that
the projection on (e;_1, s, e;11) of all the points X should span an affine space
of dimension at least 3n — 1, i.e. there should be at least 3n affinely independent
such projections.

Case I: |A| = 1. This implies that ¢; has no 0 entries. It follows that |B| <n
as any color obtained from A by flipping more than one entry has a value worse

10



than any color obtained by flipping a single entry in A. Moreover, the same
reasoning implies that if |B| =1 then |C| <n — 1.

Case Ta: A; # A and Ay # A. Then any X induces on (e;_1,es,e.41) the
pattern (47, A, A3), a contradiction with the fact that there should be 3n affinely
independent such projections.

Case Ib: Ay = A (the case A; = A is symmetrical).

Case Ibl: A} = A. Then any X induces on (e;_1, e¢, e;41) one of the pattern
(B1,A, By), (A1, B, As), (A1,C, A). Since any solution with the last pattern
has a value strictly worse than a solution with the second pattern, only the first
two patterns may occur. Moreover, we have b — a = (by — a1) + (ba — a2). let
v = b}):—zl. Observe that each X satisfies the inequality obtained on P; U e;
using the restriction of @ to P; and using vy - ¢; for e; with right hand side
B—by— (1 —7)a=p0—as— (1 —~)bwith equality, a contradiction.

Case Ib2: A; C C. Then any X induces on (e;_1, e, €¢41) one of the patterns
(A1, A, Bs), (A1, B, A) and (B1,C, As). Note that solutions inducing the third
pattern are worse than solution with the second pattern, implying that no X
induce the third pattern. Then all X optimally color P;, a contradiction.

Case Ib3: |B| = 1 and A; = B. Then any X induces on (e;_1,e¢,e441) one
of the patterns (A4, A, Bs), (B1, B, A3) and (A1, C, As). Note that at most n
points with the first (resp., second) pattern may be affinely independent, and at
most n — 1 points with the third pattern may be affinely independent. Thus, at
most 3n — 1 of the points are affinely independent, a contradiction.

Case Ib4: |B| > 1 and A; C B. Then any optimal X induces on (e;_1, e, €141)
one of the patterns (A1, A, Ba), (B1,41,A42) and (41, B — Aj, As). Note that
solutions with the second pattern are worse than solution with the third pattern,
implying that no X induces the second pattern. Then all X optimally color P,
a contradiction.

Case II: |A| = 2 = {U,V}. Then ¢; has exactly one 0, and only A and B
may appear in the projection of X on e;. Lemma 3 implies that |B| = 2(n — 1).

Case Ila: A;NA = () (or, symmetrically, AsNA = ()). Then any X induces on
(et—1, e, er41) one of the patterns (A1,U, Ay or Bg), (A1,V, Ay or Bs), (A1, B—
A1, As or Bs) and (B, A1, A2 or Bs). One of the first two patterns occurs with
Ag on e;qq and it is better than the last two, yielding a contradiction, as Pj is
always optimally colored.

Case IIb: Ay = Ay = U. Then any X induces on (e;_1,es,€441) one of
the patterns (Bi,U, Bs), (A1,V, As) and (A;, B, A3). But the second pattern
is strictly better than the other two patterns. All the projections inducing the
second pattern generate an affine space of dimension 0, a contradiction.

Case Ilc: A; = U, Ay = V. Then any X induces on (e;_1, e, ;1) one of the
pattern (By,U, As), (A1,V,Bs) and (A4, B, As), each contributing for at most
n affinely independent projections. The first two patterns show that b — a1 =
by — a9 and the last two show that by — ag = b — a. Lemma 3 shows that all
nonzero entries in ¢; must have the same absolute value.

Over all the above cases, only Case Ilc may occur, so it holds for all ¢. Using
induction on ¢, we can then show that all entries in @ must have the same
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absolute value (+1 without loss of generality) using the fact that by —a; = b—a.
Lemma 6 and the pattern (A1, B, As) yields f=&_+ (b—a) =P_ + 1. ad

Proof (Theorem 3). The conditions spelled out for @ and § in Case IIc of Lemma
7 force the inequality to be a SWI. This is clear for conditions (a) and (b)
of the definition of a SWI. To see that the inequality satisfies (c), let P, be
the path consisting of e1,...,eq, for ¢ = t,...,t' + 1 with ¢ maximum with
N—-(S;uS8))={j} foralli =¢t+1,...,t. Let U and V be the two optimal
colors for e;y1. By Case Ilc of Lemma 7, all optimal colorings of P; have e,
with color U or V, say U. (Colors U and V only differ in bit j.) Then, for
s=1,...,t —t, all optimal colorings of P, have e;1 s with color V if s is odd
and U if s is even. Hence the color of ey in an optimal coloring of P must
have color U if t' —t is even and color V otherwise. Since that color must be
a color that is optimal for ey 41, we must have ¢; = ¢, 4 if t' —t is even and

¢l = —¢l,, if t' —tis odd. H
Theorem 4. If n > 2, the SWI are valid for Q,(G).

Proof. If k =2, the SWI is a GBI and thus is valid. Consider a SWI with & > 3
and let ¢ = 2. Using notation similar to the proof of Lemma 7, Case Ilc above
shows that a valid coloring of P violating the SWI must optimally color Py, P
and e;. But this is impossible, as A1 U A; = A. a

We separate the SWI by solving m shortest path problems on a directed
graph G’ with nonnegative node weights constructed as follows: A node of G’ is
identified by:

(a) an edge e € G;

(b) a travel direction on e;

(c) a subpartition (S,.5”) such that x¢(S,S") < 1;

(d) an indicator ind with value S or S’ with the meaning that the next time
j=N—-(SUS")isin SUS’, it must be in the set ind of that node.

The weight associated with the node is x¢(S, S”). There is an arc from node
(e1 = (u1,v1), (S1,57),indy) to node (ex = (ua,v2), (S2,5%),inds) if and only if
the sum of their weights is less than 1, v1 = ua, (S2,5%) is a switch of (S1,.5])
and for jl = N—(51US1), j2 =N- (S2US§), either (I) jl = jg and zndl # anQ
or (IT) j1 # jo, j1 is in the set ind; of the second node, and indy, = S} if and
only if jo € 5.

Observe that the number of nodes in G’ is at most 8(n + 1)m: For each edge
e € G, there are 2 choices for (b), two choices for (d), n + 1 possibilities for the
choice of N — (57 U S7) and, by Lemma 2 at most two subpartitions for each of
these (n + 1) possibilities. The number of edges is bounded by 8n(n + 1)?m as
the degree of a node in G’ is bounded by n(n + 1).

Any directed path (with at least one edge) in G’ of weight strictly less than
1 starting and ending at a node of G’ whose subpartition is indeed a partition
yields a violated SWI. If a violated SWI exists, then one can be found by at most
m calls to a shortest-path algorithm. The overall complexity of the separation
algorithm is thus O(mn?log(mn)).
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5 Computational Results

We report computational results for Branch-and-Cut (B&C) algorithms using
the GBI, LPC, MI, SWI and Gomory Cuts. The results that we present improve
upon the preliminary results first reported in [8]. The code is based on the open-
source codes BCP (Branch, Cut & Price) and CLP (an LP solver), which are
freely available at www.coin-or.org. It was run on a Dell Precision 650 (Intel
Xeon processor, 8KB level-1 cache). Test problems consist of

) nine 4-regular graphs g4_p on p nodes, for p = 20, 30, ..., 100;

) three 8-regular graphs ¢g8_p on p nodes, for p = 20, 30, ..., 40;
(c) the Petersen graph (peter);

) two regular graphs on 14 and 18 vertices having overfull subgraphs (of5-14_7
and 0f7.18.9.5);
e) an overfull graph wih 9 vertices (ofsub9) obtained as a subgraph of o f7_18_9_5;
f) graphs from [2] on 18 vertices and 33 edges (jgt18) and 30 vertices and 57
edges (jgt30).

Graphs in (a) and (b) are randomly generated and can be colored with 4 or
8 colors respectively. It is likely that most heuristics would be able to color them
optimally, but our B&C algorithms have no such heuristic, i.e. they will find a
feasible solution only if the solution of the LP is integer. The remaining graphs
are “Class 2”7 graphs, i.e. graphs G that can not be colored with A(G) colors.

A subgraph H of a graph G is an overfull subgraph if |V (H)| is odd, A(H) =
A(G), and |E(H)| > A(H) - (|V(H)|—1)/2. If G has an overfull subgraph, then
G is a Class 2 graph. Graphs in (d) were randomly generated and have overfull
subgraphs, but are not overfull themselves. The graph in (e) is a small non-
regular Class 2 graph.

To illustrate the benefits of and trade-offs between the different types of cuts,
we report results of three B&C algorithms. The separation algorithms for the
different types of cuts are: the separation heuristic for GBI of Section 1, the
exact LPC separation algorithm alluded to at the end of Section 2, the heuristic
separation for MI algorithm of Section 3 (except that blocks are not computed),
and the separation algorithm for SWI of Section 4. No more than six rounds of
cutting is done at each node, each type of cut being considered. The branching
is done as follows: At the beginning, the edges of the graph are ordered in
Breadth-First Search fashion, starting from a vertex of maximum degree. When
a branching decision is made, the algorithm chooses to branch on the first edge
for which one of the associated variables is fractional. The children are created
by assigning to the chosen edge all (still) feasible colors.

B&C 1 uses GBI, MI and Gomory Cuts. B&C 2 uses, in addition, LPC, and
B&C 3 uses all five types of cuts. Table 1 gives the number of nodes in the
enumeration tree. As expected, in general, the number of nodes is smaller when
more cuts are in use, but for some problems, there is a big drop between variant
1 and 2, i.e. the use of LPC seems to be important. Most of these problems have
relatively large degree, which is also expected, as GBI give a good approximation
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of the all-different polytope when the number of rows in X is small. On the other
hand, the use of SWI does not seems to help much on these problems.

Table 2 shows that for problems with low maximum degree, using SWI in-
creases the overall cpu time. This (and Table 3) illustrates the difficulties for
separating these inequalities efficiently. Even with the restricted use of one round
of SWI cuts at most, the separation algorithm returns a large number of violated
SWI cuts. A better understanding of these cuts might help generate “useful” ones
more efficiently. The separation times are very small for GBI, MI and Gomory
Cuts. The LPC, however take significant time (more than 50% of the total time
for the 4-regular graphs, about 25% of the total time for the 8-regular graphs and
15% for of7_18_9). The SWI separation is also time consuming, taking roughly
10-15% of the total time.
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Table 1. Number of nodes.

1 2 3

9420 11 13 7
g4.30 25 29 26
g4.40 40 36 39
g4.50 56 44 54
g4.60{ 190 70 70
g4.70 88 69 82
g4-80 89 86 74
g4.90| 122 97 33
g4.100| 178 111| 108
¢8-20| 114| 109 105
¢8-30| 216| 178 170
g8-40| 1511 225 226
peter 1 1 1
of5.14.7 31 30 28
of7.18.9| 734| 3535| 3851
ofsub9(93223|63882|65363
jgt18| 260| 247 230
79t30(42225|37480(37340

Table 2. cpu time in seconds.

1 2 3

g4.20| 0.10 0.20 0.10
g4.30| 0.30 0.50 1.00
g4.40| 0.40 1.50 1.80
g4.50| 0.60 2.00 3.60
g4.60| 4.60 3.50 6.10
g4.70| 1.80 4.80 9.80
g4.80| 2.30 6.80 9.70
g4.90| 4.10] 12.70| 17.30
g4.100| 8.80| 11.70| 63.10
g8-20| 2.50| 10.90| 14.20
¢8-30| 20.80| 45.10| 62.20
¢8.40(136.80| 120.20| 166.00
peter| 0.00 0.00 0.00
of5.14.7| 0.70 1.10 1.30
0f7.18.9|238.90(1365.80|2195.00
ofsub9|805.70({1283.20{1695.30
Jgt18| 6.30 9.30 9.60
79t30(649.60{1333.20{1871.00
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Table 3. Number of generated cuts.

1 2 3
GBI MI GOM| GBI MI GOM LPC|] GBI MI GOM LPC SWI
9420 100 4 194 78 4 140 17 66 3 82 10 135
g4-30 168 10 245 160 4 138 50 196 7 302 73 565
g4-40 350 5 305 338 4 302 94 316 6 95 84 1034
9450 560 15 288 464 8 223 113 690 14 38 137 2088
g4.60| 1706 31 1461 722 13 291 169 908 30 266 177 2800
g4_70 994 21 493 864 21 353 196| 1118 15 264 256 4048
g4.80| 1116 21 513 952 15 274 223 1110 10 158 196 3260
g4.90| 1478 43 788 1318 29 738 232 862 6 106 55 2805
g4.100| 2636 51 1508 1120 13 381 298| 1612 30 95 250 7364
g8-20| 2110 48 252| 1668 11 60 1773] 1616 30 19 1920 2524
g8.30| 3974 51 693| 3174 19 92 4306 3246 29 67 4159 4646
g8-40| 33170 489 5972| 4592 32 152 6849 4712 39 120 7098 8316
peter 0 2 16 0 2 16 8 0 2 16 8 0
of5.14.7 704 42 526 628 36 294 267 564 19 287 275 609
of7-189| 23406 2142 34536| 69224 4788 90295 56235 82034 5571 106189 63893 151031
ofsub9|283192 13771 486194|113321 10071 88597 208805108951 10036 77333 197433 596291
Jjgt18| 1428 182 9113| 1129 171 6397 612 1109 152 5402 572 5040
7gt30|180598 24211 563261|151658 24420 407837 76088|134531 24345 333986 69574 1189512
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