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Abstract. We further develop the 0/1 ILP formulation of Lee for edge
coloring where colors are encoded in binary. With respect to that for-
mulation, our main contributions are: (i) an efficient separation algo-
rithm for general block inequalities, (ii) an efficient LP-based separation
algorithm for stars (i.e., the all-different polytope), (iii) introduction of
matching inequalities, (iv) introduction of switched path inequalities and
their efficient separation, (v) a complete description for paths, and (vi)
promising computational results.

Introduction

Let G be a simple finite graph with vertex set V (G) and edge set E(G) and
let m := |E(G)|. For v ∈ V (G), let δ(v) := {e ∈ E(G) : e is incident to v}.
Let ∆(G) := max{|δ(v)| : v ∈ V (G)}. Let c be a positive integer, and let
C := {0, 1, . . . , c − 1}.

A proper edge c-coloring of G is a function Φ from E(G) to C, so that Φ
restricted to δ(v) is an injection, for all v ∈ V (G). Certainly, a proper edge
c-coloring can not exist if c < ∆(G). Vizing [11] proved that a proper edge c-
coloring always exists when c > ∆(G). Holyer [5] proved that it is NP-Complete
to decide whether G has a proper edge ∆(G)-coloring (even when ∆(G) = 3).

Lee [6] developed a 0/1 integer linear programming formulation of the fea-
sibility problem of determining whether G has a proper edge c-coloring based
on the following variables: For each edge e ∈ E(G), we use a string of n 0/1-
variables to encode the color of that edge (i.e., the n-string is interpreted as
the binary encoding of an element of C). Henceforth, we make no distinction
between a color (i.e, an element of C) and its binary representation in {0, 1}N .

Let N := {0, . . . n − 1}. For X ∈ R
E(G)×N , we let xe denote the row of X

indexed by e and xj
e denote the entry of X in row e and column j (e ∈ E(G),

j ∈ N). We define the n-bit edge coloring polytope of G as

Qn(G) := conv
{

X∈{0,1}E(G)×N : xe �=xf , ∀ distinct e, f ∈ δ(v), ∀v ∈ V (G)
}

.

The graph G is a star if there is a v ∈ V (G) such that E(G) = δ(v). If G is a
star, then we call Q(m,n) := Qn(G) the all-different polytope (as defined in [6]).
In this case, we let M := E(G). For a general graph G, the all-different polytope



is the fundamental “local” modeling object for encoding the constraint that Φ
restricted to δ(v) is an injection, for all v ∈ V (G). Note that this type of con-
straint is present in several combinatorial problems besides edge coloring: vertex
coloring, timetabling, and some scheduling problems for example. Although the
focus of this paper is on edge coloring, the results of Sections 1 and 2 are relevant
in all such situations.

For determining whether G has a proper edge c-coloring, we choose n :=
�log2 c�, so we are using only ∼ m log c variables, while the more obvious assign-
ment-based formulation would require mc variables. A rudimentary method for
allowing only c of the possible 2n colors encoded by n bits is given in [6]; A much
more sophisticated method for addressing the case where the number of colors
c is not a power of two (i.e., 2n−1 < c < 2n) can be found in [3].

One difficulty with this binary-encoded model is to effectively express the all-
different constraint at each vertex — that is, to give a computationally-effective
description of the all-different polytope by linear inequalities. In Sections 1 and
2, we describe progress in this direction. In Sections 3 and 4, we describe progress
for general graphs (i.e., not just stars). In Section 5, we describe our implemen-
tation and results of computational experiments.

We note that a preliminary extended-abstract version of this work appeared
as [8].

In the remainder of this section, we set some notation and make some basic
definitions. For xe ∈ R

N with 0 ≤ xe ≤ 1, and S, S′ ⊆ N with S ∩ S′ = ∅, we
define the value of (S, S′) on e as

xe(S, S′) :=
∑
j∈S

xj
e +

∑
j∈S′

(1 − xj
e).

When S∪S′ = N , the ordered pair (S, S′) is a partition of N . A t-light partition
for xe ∈ R

N is a partition (S, S′) with xe(S, S′) < t. An active partition for
e ∈ E(G) is a 1-light partition. For E′ ⊆ E(G), we define the value of (S, S′) on
E′ as

xE′(S, S′) :=
∑
e∈E′

xe(S, S′).

1 Separation for General Block Inequalities

For 1 ≤ p ≤ 2n, p can be written uniquely as

p = h +
t∑

k=0

(
n

k

)
, with 0 ≤ h <

(
n

t + 1

)
.

The number t (resp., h) is the n-binomial size (resp., remainder) of p. Then let

κ(p, n) := (t + 1)h +
t∑

k=0

k

(
n

k

)
.
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Let S, S′ be a partition of N and let L be a subset of M . Then X ∈ Q(m,n),
must satisfy the general block inequalities (see [6]):

(GBI) κ(|L|, n) ≤ xL(S, S′).

In fact, general block inequalities are facet-describing for the all-different poly-
tope when the n-binomial remainder of |L| is not zero [6].

Lemma 1. Let p satisfy 1 ≤ p ≤ 2n, and let t be the n-binomial size of p. Then
for xe ∈ R

N with 0 ≤ xe ≤ 1, at most 4(n + 1)2p2 + (n + 1)p partitions are
(t + 1)-light for xe.

Proof. Let (S1, S
′
1) and (S2, S

′
2) be two (t+1)-light partitions with d := |S1∆S2|

maximum. Without loss of generality, we can assume that S1 = ∅ by replacing
xj

e by 1 − xj
e for all j ∈ S1. As

2(t + 1) > xe(S1, S
′
1) + xe(S2, S

′
2) ≥ d,

we have that d ≤ 2t+1. The number T of possible (t+1)-light partitions satisfies

T ≤
2t+1∑
k=0

(
n

k

)
.

Using that, for all k ≤ n/2,
(

n
2k

) ≤ (
n
k

)2 and
(

n
2k−1

) ≤ (
n
k

)2 and that, for
nonnegative numbers a, b, we have a2 + b2 ≤ (a + b)2, we get

T ≤
(

2
t+1∑
k=0

(
n

k

))2

+
t+1∑
k=0

(
n

k

)

By hypothesis, we have
(

n
t+1

) ≤ n
(
n
t

) ≤ np, and thus

t+1∑
k=0

(
n

k

)
≤ (p − h) + np ≤ (n + 1)p .

The result follows. 
�
Note that computing all of the (t + 1)-light partitions for xe in the situation

of Lemma 1 can be done in time polynomial in p and n using Reverse Search [1]:
The number of partitions in the output is polynomial in p and n, and Reverse
Search requires a number of operations polynomial in p and n for each partition
in the output.

We are led then to the following

Separation Algorithm for GBI

(0) Let X ∈ [0, 1]M×N , and let t be the n-binomial size of m.
(1) For each e ∈ M , compute the set Te of all (t + 1)-light partitions for xe.
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(2) Then, for each partition (S, S′) in ∪e∈M Te:
(2.a) Compute F ⊆ M such that, for each e ∈ F , (S, S′) is a (t + 1)-light

partition for xe.
(2.b) Order F = {e1, . . . , ef} such that xei

(S, S′) ≤ xei+1
(S, S′) for i =

1, . . . , f − 1.
(2.c) If one of the partial sums

∑k
i=1 xei

(S, S′), for k = 2, . . . , f is smaller
than κ(k, n), then L := {e1, . . . , ek} and (S, S′) generate a violated GBI
for X.

By Lemma 1, it is easy to see that the algorithm is polynomial in p and n.
We note that a much simpler algorithm can be implemented with complexity
polynomial in p and 2n : Replace ∪e∈E′ Te by the set of all 2n possible partitions.

Theorem 1. Let X ∈ [0, 1]M×N . If the algorithm fails to return a violated GBI
for X, then none exists.

Proof. Suppose that L ⊆ M generates a violated GBI for partition (S, S′). Let
s be the n-binomial size of |L|. Observe that κ(|L|, n)−κ(|L|−1, n) ≤ s+1. We
may assume that no proper subset of L generates a GBI for partition (S, S′).
Then xe(S, S′) < s + 1 for all e ∈ L. As s ≤ t, this implies that (S, S′) is a
(t + 1)-light partition for xe, and the algorithm will find a violated GBI. 
�

We can sharpen Lemma 1 for the case of t = 0 to obtain the following result.

Lemma 2. Let e ∈ M and xe ∈ R
N with 0 ≤ xe ≤ 1. Then there are at most

two active partitions for e. Moreover, if two active partitions, say (S1, S
′
1) and

(S2, S
′
2) exist, then |S1∆S2| = 1.

Proof. 2 > xe(S1, S
′
1) + xe(S2, S

′
2) ≥ |S1∆S2| implies that |S1∆S2| = 1. More-

over, we can not have more that two subsets of N so that the symmetric difference
of each pair contains just one element. 
�

Motivated by Lemma 2, we devised the following heuristic as a simple alter-
native to the exact algorithm.

Separation Heuristic for GBI

(0) With respect to xe, compute its (at most) two active partitions and their
values.

(1) Then, for each partition (S, S′) of N :
(1.a) Compute the set T of elements in M that have (S, S′) as an active

partition.
(1.b) Sort the e ∈ T according to nondecreasing xe(S, S′), yielding the order-

ing T = {e1, . . . , et}.
(1.c) If one of the partial sums

∑k
i=1 xei

(S, S′), for k = 2, . . . , t, is smaller
than κ(k, n), then L := {e1, . . . , ek} and (S, S′) generate a violated GBI
for X.

The complexity is O(2nm log m). Note that the heuristic is an exact algorithm
if the n-binomial size of m is zero.
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2 Exact LP-Based Separation

In this section we describe an exact separation algorithm for the all-different
polytope Q(m,n). The algorithm is polynomial in m and 2n. In many situations
(e.g., edge coloring), we consider 2n to be polynomial in the problem parameters
(e.g., ∆(G)); so the algorithm that we describe may be considered to be efficient
in such situations.

We call an inequality 〈Π,X〉 =
∑

i

∑
j πj

i x
j
i ≤ σ normalized if −1 ≤ Π ≤ 1.

Clearly, if a valid inequality separating X̄ from Q(m,n) exists, then a normalized
inequality of this type exists as well. The following theorem shows how to find
a most violated normalized inequality separating X̄ from Q(m,n).

Theorem 2. Let X̄ be a point in [0, 1]M×N . There is an efficient algorithm that
checks whether X̄ is in Q(m,n), and if not, determines a hyperplane separating
X̄ from Q(m,n).

Proof. Consider first the problem of maximizing a linear function Π over Q(m,n).
It can be formulated as a maximum weight matching problem in a bipartite
graph, with vertices on one side of the bipartition corresponding to the 2n colors
and vertices on the other side corresponding to the m rows of the matrix, with
the additional constraint that the vertices corresponding to the rows must be all
covered by the matching. If row i is assigned color k, then the contribution to
the value of the solution is ∑

j∈N

πj
i · bitj [k] ,

where bitj [k] denotes bit j of the binary representation of k. Hence, optimiz-
ing over Q(m,n) may be expressed as the following linear program P:

max
∑
i∈M

∑
j∈N

∑
k∈C

(
πj

i · bitj [k] zik

)

s.t.
∑
k∈C

zik = 1, ∀ i ∈ M ;

∑
i∈M

zik ≤ 1, ∀ k ∈ C;

zik ≥ 0, ∀ i ∈ M, ∀ k ∈ C,

where the binary variable zik indicates the assignment of color k to row i.
The dual of P is D:

min
∑
i∈M

αi +
∑
k∈C

βk

s.t. αi + βk ≥
∑
j∈N

πj
i · bitj [k], ∀ i ∈ M, ∀ k ∈ C;

βk ≥ 0, ∀ k ∈ C.

5



Consider now the separation problem for X̄. We claim that it can be solved
using the following LP with variables Π ∈ R

M×N , σ ∈ R, α ∈ R
M , β ∈ R

C :

max
∑
i∈M

∑
j∈N

πj
i x̄

j
i − σ

s.t. −1 ≤ Π ≤ 1;∑
i∈M

αi +
∑
k∈C

βk ≤ σ;

αi + βk ≥
∑
j∈N

πj
i · bitj [k], ∀ i ∈ M, ∀ k ∈ C;

βk ≥ 0, ∀ k ∈ C.

Indeed, let (Π,σ, α, β) be an optimal solution of this LP. Note that it has a
positive value if and only if 〈Π, X̄〉 > σ. Moreover, (α, β) is a feasible solution
of D with value at most σ if and only if P has an optimal value at most σ if and
only if the halfspace 〈Π, X̄〉 ≤ σ contains Q(m,n).

It follows that this last inequality separates X̄ from Q(m,n) if and only if
(Π,σ, α, β) is a feasible solution with positive value of the LP. 
�

This approach yields a practical and efficient algorithm for producing max-
imally violated normalized cuts if any such cut exists. In Section 5, we refer to
cuts produced in this way as LP cuts (LPC). Note that in [8] we also proved The-
orem 2 by constructing an efficient algorithm, but that algorithm is not practical
for computation.

3 Matching Inequalities

Let S, S′ be subsets of N with S ∩ S′ = ∅. The optimal colors for (S, S′) are
the colors x ∈ {0, 1}N that yield x(S, S′) = 0. The set of optimal colors for
(S, S′) is denoted by B(S, S′). Note that if (S, S′) is a partition of N , then there
is a unique optimal color which is the characteristic vector of S′. In general, if
|N \ (S ∪ S′)| = k, then the set of optimal colors for (S, S′) has 2k elements (it
is the set of vertices of a k-dimensional face of [0, 1]N ). Note that if x ∈ {0, 1}N

is a not an optimal color for (S, S′), then x(S, S′) ≥ 1.

Proposition 1. Let E′ ⊆ E(G), and let F ⊆ E′ be a maximum matching in the
graph induced by E′. Let (S, S′) be a partition of N . The matching inequality
(induced by E′)

(MI) xE′(S, S′) ≥ |E′ \ F |
is valid for Qn(G).

Proof. At most |F | edges in E′ can have the optimal color for (S, S′), and every
other edge has a color contributing at least one to the left-hand side. 
�
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When E′ is an odd cycle, the matching inequalities reduce to the so-called
“type-I odd-cycle inequalities” (see [6] which introduced these latter inequalities
and [7] which provided an efficient separation algorithm for them).

A MI is dominated if it is implied by MI on 2-connected non-bipartite sub-
graphs and by GBI. The following proposition shows that it is enough to gener-
ate the non-dominated MI, provided that the GBI generated by the separation
heuristic for GBI of Section 1 are all satisfied.

Proposition 2. Let G′ be the graph induced by E′. The MI induced by E′ is
dominated in the following cases:

(i) G′ is not connected;
(ii) G′ has a vertex v saturated by every maximum matching in G′;
(iii) G′ has a cut vertex v;
(iv) G′ is bipartite.

Proof. (i) The MI is implied by those induced by the components of G′.
(ii) The MI is implied by the MI on G′ − v and the GBI for δ(v) ∩ E′.
(iii) Let G1 and G2 be a partition of E′ sharing only vertex v. By (ii), we

can assume that there exists a maximum matching F of G with v not saturated
by F . Then E(F )∩E(Gi) is a maximum matching in Gi for i = 1, 2. The MI is
thus implied by the MI on G1 and G2.

(iv) By the König’s theorem, the cardinality of a minimum vertex cover of G′

is equal to the cardinality k of a maximum matching F of G′. It is then possible
to partition the edges of G′ into k stars, such that star i has ki edges. If the GBI
inequalities for the stars are all satisfied, then summing them up yields:

xE(G′)(S, S′) ≥
k∑

i=1

(ki − 1) = |E(G′)| − k = |E(G′) \ M |,

and the MI induced by E′ is also satisfied. 
�

Recall that a block of a graph is a maximal 2-connected subgraph. Proposition
2 is the justification of the following:

Separation Heuristic for MI

(0) Let X̄ be a point in [0, 1]E(G)×N .
(1) For each partition (S, S′) of N :

(1.a) Compute the edges T for which (S, S′) is an active partition.
(1.b) For each non-bipartite block of the graph G′ induced by T :

(1.b.i) Compute a maximum matching F (G′) in G′.
(1.b.ii) Check if xE(G′)(S, S′) ≥ |E(G′) \ F (G′)| is a violated matching in-

equality.
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Complexity: Since each edge of G has at most two active partitions, all com-
putations of active partitions take O(nm) and all computations of non-bipartite
blocks take O(m). For one partition (S, S′), computing the maximum matchings
takes O(

√|V (G)| m) [10]. The overall complexity is thus O(2n
√|V (G)| m).

Note that ignoring edges e for which (S, S′) is not an active partition does
not prevent generation of violated matching inequalities: Suppose that e ap-
pears in a violated matching inequality x̄E(G′)(S, S′) < |E(G′) \ F (G′)|. Then
x̄E(G′)−e(S, S′) < |(E(G′)− e) \F (G′ − e)| is also violated, as the left-hand side
has been reduced by more than 1, while the right-hand side has been reduced
by at most 1. The algorithm is nevertheless not exact, as we should generate
MI for all 2-connected subgraphs, not only for blocks. In practice, the blocks
are very sparse and rarely contain more than a few odd cycles. Enumerating the
2-connected non-bipartite subgraphs might thus be feasible.

4 Switched Walk Inequalities

Let S, S′ ⊆ N such that S ∩ S′ = ∅ and |S ∪ S′| ≥ n − 1. Then (S, S′) is a
subpartition of N .

Let (S1, S
′
1) be a subpartition of N . Let (S2, S

′
2) be a subpartition obtained

from (S1, S
′
1) by performing the following two steps:

(1) adding the only element not in S1 ∪S′
1 (if any) either to S1 or to S′

1; call the
resulting partition (P2, P

′
2).

(2) removing at most one element from P2 or at most one element from P ′
2.

Then (S2, S
′
2) is a switch of (S1, S

′
1). Observe that |B(S1, S

′
1)| ≤ 2, that |B(S2, S

′
2)| ≤

2 and that |B(S1, S
′
1) ∩ B(S2, S

′
2)| ≥ 1.

Let (f1, . . . , fr) be the ordered set of edges of a walk in G with r ≥ 2. For
i = 1, . . . , r, let (Si, S

′
i) be subpartitions of N such that

(a) |Si ∪ S′
i| =

{
n, if i = 1, or i = r;
n − 1, otherwise.

(b) For i = 1, . . . , r − 1, (Si+1, S
′
i+1) is a switch of (Si, S

′
i).

(c) For all j ∈ St (resp., j ∈ S′
t), if t′ is maximum such that for all t+1 ≤ i ≤ t′

we have N − (Si ∪ S′
i) = {j}, then j ∈ St′+1 (resp., j ∈ S′

t′+1) if and only if
t′ − t is even.

Then the walk and the set of subpartitions (S1, S
′
1), . . . , (Sr, S

′
r) form a switched

walk.
Given a switched walk, the inequality

(SWI)
r∑

i=1

xfi(Si, S
′
i) ≥ 1

is a switched walk inequality.
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Example 1. Let N := {0, 1, 2}. Consider the path of edges (f1, f2, f3, f4, f5). As-
sociated with the sequence of edges of the path is the switched walk: ({0}, {1, 2}),
({0}, {2}), ({1}, {2}), ({1}, {0}), ({1, 2}, {0}). The given switched walk gives rise
to the SWI:

+x0
1 +(1 − x1

1) +(1 − x2
1)

+x0
2 +(1 − x2

2)
+x1

3 +(1 − x2
3)

+(1 − x0
4) +x1

4

+(1 − x0
5) +x1

5 +x2
5 ≥ 1 .

The only possibility for a 0/1 solution to violate this is to have each edge colored
with one of its optimal colors. This implies that the color of f1 must be 011.
Then, of the two optimal colors for f2, the only one that is different from the
color of f1 is 001. Similarly, f3 must get color 101 and f4 gets 100. But this is
not different from the only optimal color for f5.

Next, we state a result indicating the importance of the switched walk in-
equalities.

Theorem 3. If P is a path and n ≥ 2, then Qn(P ) is described by the SWI and
the simple bound inequalities 0 ≤ X ≤ 1.

Theorem 3 was stated without proof in [8]. The proof, which we present here,
uses the following five lemmas.

Lemma 3. If a 0,1 polytope Q in R
q is full dimensional and 〈γ, x〉 ≥ β describes

one of its facets, then, for each i = 1, . . . , q, there exists a 0,1 point x̄ ∈ Q with
x̄i = 1 (resp., x̄i = 0) satisfying 〈γ, x̄〉 = β.

Proof. If this is not the case, then all points in Q satisfy xi = 0 (resp., xi = 1),
a contradiction with Q full dimensional. 
�

Lemma 4. If a polytope Q in R
q is full dimensional and 〈γ, x〉 ≥ β describes

one of its facets F , then the orthogonal projection of F onto any subset S of the
variables has dimension |S| or |S| − 1.

Proof. If this is not the case, then all points in F satisfy at least two linearly
independent inequalities. One of these inequalities is not a positive multiple of
〈γ, x〉 ≥ β , a contradiction. 
�

Lemma 5. If n ≥ 2, then Qn(P ) is full dimensional.

Proof. Let f1, . . . , fr be the ordered edges of path P . Set the color of fi to
0 ∈ R

N for all even i and to color 1 ∈ R
N for all odd i. Flipping any single bit

of this valid coloring gives another valid coloring, yielding 1 + n|E(P )| affinely-
independent valid colorings of P . 
�

For a matrix Φ, define Φ− as the sum of its negative entries.
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Lemma 6. Let f1, . . . , fr be the ordered edges of path P . Let φi be the vector
of coefficients associated with fi in a facet-describing inequality 〈Φ,X〉 ≥ β.
Suppose that φi has at least one zero, for all i = 2, . . . , r. Then β = Φ−, and each
edge receives one of its optimal colors in any coloring X̄ for which 〈Φ, X̄〉 = β.

Proof. Each edge, except possibly f1 has at least two optimal colors. Hence,
starting by coloring f1 with one of its optimal colors, there exists a valid coloring
such that each edge is colored with one of its optimal colors. 
�
Lemma 7. Let n ≥ 2, and let 〈Φ,X〉 ≥ β be a facet-describing inequality for
Qn(P ). Assume that 〈Φ,X〉 ≥ β is not a positive multiple of a simple-bound
inequality xj

i ≥ 0 or −xj
i ≥ −1. Let e1 (resp., ek) be the first (resp., last) edge of

P for which φi is not the zero vector. If min{|φj
i | | φj

i �= 0} = 1, then all nonzero
components of Φ are ±1, φ1 and φk each have no 0, and φi has exactly one 0
for all i = 2, . . . , k − 1. Moreover, any two consecutive edges ei and ei+1 share
at least one optimal color, and β = 1 + Φ−.

Proof. Note that k = 1 is impossible, as there exists a valid coloring of P with
edge e1 receiving an arbitrary color. If k = 2, all colorings with e1 and e2 receiving
distinct colors satisfy the inequality. Then the inequality must be a GBI for the
pair e1, e2, as the GBI give the convex hull of such colorings (see [6]). The
result thus holds. Otherwise, let et ∈ {e2, . . . , ek−1}, P1 = {e1, . . . , et−1}, and
P2 = {et+1, . . . , ek}. We call et−1 (resp., et+1) the shore of P1 (resp., P2).

In this proof, the value of a coloring of any subset S of edges is always
computed with respect to the cost function obtained as the restriction of Φ to
S. Also, X̄ will always be an integral matrix in Qn(P ) satisfying 〈Φ, X̄〉 = β.

For i = 1, 2, let ai be the optimal value of a coloring of Pi, and let bi be the
second best value of such a coloring (with ai < bi). Let Ai (resp., Bi) be the set
of colors for the shore of Pi in all X̄ achieving value ai (resp., bi). For edge et,
let a, b and c be the three best values for a coloring, with a < b < c and with
corresponding color sets A, B and C.

As Φ induces a facet of Qn(P ), there exists a coloring X̄ that does not induce
an optimal coloring of P1. Thus every optimal colorings of P1 give to its shore
the color that et has in X̄. A similar remark holds for P2. It follows that |Ai| = 1
for i = 1, 2 and that the color of the shore in any X̄ is in Ai ∪ Bi for i = 1, 2.
Taking t = 2 (resp., t = k− 1), this implies that φ1 (resp., φk) has no 0. Lemma
3 shows that all entries in φ1 (resp., φk) must have the same absolute value.

Similarly, for some X̄, the color of et in X̄ does not have value a. This implies
that |A| < 3 and thus that φt has at most one 0. Also, we have that the color of
et in X̄ is in A ∪ B if |A| + |B| ≥ 3 and in A ∪ B ∪ C if |A| = |B| = 1.

We say that X̄ induces a pattern (H1,H,H2) on (et−1, et, et+1) if the color
of et−1 (resp., et, et+1) in X̄ is in H1 (resp., H,H2). Lemmas 4 and 5 imply that
the projection on (et−1, et, et+1) of all the points X̄ should span an affine space
of dimension at least 3n−1, i.e. there should be at least 3n affinely independent
such projections.

Case I: |A| = 1. This implies that φt has no 0 entries. It follows that |B| ≤ n
as any color obtained from A by flipping more than one entry has a value worse

10



than any color obtained by flipping a single entry in A. Moreover, the same
reasoning implies that if |B| = 1 then |C| ≤ n − 1.

Case Ia: A1 �= A and A2 �= A. Then any X̄ induces on (et−1, et, et+1) the
pattern (A1, A,A2), a contradiction with the fact that there should be 3n affinely
independent such projections.

Case Ib: A2 = A (the case A1 = A is symmetrical).
Case Ib1: A1 = A. Then any X̄ induces on (et−1, et, et+1) one of the pattern

(B1, A,B2), (A1, B,A2), (A1, C,A2). Since any solution with the last pattern
has a value strictly worse than a solution with the second pattern, only the first
two patterns may occur. Moreover, we have b − a = (b1 − a1) + (b2 − a2). let
γ = b1−a1

b−a . Observe that each X̄ satisfies the inequality obtained on P1 ∪ et

using the restriction of Φ to P1 and using γ · φt for et with right hand side
β − b2 − (1 − γ)a = β − a2 − (1 − γ)b with equality, a contradiction.

Case Ib2: A1 ⊆ C. Then any X̄ induces on (et−1, et, et+1) one of the patterns
(A1, A,B2), (A1, B,A2) and (B1, C,A2). Note that solutions inducing the third
pattern are worse than solution with the second pattern, implying that no X̄
induce the third pattern. Then all X̄ optimally color P1, a contradiction.

Case Ib3: |B| = 1 and A1 = B. Then any X̄ induces on (et−1, et, et+1) one
of the patterns (A1, A,B2), (B1, B,A2) and (A1, C,A2). Note that at most n
points with the first (resp., second) pattern may be affinely independent, and at
most n − 1 points with the third pattern may be affinely independent. Thus, at
most 3n − 1 of the points are affinely independent, a contradiction.

Case Ib4: |B| > 1 and A1 ⊆ B. Then any optimal X̄ induces on (et−1, et, et+1)
one of the patterns (A1, A,B2), (B1, A1, A2) and (A1, B − A1, A2). Note that
solutions with the second pattern are worse than solution with the third pattern,
implying that no X̄ induces the second pattern. Then all X̄ optimally color P1,
a contradiction.

Case II: |A| = 2 = {U, V }. Then φt has exactly one 0, and only A and B
may appear in the projection of X̄ on et. Lemma 3 implies that |B| = 2(n− 1).

Case IIa : A1∩A = ∅ (or, symmetrically, A2∩A = ∅). Then any X̄ induces on
(et−1, et, et+1) one of the patterns (A1, U,A2 or B2), (A1, V, A2 or B2), (A1, B−
A1, A2 or B2) and (B1, A1, A2 or B2). One of the first two patterns occurs with
A2 on et+1 and it is better than the last two, yielding a contradiction, as P1 is
always optimally colored.

Case IIb: A1 = A2 = U . Then any X̄ induces on (et−1, et, et+1) one of
the patterns (B1, U,B2), (A1, V, A2) and (A1, B,A2). But the second pattern
is strictly better than the other two patterns. All the projections inducing the
second pattern generate an affine space of dimension 0, a contradiction.

Case IIc: A1 = U,A2 = V . Then any X̄ induces on (et−1, et, et+1) one of the
pattern (B1, U,A2), (A1, V,B2) and (A1, B,A2), each contributing for at most
n affinely independent projections. The first two patterns show that b1 − a1 =
b2 − a2 and the last two show that b2 − a2 = b − a. Lemma 3 shows that all
nonzero entries in φt must have the same absolute value.

Over all the above cases, only Case IIc may occur, so it holds for all t. Using
induction on t, we can then show that all entries in Φ must have the same

11



absolute value (±1 without loss of generality) using the fact that b1−a1 = b−a.
Lemma 6 and the pattern (A1, B,A2) yields β = Φ− + (b − a) = Φ− + 1. 
�
Proof (Theorem 3). The conditions spelled out for Φ and β in Case IIc of Lemma
7 force the inequality to be a SWI. This is clear for conditions (a) and (b)
of the definition of a SWI. To see that the inequality satisfies (c), let Pq be
the path consisting of e1, . . . , eq, for q = t, . . . , t′ + 1 with t′ maximum with
N − (Si ∪ S′

i) = {j} for all i = t + 1, . . . , t′. Let U and V be the two optimal
colors for et+1. By Case IIc of Lemma 7, all optimal colorings of Pt have et

with color U or V , say U . (Colors U and V only differ in bit j.) Then, for
s = 1, . . . , t′ − t, all optimal colorings of Pt+s have et+s with color V if s is odd
and U if s is even. Hence the color of et′ in an optimal coloring of Pt′ must
have color U if t′ − t is even and color V otherwise. Since that color must be
a color that is optimal for et′+1, we must have φj

t = φj
t′+1 if t′ − t is even and

φj
t = −φj

t′+1 if t′ − t is odd. 
�
Theorem 4. If n ≥ 2, the SWI are valid for Qn(G).

Proof. If k = 2, the SWI is a GBI and thus is valid. Consider a SWI with k ≥ 3
and let t = 2. Using notation similar to the proof of Lemma 7, Case IIc above
shows that a valid coloring of P violating the SWI must optimally color P1, P2

and et. But this is impossible, as A1 ∪ A2 = A. 
�
We separate the SWI by solving m shortest path problems on a directed

graph G′ with nonnegative node weights constructed as follows: A node of G′ is
identified by:

(a) an edge e ∈ G;
(b) a travel direction on e;
(c) a subpartition (S, S′) such that xe(S, S′) < 1;
(d) an indicator ind with value S or S′ with the meaning that the next time

j = N − (S ∪ S′) is in S ∪ S′, it must be in the set ind of that node.

The weight associated with the node is xe(S, S′). There is an arc from node
(e1 = (u1, v1), (S1, S

′
1), ind1) to node (e2 = (u2, v2), (S2, S

′
2), ind2) if and only if

the sum of their weights is less than 1, v1 = u2, (S2, S
′
2) is a switch of (S1, S

′
1)

and for j1 = N −(S1∪S′
1), j2 = N −(S2∪S′

2), either (I) j1 = j2 and ind1 �= ind2

or (II) j1 �= j2, j1 is in the set ind1 of the second node, and ind2 = S′
2 if and

only if j2 ∈ S1.
Observe that the number of nodes in G′ is at most 8(n + 1)m: For each edge

e ∈ G, there are 2 choices for (b), two choices for (d), n + 1 possibilities for the
choice of N − (S1 ∪ S′

1) and, by Lemma 2 at most two subpartitions for each of
these (n + 1) possibilities. The number of edges is bounded by 8n(n + 1)2m as
the degree of a node in G′ is bounded by n(n + 1).

Any directed path (with at least one edge) in G′ of weight strictly less than
1 starting and ending at a node of G′ whose subpartition is indeed a partition
yields a violated SWI. If a violated SWI exists, then one can be found by at most
m calls to a shortest-path algorithm. The overall complexity of the separation
algorithm is thus O(mn3 log(mn)).
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5 Computational Results

We report computational results for Branch-and-Cut (B&C) algorithms using
the GBI, LPC, MI, SWI and Gomory Cuts. The results that we present improve
upon the preliminary results first reported in [8]. The code is based on the open-
source codes BCP (Branch, Cut & Price) and CLP (an LP solver), which are
freely available at www.coin-or.org. It was run on a Dell Precision 650 (Intel
Xeon processor, 8KB level-1 cache). Test problems consist of

(a) nine 4-regular graphs g4 p on p nodes, for p = 20, 30, . . . , 100;
(b) three 8-regular graphs g8 p on p nodes, for p = 20, 30, . . . , 40;
(c) the Petersen graph (peter);
(d) two regular graphs on 14 and 18 vertices having overfull subgraphs (of5 14 7

and of7 18 9 5);
(e) an overfull graph wih 9 vertices (ofsub9) obtained as a subgraph of of7 18 9 5;
(f) graphs from [2] on 18 vertices and 33 edges (jgt18) and 30 vertices and 57

edges (jgt30).

Graphs in (a) and (b) are randomly generated and can be colored with 4 or
8 colors respectively. It is likely that most heuristics would be able to color them
optimally, but our B&C algorithms have no such heuristic, i.e. they will find a
feasible solution only if the solution of the LP is integer. The remaining graphs
are “Class 2” graphs, i.e. graphs G that can not be colored with ∆(G) colors.

A subgraph H of a graph G is an overfull subgraph if |V (H)| is odd, ∆(H) =
∆(G), and |E(H)| > ∆(H) · (|V (H)| − 1)/2. If G has an overfull subgraph, then
G is a Class 2 graph. Graphs in (d) were randomly generated and have overfull
subgraphs, but are not overfull themselves. The graph in (e) is a small non-
regular Class 2 graph.

To illustrate the benefits of and trade-offs between the different types of cuts,
we report results of three B&C algorithms. The separation algorithms for the
different types of cuts are: the separation heuristic for GBI of Section 1, the
exact LPC separation algorithm alluded to at the end of Section 2, the heuristic
separation for MI algorithm of Section 3 (except that blocks are not computed),
and the separation algorithm for SWI of Section 4. No more than six rounds of
cutting is done at each node, each type of cut being considered. The branching
is done as follows: At the beginning, the edges of the graph are ordered in
Breadth-First Search fashion, starting from a vertex of maximum degree. When
a branching decision is made, the algorithm chooses to branch on the first edge
for which one of the associated variables is fractional. The children are created
by assigning to the chosen edge all (still) feasible colors.

B&C 1 uses GBI, MI and Gomory Cuts. B&C 2 uses, in addition, LPC, and
B&C 3 uses all five types of cuts. Table 1 gives the number of nodes in the
enumeration tree. As expected, in general, the number of nodes is smaller when
more cuts are in use, but for some problems, there is a big drop between variant
1 and 2, i.e. the use of LPC seems to be important. Most of these problems have
relatively large degree, which is also expected, as GBI give a good approximation
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of the all-different polytope when the number of rows in X is small. On the other
hand, the use of SWI does not seems to help much on these problems.

Table 2 shows that for problems with low maximum degree, using SWI in-
creases the overall cpu time. This (and Table 3) illustrates the difficulties for
separating these inequalities efficiently. Even with the restricted use of one round
of SWI cuts at most, the separation algorithm returns a large number of violated
SWI cuts. A better understanding of these cuts might help generate “useful” ones
more efficiently. The separation times are very small for GBI, MI and Gomory
Cuts. The LPC, however take significant time (more than 50% of the total time
for the 4-regular graphs, about 25% of the total time for the 8-regular graphs and
15% for of7 18 9). The SWI separation is also time consuming, taking roughly
10-15% of the total time.
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Table 1. Number of nodes.

1 2 3

g4 20 11 13 7
g4 30 25 29 26
g4 40 40 36 39
g4 50 56 44 54
g4 60 190 70 70
g4 70 88 69 82
g4 80 89 86 74
g4 90 122 97 33

g4 100 178 111 108
g8 20 114 109 105
g8 30 216 178 170
g8 40 1511 225 226
peter 1 1 1

of5 14 7 31 30 28
of7 18 9 734 3535 3851

ofsub9 93223 63882 65363
jgt18 260 247 230
jgt30 42225 37480 37340

Table 2. cpu time in seconds.

1 2 3

g4 20 0.10 0.20 0.10
g4 30 0.30 0.50 1.00
g4 40 0.40 1.50 1.80
g4 50 0.60 2.00 3.60
g4 60 4.60 3.50 6.10
g4 70 1.80 4.80 9.80
g4 80 2.30 6.80 9.70
g4 90 4.10 12.70 17.30

g4 100 8.80 11.70 63.10
g8 20 2.50 10.90 14.20
g8 30 20.80 45.10 62.20
g8 40 136.80 120.20 166.00
peter 0.00 0.00 0.00

of5 14 7 0.70 1.10 1.30
of7 18 9 238.90 1365.80 2195.00

ofsub9 805.70 1283.20 1695.30
jgt18 6.30 9.30 9.60
jgt30 649.60 1333.20 1871.00

15



T
a
b
le

3
.
N

u
m

b
er

o
f
g
en

era
ted

cu
ts.

1
2

3
G

B
I

M
I

G
O

M
G

B
I

M
I

G
O

M
L
P

C
G

B
I

M
I

G
O

M
L
P

C
S
W

I

g
4

2
0

1
0
0

4
1
9
4

7
8

4
1
4
0

1
7

6
6

3
8
2

1
0

1
3
5

g
4

3
0

1
6
8

1
0

2
4
5

1
6
0

4
1
3
8

5
0

1
9
6

7
3
0
2

7
3

5
6
5

g
4

4
0

3
5
0

5
3
0
5

3
3
8

4
3
0
2

9
4

3
1
6

6
9
5

8
4

1
0
3
4

g
4

5
0

5
6
0

1
5

2
8
8

4
6
4

8
2
2
3

1
1
3

6
9
0

1
4

3
8

1
3
7

2
0
8
8

g
4

6
0

1
7
0
6

3
1

1
4
6
1

7
2
2

1
3

2
9
1

1
6
9

9
0
8

3
0

2
6
6

1
7
7

2
8
0
0

g
4

7
0

9
9
4

2
1

4
9
3

8
6
4

2
1

3
5
3

1
9
6

1
1
1
8

1
5

2
6
4

2
5
6

4
0
4
8

g
4

8
0

1
1
1
6

2
1

5
1
3

9
5
2

1
5

2
7
4

2
2
3

1
1
1
0

1
0

1
5
8

1
9
6

3
2
6
0

g
4

9
0

1
4
7
8

4
3

7
8
8

1
3
1
8

2
9

7
3
8

2
3
2

8
6
2

6
1
0
6

5
5

2
8
0
5

g
4

1
0
0

2
6
3
6

5
1

1
5
0
8

1
1
2
0

1
3

3
8
1

2
9
8

1
6
1
2

3
0

9
5

2
5
0

7
3
6
4

g
8

2
0

2
1
1
0

4
8

2
5
2

1
6
6
8

1
1

6
0

1
7
7
3

1
6
1
6

3
0

1
9

1
9
2
0

2
5
2
4

g
8

3
0

3
9
7
4

5
1

6
9
3

3
1
7
4

1
9

9
2

4
3
0
6

3
2
4
6

2
9

6
7

4
1
5
9

4
6
4
6

g
8

4
0

3
3
1
7
0

4
8
9

5
9
7
2

4
5
9
2

3
2

1
5
2

6
8
4
9

4
7
1
2

3
9

1
2
0

7
0
9
8

8
3
1
6

p
eter

0
2

1
6

0
2

1
6

8
0

2
1
6

8
0

of
5

1
4

7
7
0
4

4
2

5
2
6

6
2
8

3
6

2
9
4

2
6
7

5
6
4

1
9

2
8
7

2
7
5

6
0
9

of
7

1
8

9
2
3
4
0
6

2
1
4
2

3
4
5
3
6

6
9
2
2
4

4
7
8
8

9
0
2
9
5

5
6
2
3
5

8
2
0
3
4

5
5
7
1

1
0
6
1
8
9

6
3
8
9
3

1
5
1
0
3
1

of
su

b9
2
8
3
1
9
2

1
3
7
7
1

4
8
6
1
9
4

1
1
3
3
2
1

1
0
0
7
1

8
8
5
9
7

2
0
8
8
0
5

1
0
8
9
5
1

1
0
0
3
6

7
7
3
3
3

1
9
7
4
3
3

5
9
6
2
9
1

jg
t1

8
1
4
2
8

1
8
2

9
1
1
3

1
1
2
9

1
7
1

6
3
9
7

6
1
2

1
1
0
9

1
5
2

5
4
0
2

5
7
2

5
0
4
0

jg
t3

0
1
8
0
5
9
8

2
4
2
1
1

5
6
3
2
6
1

1
5
1
6
5
8

2
4
4
2
0

4
0
7
8
3
7

7
6
0
8
8

1
3
4
5
3
1

2
4
3
4
5

3
3
3
9
8
6

6
9
5
7
4

1
1
8
9
5
1
2

16



References

1. David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Appl.
Math., 65(1-3):21–46, 1996. First International Colloquium on Graphs and Opti-
mization (GOI), 1992 (Grimentz).

2. Amanda G. Chetwynd and Robin J. Wilson. The rise and fall of the critical graph
conjecture. J. Graph Theory, 7(2):153–157, 1983.

3. Don Coppersmith and Jon Lee. Parsimonious binary-encoding in integer program-
ming. IBM Research Report RC23838, 2003.
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