RC23326 (W0403-130) March 22, 2004
Computer Science

IBM Research Report

Semi-Automatic J2EE Transaction Configuration

Stephen J. Fink, Julian Dolby
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Logan Colby
IBM Rochester
Rochester, MN 55901

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

OOPSLA 2004 submission — please do not distribute

Semi-Automatic J2EE Transaction Configuration

Stephen Fink Julian Dolby

IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
{sjfink,dolby }@Qus.ibm.com

ABSTRACT

This paper describes tool support to help an EJB™ de-
veloper configure transactions for container-managed per-
sistence. We formulate aspects the transaction configura-
tion task as a dataflow problem, and apply inter-procedural
program analysis to suggest configuration settings. We also
discuss issues in the design and implementation of program
analysis for EJB applications.

Experimental results show that the analysis effectively iden-
tifies transactions and optimized configuration settings, val-
idating the proposed approach. The results suggest that a
transaction-scoped configuration model allows superior con-
figuration settings than the more common model of method-
based configuration. The experiments additionally evaluate
cost/precision trade-offs among various call graph construc-
tion algorithms as applied to this task.

1. INTRODUCTION

The Java 2 Enterprise Edition (J2EE™) programming model
provides a high level of abstraction for transaction-oriented
business applications. Enterprise Java Beans [21] offers one
of the most powerful J2EE features: container-managed per-
sistence (CMP). With CMP, the developer specifies a map-
ping between Java objects (entity beans) and a persistent
store, and the runtime system (EJB container) manages per-
sistence automatically. CMP substantially reduces coding
effort, as compared to hand-coding persistence with embed-
ded SQL[17] commands such those provided by the Java
Database Connectivity (JDBC™) API.

To preserve atomicity, consistency, isolation and durabil-
ity (ACID) properties, EJB programs depend on transac-
tion support. To integrate transactions with CMP, the EJB
specification includes support for declarative transaction at-
tributes; the deployment descriptor can specify a correspon-
dence between an EJB method and a transaction scope.
Based on these transaction attributes, the EJB container
establishes transactional contexts at appropriate times dur-

Logan Colby

IBM Rochester
Rochester, MN 55901

Icolby@us.ibm.com

ing program execution.

When managing CMP, the EJB container faces a variety
of implementation choices concerning database interaction.
The EJB specification remains silent on many database pol-
icy choices that can make or break performance and scalabil-
ity. For example, high-performance database management
systems allow the programmer to specify connection isola-
tion levels, caching protocols, and locking protocol choices
in order to maximize concurrency, avoid deadlock, and still
preserve desired ACID properties. Additionally, hand-coded
programs might exploit program invariants to avoid unnec-
essary database communication or to optimize certain SQL
queries. The EJB container cannot generally exploit these
invariants since it cannot infer use cases for the persistent
beans.

To address these limitations, J2EE application server ven-
dors such as IBM [16] and BEA [4] have introduced vendor-
specific transaction configuration options. With these op-
tions, the developer can fine-tune the container’s interaction
with the database and improve performance and scalability.

In order to set J2EE transaction configurations correctly,
one must carefully consider the EJB business logic, the se-
mantic impact of declarative deployment meta-data, and the
application’s ACID requirements. Even for small-scale ap-
plications, transaction configuration often proves an error-
prone process. For large-scale production applications, the
difficulties compound. Furthermore, EJB programming model
“roles” exacerbate the problem. Often, the “Assembler”
role player finds herself responsible for transaction config-
uration across multiple large software components, written
independently by various “Bean Providers”, and sometimes
provided without source code. Should the Assembler mis-
configure transactions, the deployed application may suffer
excessive serialization, deadlocks, unintended rollbacks, or
even incorrect output.

Further compounding the problem, developers have observed
that the EJB specification’s method-based declarative model
often precludes optimal transaction configuration. The EJB
specification associates transaction meta-data with a static
method declaration, and the meta-data governs behavior
each time the associated method executes. However, in
practice, an application often uses a particular method and
associated entities in different ways in different transactions.
Method-scoped transaction configuration cannot express dif-

ferent policies for a single method or entity in different con-
texts.

To address this limitation, IBM’s WebSphere™ Integration
Server provides a more powerful transaction configuration
facility based on “tasks”, or programmer-specified units of
work. With this functionality (called Application Profiles in
product documentation), the EJB Assembler can declara-
tively identify scoped units of work corresponding to trans-
actions, and configure transactions according to the task
scope. This functionality gives more freedom to optimize
transactions; however, with more freedom comes more com-
plexity, and a greater burden on the hapless EJB Assembler.

To address the difficulty, we have developed a tool to semi-
automatically configure transactions for J2EE applications
using CMP. The tool analyzes a J2EE application, reports
salient properties of its transactions and container-managed
entities, and suggests configuration settings based on the
analysis results. The tool requires human oversight to audit
the results, to account for potentially overly conservative
and/or unsound analysis results.

The main contributions of this paper are

e a formulation of aspects of the transaction configura-
tion problem as a dataflow framework, amenable to
well-understood inter-procedural analysis (IPA),

e a discussion of architectural and engineering issues for
building a production-quality, extensible analyzer that
incorporates J2EE semantics,

e an evaluation of a range of call graph construction al-
gorithms for this task, and

e an evaluation of the task-based configuration model,
as compared to the simpler and more familiar method-
based alternative.

Experimental results show that the analysis effectively iden-
tifies transaction boundaries and suggests significantly opti-

mized configurations based on read/write behavior for container-

managed fields. The results demonstrate that a transaction-
scoped configuration model, supported by WebSphere’s In-
tegration Server, allows superior configuration settings than
two less fine-grained alternatives. The experiments addi-
tionally evaluate cost/precision trade-offs among various call
graph construction algorithms as applied to this task. In
most cases, RTA [3] and 0-CFA [26] call graph construction
algorithms allow the same quality of configuration settings
as do several more precise CFA variants.

To our knowledge, this work describes the first IPA im-
plementation which incorporates EJB constructs such as

container-managed persistence, transaction demarcation, containe

managed relations, and message-driven execution. Addi-
tionally, the experiments present the first published eval-
uation of competing call-graph construction algorithms for
J2EE applications.

We believe the results validate the proposed approach as a
valuable contribution to a J2EE development process. A

version of the configuration tool will ship shortly with sev-
eral products in IBM’s WebSphere [16] family.

The remainder of this paper proceeds as follows. Section 2
reviews relevant background of the EJB programming model
and configuration models. Section 3 presents the goals and
high-level design of the transaction configuration tool. Sec-
tion 4 describes the program analysis, and Section 5 re-
views a number of issues that arise in implementation. Sec-
tion 6 presents an experimental evaluation, examining anal-
ysis trade-offs and evaluating different configuration models.
Section 7 reviews related work, and Section 8 concludes.

2. BACKGROUND

In this section, we review aspects of the J2EE programming
model which pertain to this paper, and show an example
program fragment to illustrate usage of container-managed
persistence (CMP).

CMP provides a high level of abstraction for managing per-
sistent objects in a distributed application. Under CMP, the
EJB developer!® specifies a mapping between distinguished
Java objects (entity beans) objects and a persistent store
such as a relational database. A component of the J2EE
application server runtime system called the EJB container
manages communication between the database and the ap-
plication space.

Figure 1 shows an example of EJB program fragment that
uses CMP to mediate between EJB business logic and a
relational database. The remainder of this section discusses
various aspects of the EJB programming model as illustrated
by this example.

2.1 Entity Beans

Figure la shows a simple relational database schema with
three tables: Person, Account and Person2Account. The
Person and Account tables are indexed by a primary key
called the id field, and each row holds two other data fields.
Additionally, each table’s schema includes a foreign key col-
umn (owners and accounts, respectively) which specifies
a relationship between rows in Account and Person. Since
one person can have more than one account, the relation
Person2Account maps from keys in the accounts field to
multiple Account ids. (A more realistic relationship that
allows joint accounts would needlessly complicate our ex-
ample.) The example table shows two accounts numbered 1
and 2, which belong to person 0.

In the EJB programming model, the developer defines ob-
jects called entity beans which correspond to data in the
persistent store. In the example, Figure 1b shows two en-
tity beans, PersonEnt and AccountEnt, which correspond
to rows in the Person and Account tables, respectively. For
gach entity bean, the Bean Developer provides a Home in-
terface and a Remote interface. The EJB program uses the
Home interface to find,create,and remove bean instances,
and the Remote interface to access entity bean state and in-

!Unless otherwise noted, we informally use the term “EJB
developer” to refer to the Bean Provider, Assembler, and/or
Deployer “role” of the EJB specification, according to which
role(s) makes sense in context.

OOPSLA 2004 submission — please do not distribute

field | id name

address | accounts

type | int String

String int

| | 0] Jane Doe | 1534 Front St |

Person Relation

field | id | interest | balance | owner
type | int float int int
1 .025 100000 0
2 .040 500000 0

Account Relation

field | owner | account
type int int
4 1
4 2

Person2Account Relation

a)

// Home interface for the Account entity bean

public interface AccountEntHome extends EJBHome {

// find AccountEnt with a certain primary key
AccountEnt findByPrimaryKey(int id);
}

// Remote interface for the Account entity bean
public interface AccountEnt extends EJBObject {

// access the balance field
int getBalance();
void setBalance(int b);

// access the interest field
float getInterest();
void setInterest(float i);

// get my owner from CMR
PersonEnt getOwner();

}

// Home interface for the Person entity bean

public interface PersonEntHome extends EJBHome {

// find PersonEnt by id
PersonEnt findByPrimaryKey(int id);
¥

// Remote interface for the Person entity bean
public interface PersonEnt extends EJBObject {

// access the name field
String getName();

// access the address field
String getAddress();

// access AccountEnts related

// to this Person via a

// container-managed relationship
Collection getAccounts();

b)

public interface InterestSesHome extends EJBHome {

}

InterestSes create();

public interface InterestSes extends EJBObject {

}

void payInterestAccount(int id);
void payInterestOwner(int id);
void getRate(int id);

class InterestSesEJB implements SessionBean {

}

private AccountEnt getAccount(int id) {
InitialContext ¢ = new InitialContext();
AccountEntHome H = (AccountEntHome) c.lookup("ejb:AccountHome");
return H.findByPrimaryKey(id);

}

// transactional attribute: REQUIRED
private void payInterestInternal(AccountEnt A) {
A.setBalance((1+A.getInterest())*A.getBalance());

// transactional attribute: REQUIRED
void payInterestAccount(int id) {
payInterestInternal(getAccount(id));

// transactional attribute: REQUIRES NEW
void payInterestOwner(int id) {
InitialContext ¢ = new InitialContext();
PersonEntHome H = (PersonEntHome) c.lookup("ejb:PersonHome");
PersonEnt P = H.findByPrimaryKey(id);
Collection accts = P.getAccounts();
for(Iterator i = accts.iterator(); i.hasNext())
payInterestInternal((AccountEnt)i.next());
}

// transactional attribute: SUPPORTS
float getRate(int id) {

return getAccount(id).getInterest();
}

)

void service(ServiceRequest req, ServiceResponse res) {

InitialContext ¢ = new InitialContext();
InterestSesHome H = (InterestSesHome) c.lookup("ejb:Interest");
InterestSes b = H.create();

b.payInterestAccount(account);
b.getRate(account);

UserTransaction T = (UserTransaction) c.lookup("MyTransaction");
T.begin();

b.payInterestOwner (owner) ;
b.payInterestAccount(account);

b.getRate(account);

T.commit();

d)

Figure 1: EJB code fragments illustrating container-managed persistence. a) RDBMS Tables b) Entity Beans
for Account and Person c) Session bean for handling interest d) Service method of client servlet

voke business logic.2 The Bean Developer would also spec-
ify in the deployment descriptor a mapping between fields
in entity beans and rows in the relational database. For
our example, the mapping is straightforward; however more
complex mappings are supported.

More concretely, Figure 1b shows the home interface for the
Account entity bean: AccountEntHome. The findByPrima-
ryKey method returns an instance of AccountEnt, set up
to represent the corresponding row in the persistent Ac-
count table. AccountEnt instances provide accessor meth-
ods to read and update the container-managed fields inter-
est and balance, which map to the corresponding fields
in the persistent row. At transaction boundaries, discussed
shortly, the EJB container ensures that reads and updates to
AccountEnt instances are kept consistent with the backing
database row.

The example also illustrates an EJB feature called a container-

managed relationship (CMR). In this case, the deployment
descriptor declares a one-to-many relationship between Per-
sons and Accounts, which represents our database schema.
The entity beans provide access to other beans through
CMR accessors; namely getOwner and getAccounts. The
EJB container ensures that relationships between entity beans
translate into relationships between database rows expressed
by foreign keys.

In addition to entity beans, the J2EE programming model
also provides session beans and message-driven bean ab-
stractions. These beans do not use CMP, but can utilize
other EJB container services including transaction support.

2.2 Transaction Support
The J2EE programming model offers two ways to express

transaction boundaries: container-managed transactions (CMTs)

and bean-managed transactions (BMTs).

To define CMT boundaries, the EJB developer inserts declar-
ative transaction attributes in the EJB deployment descrip-
tor. The EJB Specification [21] defines six possible trans-
action attributes which control CMT demarcation, with the
following informal semantics:

REQUIRES NEW Execute the callee in a new CMT. If
the caller has an active transaction, suspend it until
the call returns.

REQUIRED If the caller has an active transaction, the
callee inherits the transaction context. Otherwise, ex-
ecute the callee in a new CMT.

MANDATORY If the caller has an active transaction,
the callee inherits the transaction context. Otherwise,
raise an error.

NEVER If the caller does not have an active transaction,
the callee executes without a transactional context.
Otherwise, raise an error.

2For expository purposes we have elided some necessary
methods in the example code fragments, and avoid discus-
sion of the parallel Local and LocalHome interfaces.

SUPPORTS If the caller has an active transaction, the
callee inherits the transaction context. Otherwise, the
callee executes with no transactional context.

NOT SUPPORTED If the caller has an active transac-
tion, suspend it until the call returns. The callee exe-
cutes with no transactional context.

In contrast to these declarations, BMTs arise according to
how the program manipulates first-class UserTransaction
objects. Typically, the code acquires a handle to a
UserTransaction object via a naming service, and initiates
a BMT by invoking the begin() method on the object. The
BMT typically ends with a call to commit() or rollback().

Figure 1c shows a session bean called InterestSesEJB that
manages interest payments to bank accounts. The deploy-
ment descriptor associates transaction attributes with meth-
ods of the bean, as noted in the figure.

The session bean enlists and interacts with entity beans to
perform its business logic functions. Consider the method
payInterestInternal, which updates an account’s balance by
paying interest to it. The Bean Developer has declared
this method’s transactional attribute REQUIRED, enforc-
ing the desired ACID properties for this update. With the
REQUIRED attribute, the container will execute payInter-
estInternal as part of a calling transaction. If none exists,
the container will create a new transactional context for the
scope of the method.

Similarly, the payInterestAccount method looks up an ac-
count by its primary key, and pays interest. This method
also REQUIRESs a transaction. Note that this method in-
vokes a helper method getAccount which acquires a handle
to the desired AccountEnt instance, invoking the necessary
functions on a naming service and the Account home inter-
face. The call to findByPrimaryKey is said to enlist the
AccountEnt instance for the duration of a transaction. The
EJB container keeps track of enlisted entities, and performs
persistence management on enlisted entities when the gov-
erning transaction commits.

The payInterestOwner method employs the container-managed
relationship. This method finds a Person, and then pays
interest for each account the person owns. The Bean Devel-
oper intends for the set of interest payments to appear as a
single atomic operation, and so declares a REQUIRES NEW

transactional attribute for payInterestOwner. REQUIRES NEW

ensures the desired atomicity, and also forces the container
to attempt to commit the operation immediately when this
method returns.

In a common J2EE development pattern, other J2EE con-
structs such as servlets — Java classes invoked by Web servers
— act as clients of the EJB application layer. Figure 1d
illustrates the service method of one servlet. It first pays in-
terest to some account; based on the REQUIRED attribute
of payInterestAccount, the container will create a transac-
tion for the duration of the this call. Then service executes
getRate, which does not force a transaction to occur.

Next, the servlet decides to manage transactions itself, by

OOPSLA 2004 submission — please do not distribute

initiating a BMT. The servlet acquires a UserTransaction
object from a transaction manager, and calls begin to start a

new transactional context. Then, service calls payInterestOwner;

since this method is declared REQUIRES_NEW, the con-
tainer suspends the BMT and creates a new CMT for the
duration of the call.> The servlet’s next two calls, to pay-
InterestAccount and getRate, both execute in the context of
its BMT.

2.3 Transaction Configuration

Application server vendors such as IBM [16] and BEA [4]
have introduced vendor-specific transaction configuration op-
tions. These additional options allow the EJB developer to
exercise more control over the container’s interaction with
the database. For example, with IBM’s WebSphere Ap-
plication Server supports configuration options for a trans-
action’s SQL isolation level, concurrency control protocol,
and pre-fetching directives (“read-ahead”) which enable the
container to combine distinct database queries. BEA We-
bLogic supports similar extensions. These vendor-specific
extensions often prove indispensable for high performance
on customer applications and some industry benchmarks.

When using CMP, the EJB container enlists an entity bean
for the duration of a J2EE transaction. The first time dur-
ing a transaction that the business logic accesses a partic-
ular entity bean instance, the container interacts with the
database? to fetch the entity’s current state, possibly ac-
quiring database locks in the process. When the transaction
commits, the container negotiates with the database again
to ensure that any updates reflect to the persistent store,
and to release locks.

Vendors commonly support method-specific declarative con-
figuration options. Under this model, meta-data associates
configuration options with a particular EJB method. When
the container enlists a entity via a call to said method,
it obeys the associated transaction configuration. For ex-
ample, IBM and BEA both support method-specific “read-
only” vs. “for-update” configurations. For some concur-
rency control implementations, the container can exploit
the “read-only” configuration to avoid acquiring database
write locks and avoid unnecessary update operations when
a transaction commits. Thus, “read-only” configuration can
increase concurrency and reduce overhead. A transaction
that misbehaves by modifying a “read-only” enlistee may
suffer a rollback or a costly lock escalation.

As a further optimization, BEA WebLogic supports a “par-
tial reads” configuration for entity enlistments. If a partic-
ular transaction will not read particular fields of an entity
bean, then the container can avoid fetching those fields from
the database, reducing database workload and container
overhead. This can substantially improve performance, and
BEA exploits this feature in its SPECjAppServer submis-
sions [27].

Our example application can benefit from these optimiza-
tions. Consider the enlistment of the Person entity by find-

3Note that EJBs do not support nested transactions.

“*For this discussion, we assume the container is not config-
ured to exploit aggressive bean caching options.

ByPrimaryKey in the payInterestOwner method in Figure 1c.
This business logic only reads state of this Person instance,
and does not read the Person’s name and address fields.
So, this particular enlistment could be configured for both
read-only and a partial-read.

In many cases, a single statement may enlist entities on be-
half of different calling contexts which use the enlisted entity
in different ways. For example, consider the enlistment of
an Account by findByPrimaryKey in the getAccount method.
When called from getRate, the Account instance is read-only
and only reads the interest field; however, when used from
payInterestAccount, business logic reads and writes balance
in addition to reading interest. So, we cannot effectively
optimize the enlistment by associating method-specific con-
figuration meta-data with the getAccount method. Instead,
we need a more fine-grained configuration model.

To address this problem, WebSphere Integration Server [16]
supports more flexible transaction configuration with a fea-
ture called Application Profiles. With this feature, the as-
sembler can declaratively specify a task boundary, which cor-
responds to either a declarative or programmatic transaction
boundary. When the container enters a new transaction
scope, it can dynamically install a new transaction config-
uration for a set of EJB methods. For the scope of the
transaction, the container obeys this “application profile”
to control database interactions. The application profile can
change with each transaction. So, we can configure different
profiles for getRate (read-only and partial read of interest)
and paylnterestAccount (no optimizations possible).

3. TOOL ARCHITECTURE

‘We have developed tool support for semi-automatic config-
uration of transaction attributes for CMP EJBs. The tool
enhances a J2EE integrated development environment such
as WebSphere Studio Application Developer [16]. Figure 2
shows the tool architecture.

The tool analyzes the J2EE application and produces a re-
port summarizing how the application uses transactions and
how each transaction uses entity beans. As shown in the fig-
ure, the analysis takes input from four sources:

e Business Logic: the developer’s Java code,

e Data Source Information: configuration data re-
garding the persistent store (relational database),

e Deployment Descriptor: XML files holding declar-
ative specifications, and

e Application Use Cases: input parameters specify-
ing other runtime configuration meta-data.

The tool analyzes these artifacts and produces a report sum-
marizing a set of task identifiers identified in the application.
As discussed in the previous section, we associate a task with
each J2EE transaction boundary; a task identifier serves as a
static name for a set of tasks that might arise at runtime. In
our current implementation, each task identifier corresponds
to a program point at which a transaction may begin.

Analysis
Engine

Application
Use Cases

Data Source
Information

.
Deployment

Descriptor

EJB
Container

Application
Server
Admin

Tools

Figure 2: Block architecture of the semi-automatic configuration tool.

The report lists, for each task, the set of entity beans that
the task might enlist during its execution. For each entity
bean configured with CMP, the tools reports whether the
task may create, remove, read, or update the bean. If read
or updated, the tool reports which fields may be read or
updated.

The IDE presents the report in a GUI format for perusal by
the developer. When prompted, the tool will suggest trans-
action configuration attributes based on the report. The
particular configuration attributes suggested depend on the
configuration model supported by the application server.

In the remainder of this paper, we consider three possible
configuration models for CMP configuration. Each model
supports transactions configurations which apply to CMP
entities under a particular scope. We consider the following
three definitions of the scope:

Bean scope For a bean B, bean scope < B > denotes all
uses of B in the application.

Method scope For a bean B and an EJB method m, we
define the method scope < B, m > to be all uses of B
which occur when a transaction enlists B by invoking
method m.

Transaction scope For a bean B and a task T, we define
the transaction scope < B,T > to be all uses of B in
task T'.

These three scope definitions represent three possible de-
signs for specifying transaction configurations. With bean-

scoped, all enlistments of a particular entity share the same
transaction configuration. With method-scoped, all enlist-
ments of a particular entity via a particular method share
the same configuration. With transaction-scoped, all en-
listments of a particular entity in a particular transaction
share the same configuration. Thus, the three options rep-
resent progressively more fine-grained configuration mod-
els. Method-scoped corresponds to the transaction attribute
model of the EJB Specification [21], and transaction-scoped
corresponds to the WebSphere Application Profile feature [16].
‘We include the Bean scope as a third, even simpler alterna-
tive.

For the remainder of this paper, we focus on two aspects
of transaction configuration: read-only configuration and
partial-read configuration for enlisted entity beans. The tool
will suggest a transaction configuration that will maximize
performance while conservatively respecting potential pro-
gram behavior.

More specifically, for read-only configuration: Given a set
of scopes S, the tool aims to determine the maximal subset
S’ € S such that each s € S’ does not update any persistent
bean state.

For partial-read configuration: for each s € S we specify a
set of container-managed fields F, such that s contains no
reads of any f € Fs. For each s € S, the goal is to maximize
the set F,, which will in turn minimize the communication
with the database.

The current implementation provides semi-automatic con-
figuration support; the tool suggests transaction configura-

OOPSLA 2004 submission — please do not distribute

tions and presents an analysis report to justify its recommen-
dations; however, a human may choose to accept, reject, or
modify the configuration. With the current analysis tech-
nology, we believe human oversight is required to safeguard
against misconfiguration due to analysis limitations.

For example, program analysis results may be overly conser-
vative; the analysis may not incorporate enough precision to
recommend the optimal configuration.

Alternatively, the analysis may not be sound; it may rely on
unsafe assumptions about program behavior. While sound
analysis is preferable where possible, J2EE codes use many
dynamic language features that cannot be completely an-
alyzed statically. Instead, the implementation sometimes
makes unsafe assumptions in order to produce useful reports
despite analysis limitations. In Section 5, we discuss some
unsafe assumptions regarding analysis of reflection and re-
lated services. The current implementation also relies on
other unsafe assumptions such as having the whole program
available, adherence to contracts in the J2EE specification,
and no use of user-defined native code. The tool reports un-
safe assumptions made to the user, for human consideration
when evaluating configuration suggestions.

4. ANALYSIS
4.1 Overview

We define a program analysis to suggest the transactional
configuration. The algorithm has three steps:

1. Construct a call graph,

2. Identify transactions in the program,

3. Traverse the program representation to determine how
each transaction uses each entity.

The literature presents many algorithms for call graph con-
struction in object-oriented languages. See [11] for an in-
depth review. Section 5 discusses some issues particular to
analyzing EJB applications.

The following sections describe our transaction analysis, which

takes the call graph as input. Each node in the call graph
represents some method in program, analyzed in some con-
text. Thus, the graph may have many nodes representing
a particular method, if the graph supports many contexts
per method. Edges in the call graph represent feasible calls
between nodes.

4.2 Transaction Analysis—Definition

We model each J2EE transaction as a side effect of a method
dispatch, and name each distinct transaction as an edge e
in the call graph.

First consider CMTs. Each CMT begins when the program
calls a method with a REQUIRED or REQUIRES NEW
transaction attribute. We name a container-managed trans-
action as an edge e = (m,n), where m and n are nodes in
the call graph, and n represents a method marked with a
REQUIRED or REQUIRES NEW attribute.

Each bean-managed transaction begins during a call to User-
Transaction.begin(). We model begin() as a method with an
empty body, whose invocation begins a transaction. So, we
name a bean-managed transaction as e = (m,n), where n is
a node corresponding to UserTransaction.begin().

The goal of transaction analysis is twofold:

1. determine the set of transactions; i.e., determine the
set of edges in the call graph whose invocation gives
rise to a transaction, and

2. label each basic block in the (inter-procedural) control-
flow graph with the set of transactions which may be
in scope when the block executes.

The problem maps directly to an instance of a monotone,
distributive dataflow framework. Let CG be the call graph,
and let G be the inter-procedural flow graph derived from
CG, in the style of Sharir and Pneuli [25]. That is, G consists
of the union of the individual control flow graphs, one for
each node in CG. Additionally, for each edge in the call
graph, G contains a call edge and a return edge. Figure 4
shows part of the inter-procedural flow graph corresponding
to the sample code in Figure 3.

Following standard practice, we define the dataflow instance
by associating a flow function with each edge in the inter-
procedural flow graph. Figure 5 shows the flow function
definitions that describe how transactions arise. At each
program point, we define C to be the set of CMTs in scope
and B to be the set of BMTs in scope. We define a distin-
guished BMT called E to represent the empty transaction
context. The meet operator is set union: for a basic block X,
the transactions in scope at the entry to X, or < Cx, Bx >,
is the union of all transactions that flow into X. In more
detail, the flow functions along edges work as follows:

call edges The flow function for call edges follows directly
from the J2EE definition of transactions. Both CMTs
and BMTs flow from callers to callees, modulo CMT
declaration.

e For NEVER and NOT SUPPORTED, the method
is defined to execute without any transaction, so
the flow function removes all CMTs and BMTs.

e The entry to main has the empty transaction by
definition.

¢ REQUIRES NEW always executes in a new CMT,
and so all other CMTs and all BMTs are sus-
pended.

e REQUIRED methods, which must always exe-
cute in some transaction, have two cases: if it
must always be called from within a transaction,
the call changes nothing. If it may be called with
the empty BMT, then the call removes the empty
BMT and adds a new CMT.

e The UserTransaction.begin call starts anew BMT,
suspending all CMTs and all other BMTs.

e Other calls change nothing.

void main() {
requiresNew() ;
UserTransaction t = foo();
t.commit();

}

// transactional attribute: REQUIRES NEW

void requiresNew() {
required() ;

// transactional attribute: REQUIRED
void required() {

notSupported() ;
}

// transactional attribute: NOT SUPPORTED
void notSupported() {

}

UserTransaction foo() {
UserTransaction t = lookup("myTransaction");
t.begin();
return t;

}

Figure 3: Example pseudo-code for transaction analysis.

}
mil ENTER main
f1] ENTERfoo N M2 | CALL requiresNew | _ _ _
{ h i
f2 cALL lookup R RETURN FROM
. m3 K
N requiresNew N
1 . "
f3 RETURN FROM h
lookup m4 CALL foo
_ ,f4 CALL begin
-
e2 *
1
RETURN FROM i X
! g begin L 7 M6 | CALL required -~
1 L
EXIT foo ’
cl _ _
ENTER | -~ FTIS CALL commit
UserTransaction.commit
2§ mg' RETURN FROM

EXIT P

commit

UserTransaction.commit|

!

ml10

EXIT main

ENTER
requiresNew

CALL required |~

- =

nl

el

n2

N n3 RETURN FROM \ r3 RETURN FROM

N X 3 \
N required .~ _ ! notSupported \ \
N AR \ I
N // T~ r \ 1
N i /

EXIT requiresNew / EXIT required \‘ /

n4| / - L

EXIT
notSupported

Figure 4: Inter-procedural flow graph corresponding to Figure 3.

OOPSLA 2004 submission — please do not distribute

For a call edge e to a node N,

f(<C,B>)=

(<e{E}> if N is NOT SUPPORTED
<e{E}> if N is NEVER
<e{E}> if N is entry to main
< {e},e> if N is REQUIRES NEW

<CU{e},B—{E}> if Nis REQUIRED and E € B

<C,B> if N is REQUIRED and E ¢ B
<e{e} > if NV is UserTransaction.begin
\ <C,B> otherwise

For a return edge e from a node N,

<e¢{E} > if N is UserTransaction.commit
<e¢{E} > if N is UserTransaction.rollback
<e B> otherwise

f(<C,B>)=

For an intra-procedural call-to-return edge e, spanning a call to node IN:

< C,B > if N has a container-managed transaction declaration
< C,e> otherwise

f(<C,B >):{

For all other intra-procedural edges,

f«C,B>)=<C,B>

Figure 5: Flow functions for transaction analysis.

Basic Block Dataflow Function at Entry to Basic Block Final Solution
ml <e&{E}> <e¢{E}>
m2 < Cmi,Bm1 > < €, {E} >
m3 < Cm2,Bm2 > U< €,Bpg > <e{E} >
md < Cpm3, Bm3 > <e&{E}>
m5 < Cma,€ > U <€ Bpg > < e {e2} >
mé < Cms, Bms > < e {e2} >
m7 < Cmé, Bme > U < €,Bpg > < e {e2} >
m8 < Cm7, Bm7 > < e {e2} >
m9 < Cmsg,e>U< ¢ {E} > <e{E}>
m10 < Cm9, Bmo > <e&{E}>
nl < {el},e> < {el},e>
n2 < Cp1,Bp1 > < {el},e >
n3 < Cp2,Bpa > U< € Brg > < {el},e >
n4 < Cp3, Bps > < {el},e >
rl < CpaU{ed or €},Bpy —{E} > U< CpreU{e3 or €},Bns — {E} > | < {el},{e2} >
2 < Cp1,Br1 > < {el},{e2} >
r3 < Cro,Bro > U < €, Bgg > < {el},{e2} >
T4 < Cr3,Br3 > < {el},{e2} >
sl <e&{E}> <6{E}>
s2 <CslyBs1 > <55{E}>
s3 <Cs2;B.52> <€a{E}>
fl <Cm4me4> <55{E}>
f2 <Cf1,Bf1> < e{E}>
13 <Cf2zBf2> <55{E}>
fa <Cf3,Bf3> < e{E}>
f5 < Cf4,6>U< € By > < e {e2} >
16 < Cfs, Bfs > <€ {e2} >
b1 < e {e2} > < e {e2} >
b2 < Cp1, Bp1 > <€ {e2} >
cl < Cmg, Bmg > <€ {e2} >
c2 < Ce1, Be1 > < e {e2} >

Table 1: The flow functions of Figure 5 as applied to the flow graph of Figure 4.

return edges Return edges denote how transactions flow
from callees to callers: CMTs do not and BMTs nor-
mally do. Thus, for most returns, all CMTs are re-
moved and BMTs left. The commit and rollback
operations end the current BMT, so they return the
empty BMT.

call-to-return edges Call-to-return edges denote how trans-

actions flow over calls. CMTs cannot be suspended or
ended by a callee so they are always passed across call
sites. A callee with CMT attributes will restore any
current transaction, including BMTs, when it returns,
so such callees pass all current transaction across the
call. Other callees can potentially end a BMT, so it
must flow through the callee and back. Hence, such
callees do not pass BMTs across the call.

other edges Other edges are those not involved in calls in
any way. Since all transaction operations are modeled
as calls, such edges can have no effect.

One potentially confusing aspect is the interaction of the
call edges and return edges on the one hand, and the call-
to-return edges on the other. There are two normal cases.
For methods with CMT attributes, the call-to-return edge
passes all current transaction across it, and the call edge
establishes the transaction context for the callee. For other
methods, the CMTs are passed across by the call-to-return
edge and the BMTs flow into the callee and back out to the
caller.

Table 1 shows the flow functions for the flow graph of Fig-
ure 4. The last column of the table shows the precise solution
to the dataflow system.

The set of flow functions is distributive, so the solution pro-
cedure of Reps, Horwitz, and Sagiv [23] would give the pre-
cise (meet-over-all-valid-paths) solution in polynomial time.
Performance is paramount since the tool will perform this
analysis on-line in an interactive setting. For large pro-
grams, even a compact representation of the entire inter-
procedural flow graph and associated flow functions might
be prohibitive in time and space costs. So, before build-
ing the inter-procedural flow graph, we exploit structure to
simplify the problem, as discussed in the next section.

4.3 Transaction Analysis—Optimization

We can optimize the solution process by exploiting some
properties of this system.

Property 1: All blocks in a method will have
the same container-managed transactions.

This is obvious from inspection of the flow functions of Fig-
ure 5. For all intra-procedural edges (including call-to-return
edges), the container-managed transactions C are invariant.
The set of container-managed transactions changes only on
method calls.

Using similar reasoning, we notice a more general property:

Property 2: If no call to UserTransaction.begin,
commit, or rollback is transitively reachable from
a call graph node N, then each basic block in N
will have the same solution.

Property 2 expands on Property 1 by including BMTs. Clearly,
each normal intra-procedural edge maintains invariance of
the set of bean-managed transactions. From equation (3),
no call to a method with a container-managed declaration
will change the set of bean-managed transactions. Finally,
since only calls to UserTransaction.begin, commsit, and roll-
back can change the set of BMTs in scope, each call from N
will return with the same set of BMTs as called with.

Using Property 2, we can eagerly collapse the CFG for most
call graph nodes to a single node. For collapsible call graph
nodes, we need only compute the set of transactions in scope
at the entry block; the solution must be the same for all
other blocks. Exploiting this fact, we have implemented a
solver with two phases.

In phase 1, after building a call graph, we perform a simple
reachability analysis over the call graph to identify collapsi-
ble nodes according to Property 2. Then, excluding these
collapsible nodes, we compute the flow of BMTs through the
inter-procedural flow graph. We solve this with demand-
driven dataflow; that is, we construct portions of the inter-
procedural flow graph as needed.

In phase 2, we consider only the “collapsed” flow graph, with
one set of transactions tracked for each call graph node.
We transfer the solution from phase 1 onto edges of the
collapsed flow graph, and then solve. The solution for phase
2 is significantly cheaper than solving for the entire inter-
procedural flow graph, as we have only one set per call graph
node, rather than one set per basic block.

At the end of phase 2, we have a solution for each pro-
gram point. Note that the solution is precise for CMTs;
CMTs do not propagate along return edges, so the solu-
tion is identical when solved over all paths as if solved over
only inter-procedurally-valid paths. Our current solver for
phase 1 is a simple iterative solver that does not consider
inter-procedurally-valid paths; thus, it does not compute the
precise solution for BMTs. In future work, we plan to im-
plement the algorithm of Reps et al. [23] to remedy this. In
practice, we have not encountered pollution in the end re-
sults due to the imprecise BMT solution, although it is easy
to construct test cases where such pollution occurs.

We further reduce the scope of transaction analysis by con-
sidering the overall context; recall that we use the the trans-
action analysis solution to determine which transactions may
enlist which entity beans, in order to guide transaction con-
figuration. So, in the end, only methods that may enlist
entity beans are relevant to the end solution. As a pre-pass,
we filter out all call graph methods which cannot transitively
call any method in the application class loader, since these
methods cannot affect transaction boundaries or enlist enti-
ties. This pruning eliminates portions of the standard Java
libraries that do not affect the solution.

10

OOPSLA 2004 submission — please do not distribute

Finally, having (logically) labeled the inter-procedural flow
graph with the transactions that may reach each basic block,
it is straightforward to determine which transactions may
enlist which entity beans. We simply traverse the call graph
and record for each statement that may enlist an entity,
which transactions may be in scope when the statement ex-
ecutes. As before, we exploit Property 2 to avoid building
individual CFGs where it can be avoided.

5. IMPLEMENTATION
5.1 Analysis Infrastructure

We have developed a a general Java bytecode inter-procedural
analysis framework, called DOMO. The infrastructure con-
sists of roughly 70,000 lines of Java code.

One design goal was to support a range of cost/precision
analysis trade-offs, to support various clients as effectively
as possible. To this end, the infrastructure supports a range
of object-oriented call graph construction and pointer anal-
ysis algorithms, focusing primarily on flow-insensitive algo-
rithms. Following the methodology of Grove and Cham-
bers [12], one composes a call graph construction algorithm
by specifying policies to guide selection of context sensitiv-
ity at call sites, and disambiguation policies for modeling
program variables and heap-allocated objects. We have im-
plemented a range of call graph construction algorithms, and
will discuss a few in the next section.

The implementation of the pointer analysis and call graph
construction algorithms incorporates many of the optimiza-
tions such as those described for SPARK [19]. The system
uses a dual-mode bit vector implementation, switching be-
tween sparse and dense representations to conserve space.
All pointer analysis flow functions filter by declared type
on-the-fly, and some keep history of old vs. new informa-
tion to reduce redundant work. The core dataflow solver
uses worklist-driven iteration, with heuristics to periodically
recompute pseudo-topological order as the system of con-
straints grows dynamically. The system does not perform
cycle detection. The system uses field-sensitive models [19],
and tracks flow through locals with flow-sensitive def-use in-
formation from a register-based SSA representation [7]. We
have also invested considerable effort into efficient bytecode
parsing, a compact intermediate representation, and space-
efficient set and graph data structures.

In most cases, the analysis safely models the JVM specifica-
tion, including exceptional control flow. We do not consider
potential side effects from concurrent operations on shared
data structures; however, since EJBs are forbidden to ma-
nipulate threads, that should not affect correctness of the
target analyses. The analysis models a typical J2EE deploy-
ment with three classloaders; one each for Application code,
Extension (i.e., container runtime) code, and code from the
Primordial class loader. The analysis will not handle more
general use of user-defined classloaders.

5.2 Modeling EJBs

A major challenge was to design the analysis architecture
with enough flexibility to effectively analyze higher-level se-
mantics of J2EE.

An immediate design question is whether to analyze the
application before deployment or after deployment. Dur-
ing deployment, EJB applications pass through an exten-
sive source-to-source code generation step, which introduces
implementation details of the target EJB container imple-
mentation.

We chose to analyze the program before deployment. In-
stead of analyzing the deployed code, we model by hand
many aspects of how the program interacts with the EJB
container. This choice has three advantages: 1) scalability
— it reduces the body of code to analyze, 2) precision — it
is likely that a human-generated summary of container se-
mantics is more precise than could be inferred practically
from the raw container implementation, and 3) portability
— the analysis results do not vary depending on the con-
tainer implementation. The choice has three disadvantages:
1) aesthetics — the modeling process introduces more hu-
man intervention, 2) human error — which invariably follows
from human intervention, and 3) future maintenance work
— needed to update the analysis as the J2EE specification
changes in the future. Although we decided the pros out-
weigh the cons, dealing with human error in the J2EE mod-
els has been a constant challenge. It requires considerable
domain expertise to model the interactions completely and
correctly.

Modeling simple library methods, such as most native meth-
ods in the Java standard libraries, can be done concisely
with a simple specification. For simple flow-insensitive mod-
els, we use a simple XML language to represent a method’s
semantics. This approach also suffices for some J2EE meth-
ods, when the method’s definition is static and the semantics
fixed. In many cases, we substitute synthetic models in place
of standard J2SE and J2EE methods that we assert will not
have side effects that affect the properties of interest (e.g.
I/O). These models improve performance by reducing the
scope of the analysis, and in many cases increase precision
by eliminating opportunities for dataflow pollution.

Modeling EJBs presents more engineering challenges, since
the set of methods and their behavior is determined by the
application’s deployment descriptor. For these cases, we
have implemented a simple “EJB compiler” that takes as
input the application code and the deployment descriptor,
and produces analyzable artifacts that represent method be-
havior.

For example, suppose the analysis encounters a call to a
method PersonEnt.getAccounts() from Figure 1b. Before
attempting to resolve this call with standard Java semantics,
the analysis checks with a listener design pattern [10] to see
if any listener understands special semantics for this call.
One “EJB Listener”, consulting the deployment descriptor,
notices that this method represents the container-managed
relationship of PersonEnt to AccountEnts. So, this listener
will create an analyzable artifact representing the semantics
of a call to getAccounts(), and notify the analysis driver to
analyze the call as dispatching to the artifact.

To generate the artifact for this CMR access, the “EJB Com-
piler” consults the deployment descriptor to deduce bean
AccountEnt’s primary key type, remote interface, and home

11

java.util.Collection getAccounts() {
AccountEntHome h = ContainerModel.getPooledAccountHomeInstance();
AccountEnt B = H.findByPrimaryKey(O);
HashSet S = new HashSet();

S.add(B);
if (condition) {

throw new RemoteException();

}

if (condition) {

throw new EJBException();

}

return S;

Figure 6: Pseudo-code showing the analyzable artifact generated for PersonEnt.getAccounts()

interface. Based on these types, it generates an artifact sim-
ilar to that shown in Figure 6. The simple semantics there
suffice to construct a correct call graph incorporating the call
to getAccounts(). Note in particular the call to a class called
ContainerModel. The ContainerModel is a distinguished an-
alyzable artifact which simulates pooling of bean instances,
along with other global container artifacts. Note also that
this model for getAccounts() will not suffice for all possi-
ble client analyses. For example, the returned collection is
modeled as always containing one element. In reality, it may
have zero or many. We would have to further refine the gen-
erated model in order to support a client analysis that was
sensitive this distinction.

Using similar logic, we have generated models for many as-
pects of the J2EE specification, including many functions
for Servlets and JSPs, most CMP-related methods, much
of JDBC, some SOAP functions, some Apache Struts func-
tions [9], and some WebSphere-specific constructs such as
dynacache support [6]. We have not yet modeled other fea-
tures, such as EJB-QL, two-phase transactions, and those
dark corners of Enterprise Java which still frighten us.

In our experience, the extensible architecture for high-level
semantic models proved to be the single most important de-
sign feature in the entire implementation. The architecture
allowed rapid prototyping of J2EE semantics as we encoun-
tered them in test applications. This rapid prototyping was
crucial for timely completion of the implementation.

5.3 Dealing with reflection

Reflection and introspective services arise often in J2EE ap-
plications. In addition to “core” reflective instantiation with
newlnstance, J2EE applications will often create objects via
invocations to services such as JNDI lookup, Java Bean in-
stantiation, RMI narrow services, serialization, return val-
ues from objects such as java.sql. ResultSet, various flavors
of servlet and JSP contexts and sessions, and message ar-
guments to message-driven beans. For this discussion, we
will call such objects opaque objects. Figure 1 shows several
examples of opaque objects returned from a JNDI lookup
method; this idiom appears frequently in J2EE applications.

It is impractical to expect a tool user to specify the behavior
of calls to each of these services, or the type of each opaque
object. While it may be possible to statically divine the

behavior of some opaque services from configuration data,
in other cases, we must fall back to conservative static esti-
mates.

Due to the large number of opaque objects which arise from
various services, we decided to handle all such cases with a
single general mechanism. In all these cases, we have decided
to unsafely assume that every checkcast on an opaque object
succeeds, and use this assumption to infer types. Notice
that this technique will handle the common usage of naming
services as illustrated in Figure 1, where the obtained object
is immediately downcast into a usable type.

We actually implement two separate schemes for deducing
the type information, depending on the precision of the call
graph/pointer analysis employed.

When we use a pointer analysis at least as precise as 0-CFA,
we track the flow of objects to checkcast statements on-the-
fly. We introduce a distinguished type called Malleable into
the type system. We model each method that returns an
opaque object as returning a new instance of type Malleable,
and configure the pointer analysis to analyze each call to the
method with one level of calling context. When the analy-
sis evaluates the constraint corresponding to a checkcast, it
records the relevant type T for the opaque object’s allocation
site. The system then adds a constraint to indicate that the
original allocation returns an object of type T, in addition
to the Malleable. In this way, when the iterative constraint
solver terminates, it will have added and solved constraints
corresponding to all possible inferences from downstream
checkcasts.

Less precise call-graph construction algorithms such as RTA [3]
don’t track the flow of individual objects to individual state-
ments. We have found in practice that a straightforward
application of the Malleable inference for these algorithms is
too imprecise; in RTA, each object flows to each checkcast,
which winds up sucking in vast regions of the class hierarchy
which are otherwise unreachable.

To handle reflection for these imprecise algorithms, we have
implemented an iterative driver that separates call graph
construction from type inference for opaque objects. After
building the initial call graph, we construct def-use chains
to track each opaque object inter-procedurally through the

12

OOPSLA 2004 submission — please do not distribute

program, based on the initial call graph. We record each case
where an object flows to a checkcast. Then we expand the
original call graph based on this information. The process
repeats until it discovers no new opaque objects.

Our current implementation does not track opaque objects
through the heap; it only tracks the use of each opaque
object through local variables and call/returns. Although
this limitation is unsafe, in all cases, we have found at least
one checkcast for each opaque object. Based on this fact and
the observation that the original assumption is technically
unsafe anyway, we have deemed the current implementation
adequate for practical use.

We do not currently model method invocation via reflection
(java.lang.reflect. Method.invoke); for the results reported here,
ignoring these calls does not change the transaction configu-
ration results. A more complete analysis would have to track
Method object def-use chains to approximate these reflective
invocations.

6. EXPERIMENTAL RESULTS

This section presents an empirical evaluation which char-
acterizes the tool’s output, compares call graph precision
choices for this domain, and evaluates whether transaction-
scoped configuration is substantially more useful than the
simpler bean- and method-scoped models.

6.1 Benchmarks
For our evaluation, we collected a set of publicly-available
benchmark programs and one real-world IBM customer code.

Table 2 lists the benchmarks used for this study. The SPEC-
jAppServer codes are industry benchmarks that emulate a

manufacturing, supply chain management, and order/inventory

system [27]. The three versions are similar, all derived from
the same original code base, but exercise different versions
and features of the J2EE specification. Traded is an IBM
WebSphere sample application modeling an on-line stock
brokerage applications [15]. PetStore is a sample application
from Sun that models an on-line store [?]. Anonymous code
X is a demanding, framework-intensive application from an
IBM customer.

The table shows the number of classes and methods which
are eligible for analysis from bytecode source. These num-
bers exclude those classes which are modeled artificially, and
so represent a subset of the J2EE and J2SE libraries.

6.2 Call Graph Construction Algorithms

We evaluate the following call graph construction algorithms:

e CHA: class hierarchy analysis [8],
e RTA: rapid type analysis [3],

e 0-CFA: context-insensitive control-flow analysis [26],
disambiguating between heap objects according to con-
crete type,

e 0-1-CFA.: context-insensitive control-flow analysis, dis-
ambiguating between heap objects according to allo-
cation site [12] (as in Anderson’s analysis [2]) and

13

e 0-1-C-CFA: 0-1-CFA enhanced with extra context for
“container” objects, as described below.

0-1-C-CFA is motivated by the observation that container
or collection objects often lead to large pollution in type
estimates. So, 0-1-C-CFA adds an extra level of context-
sensitivity for container objects, which we define as any ob-
ject that extends java.util. Collection. For each method de-
fined on a container object, we analyze each invocation to
the method in a context defined by the receiver object (the
container). Furthermore, we disambiguate objects allocated
inside such methods by naming the instance according to a
(container object, allocation site) pair. This extra context
gives 0-1-C-CFA the power to disambiguate between objects
stored in standard collections, which would otherwise flow
to all uses of the container type.

6.3 Methodology

For each benchmark and each application, we analyzed a
program that consisted of the application code itself and all
third-party libraries that came bundled with it. To this we
added the J2SE 1.4.2 libraries from Sun, with some internal
implementation packages (e.g. most com.sun and com.ibm
packages) excluded a priori from analysis. And finally, we
included the J2EE libraries from IBM WebSphere Integra-
tion Server 5.1, again excluding most internal runtime pack-
ages.

All experiments reported were run on a single-processor IBM
NetVista workstation with a 1.8Ghz Intel Pentium IV, 1.5GB
of RAM. All runs use the Sun 1.4.2 JRE and -Xmx800M. For
performance runs, each experiment was run in a separate
JVM instance.

Since we use multiple call graph construction algorithms,
the size of the analyzed code varies depending upon call-
graph precision. The size statistics from Table 2 are a
loose upper bound, since many methods are unreachable
and never considered for analysis. Table 3 shows a more
accurate metric: the size of the program actually analyzed
for each experiment. The Methods count represents the
number of distinct source methods that appear in the call
graph. As discussed earlier, the implementation models re-
flective factory methods with a level of calling context, so
even context-insensitive call graphs have more nodes than
distinct methods. The table shows that overall, RTA pro-
duces much more precise call graphs than CHA, and 0-CFA
produces significantly more precise call graphs than RTA. In
terms of distinct methods discovered, the more precise CFA
variants improve precision slightly over 0-CFA.

6.4 Results

‘We present four categories of results. First, we report results
that characterize the reports generated by the tool, regard-
ing distinct transactions and entity enlistments identified.
Secondly, we report how effectively the analysis identifies
opportunities for read-only configuration options. Next, we
evaluate opportunities for partial-read configuration. For
both read-only and partial-read configuration results, we
evaluate each of the three configuration models discussed in
Section 3: bean-scoped configuration, method-scoped config-
uration, and transaction-scoped configuration. (Recall that

Table 2: Benchmarks used in this study, and the

| Analysis Scope | Classes | Methods |
Primordial Loader (J2SE Libraries) | 5978 55535
Extension Loader (J2EE Libraries) | 995 6360
SPEC jAppServer2001 505 4055
SPEC jAppServer2002 871 8574
SPEC jAppServer2003 1085 9938
Trade3 117 1339
PetStore 1.3.2 8563 5908
X 2782 34158

size of the analysis scope for each.

| Benchmark CHA RTA | 0-CFA | 0-1-CFA 0-1-C-CFA
Methods Methods Methods Methods Methods
Nodes Edges | Nodes Edges | Nodes Edges | Nodes Edges | Nodes Edges
SPECjAppServer2001 19088 2031 1806 1801 1800
19358 198692 2210 7999 1985 5692 1980 5683 2500 6799
SPECjAppServer2002 21327 2121 1866 1860 1860
21633 223972 2266 8555 2011 5768 2005 5757 2475 6769
SPECjAppServer2003 18810 1864 1590 1590 1584
18998 192558 1981 7112 1707 4494 1707 4494 2018 5097
Trade3 19175 2464 1618 1590 1587
19342 191638 2544 14965 1697 4697 1669 4592 2047 5607
PetStore 20526 11700 9336 9297 9267
20663 218223 | 11777 91193 9393 44960 9354 44416 11744 50644
X 26644 9596 8106 7915 7903
26751 326021 9628 89234 8131 27619 7940 26650 14383 337858

Table 3: For each call graph construction algorithm, the number of distinct methods discovered, and the

number of nodes and edges in the call graph.

14

OOPSLA 2004 submission — please do not distribute

these three configuration models offer progressively more
fine-grained control over transaction configuration.) We also
report differences in configuration results depending on the
call graph construction algorithm.

Finally, since this tool runs interactively in an IDE, we re-
port analysis runtimes for the different algorithms.

6.4.1 Transactions and Entities

Table 4 shows the number of transactions identified for each
code, using each considered call-graph construction algo-
rithm. More precise call graph algorithms can reduce the
number of false transactions reported, since false transac-
tions arise from false paths in the call graph.

For all codes, the tool reports a relatively small number of
transactions, suitable for browsing in a GUI tool. These
codes use CMTs heavily and BMTs rarely. For the 3 SPEC-
jAppServer codes, the number of transactions does not vary
according to call graph precision. Call graph precision does
have a slight impact on Trade3 and X, as RTA prunes 5 and
3 transactions respectively from CHA. For Trade3, 0-CFA
prunes another 3 transactions from RTA. PetStore is inter-
esting in that requires at least 0-CFA precision; otherwise,
the tool reports at least 45 false transactions.

We do not know the number of false transactions reported by
the most precise analysis, although manual inspection sug-
gests that few false transactions remain. One could bound
the results by instrumenting the container to record trans-
actions dynamically; this remains a task for future work.

For each transaction, the tool reports the entity bean classes
which the transaction may enlist. Table 5 shows the number
of enlisted entities reported, depending on analysis precision.
Less precise analyses will report more false enlisted entities.

The Table shows that for the SPECjAppServer codes, in-
creased precision does not reduce the number of reported en-
listed entities. Inspecting the results, we believe the SPEC-
jAppServer reports include few if any false enlisted entities,
even with CHA call graph construction.

However, for the other three codes, call graph precision has a
significant effect on the number of reported entities enlisted.
Each of these three codes uses general framework libraries
to dispatch requests to EJBs. More precise call graph algo-
rithms help refine control flow in these frameworks, reducing
the number of false enlisted entities. For each code, RTA
significantly improves over CHA, and 0-CFA significantly
improves over RTA. We observed no benefit from the more
precise CFA variants. These results correlate with the trans-
action results in that algorithms that improved the number
of transactions tended to make the biggest differences on the
numbers of enlisted entities as well.

As before, future work will investigate dynamic measure-
ments to bound the number of false reports for the most
precise analysis.

6.4.2 Read-only enlistments
In Table 6, we present the read-only configuration settings
the analysis can infer under each of these three configuration

models.

Somewhat surprisingly, a significant number of entity en-
listments can be marked as read-only, even using the simple
Bean Scope configuration model. In these cases, the analysis
concludes that the Bean types are never updated after they
are created. Secondly, we note that method scope exposes
significantly more opportunities for read-only configuration
than bean scope, and transaction scope offers even more
opportunities. This supports WebSphere’s decision to of-
fer transaction-scoped configuration; the finer-grain control
pays off in allowing more aggressive configuration.

Note that we cannot directly compare results between call
graph algorithms in Table 6, since we saw previously that the
less precise algorithms report a significant number of false
enlisted entities. Table 6 also reports a significant number
of false enlisted entities.

6.4.3 Partial-read enlistments

Next, we consider partial-read configuration settings. Re-
call that a partial-read configuration specifies only a proper
subset of a bean’s fields need be read, since the developer
asserts that other bean fields will not be read. In effect, this
provides a form of dead assignment elimination.

Table 7 shows the percentage of fields that the analysis de-
termines may be read under each configuration scope op-
tion. If the analysis determines that a field must not be
read in a particular scope, then the tool can suggest a par-
tial read configuration to avoid fetching said field from the
database. In order to make the numbers more comparable
across call-graph construction algorithms, we have filtered
them by counting only for those enlistments