
RC23332 (W0409-045) September 8, 2004
Computer Science

IBM Research Report

Generalized Tree-LRU Replacement

John T. Robinson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Generalized Tree-LRU Replacement

John T. Robinson
<robnson@us.ibm.com>
IBM Research Division
Thomas J. Watson Research Center
PO Box 218
Yorktown Heights, NY 10598

August 23, 2004

Abstract. A generalization of the tree-LRU (pseudo-LRU, PLRU) method for cache line
replacement selection in an N-way set-associative cache is described. In this method,
a line is selected for replacement within a set using a logical multi-way tree, where the
leaf nodes of the tree represent lines in a set, and where if the branching factor of a
given node in the logical tree at a given level is k, then the state of the node is
represented by one of k! (k factorial) logical states representing an access order of the
nodes below the given node in the logical tree. Results showing the degree to which
these methods approximate LRU replacement are presented.

This material is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCH3039004.

1. Introduction

 Consider an N-way set-associative cache. For small N (e.g. N=4), it is feasible to
select the LRU (least recently used) line for replacement within a set since maintaining
the access order does not require a large number of states (for N=4 there are 4! = 24
states, and a state machine can be used, with 5 bit state numbers; there are alternative
implementations as well for small N). However, in newer processor architectures, it
may become desirable for a variety of reasons (for example multi-threaded processor
designs) to increase the cache associativity at various levels of the cache hierarchy.
For larger values of N (e.g., N=8, 16), maintaining the full access ordering becomes
impractical since the number of states increases exponentially (for example, 8! =
40320; 16! = 20922789888000). A well-known solution is to approximate LRU using for
example the tree-LRU replacement selection method (also known as pseudo-LRU or
PLRU). In this method, one bit indicates whether the most recent reference is to a line
in either the first half or the second half of the lines in a set; then, this technique is
logically applied recursively, resulting in a logical binary tree with N-1 nodes (thus N-1
bits are required to represent a state in tree-LRU).
 Tree-LRU does not approximate LRU particularly well, as shown in Figure 1.1 for the
case N=16. These results were generated as follows: 100,000 random permuations of
0,1,2,3,...,15 were generated; for each permutation, the lines in a set were accessed in
this order, generating a particular tree-LRU state; finally, the line selected for
replacement using tree-LRU was found, its position in the full LRU ordering of the set
was found (where 0 was the LRU line, 1 was the 2nd LRU line, etc.), and the statistics
were updated.

Figure 1.1

For comparison, if the LRU line had always been selected, the graph shown in Figure
1.1 would have had a single bar at LRU position 0 of height 100,000.

Generalized Tree-LRU Replacement

- 1 -

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

LRU Position (0=LRU)

0

5

10

15

20

25

T
ho

us
an

ds
N

um
be

r
S

el
ec

te
d

TreeLRU Replacement Statistics
16-Way (100,000 random permutations)

 Although it is true that the probability of re-reference of a line in a set (where the
probability is computed over all sets in the cache) decreases sharply with increasing
age of the line within the set, it is also the case that a certain small fraction of sets are
typically "hot" and generate a proportionately large fraction of all cache misses.
Therefore one would expect that a method which approximates LRU more closely might
give non-trivial performance improvements (in terms of decreasing cache misses for the
"hot" sets). However an improved method is only practical if it can be implemented
efficiently. Generalized tree-LRU methods are described here that can approximate
LRU more closely than tree-LRU, with typically only small increases in complexity, and
that have (in most cases) efficient implementations.

2. Generalized Tree-LRU

 For the sake of a concrete example, including a precise comparison (in terms of
complexity) with tree-LRU, first a special case of the more general method will be
described for N=16 (i.e. a 16-way set-associativie cache), with a branching factor of
four for the logical tree. The 16 ways in a set are divided into 4 subsets with four
distinct ways in each subset. Note that the 4! orderings of 4 logical entities can be
represented using 5 bits (since there are 24 states), and the state transitions can be
implemented using a state machine (again, there are alternative implementations). The
root node of the logical tree is in one of 24 states, representing the order in which the
four subsets have been accessed. In an implementation, the subset number could be
determined using the first two bits of the way number (where the way number is in the
range 0, 1, 2, 3, ..., 15). For each such subset, a state is maintained representing the
order in which the four lines in the subset have been accessed; since there are four
such lines, this state also requires 5 bits, and state transitions among the states can be
implemented using a state machine. In an implementation, the line number (0, 1, 2, 3)
of a line in a subset could be given by the last two bits of the way number. The total
bits required to represent a state are 5 + 4x5 = 25 bits, as compared to 15 bits for
tree-LRU. Furthermore, state transitions are easy to implement, for example using logic
to compute state transitions for two identical state machines with 24 states (one for the
logical root node, and one for computing the state transistion for the state representing
the access order of the lines in a subset). Repeating the experiment described above
for tree-LRU using this hybrid tree-LRU / LRU method, results are obtained as shown in
Figure 2.1.
 As can be seen by comparison with Figure 1.1, an approximation to LRU replacement
is obtained that is much closer than that using tree-LRU. Furthermore, the additional
complexity is relatively small (25 bit states instead of 15 bit states; state transition logic
using two state machines for 24 states, each of which implements 4*24 = 96 state
transitions, where unchanged state transitions have been included).

Generalized Tree-LRU Replacement

- 2 -

Figure 2.1

 It is easy to see how to generalize the above to the general method. Tree-LRU for
the case N=16 can be considered a special case of generalized tree-LRU in which the
tree is logically a 2x2x2x2 tree; the results shown in Figure 2.1 are for a 4x4 tree.
Limiting the branching factor to 4 or less, other possible trees for the N=16 case are
2x2x4, 2x4x2, and 4x2x2. Similarly, for a 12-way set associative cache for example
(i.e. for the case N=12), possible generalized tree-LRU organizations include 4x3, 3x4,
2x2x3, 2x3x2, and 3x2x2 trees, and similarly for other values of the degree of set
associativity N. In the next section results are presented showing how closely
generalized tree-LRU approximates LRU for all possible logical trees for the cases N =
8, 12, and 16.

3. Degrees of LRU Approximation for Generalized Tree-LRU

 In this section graphs are shown illustrating the degree to which generalized tree-LRU
approximates LRU for all possible logical trees, for several cases (N = 8, 12, 16). First
consider the case in which the degree of set-associativity is 8. There are three possible
logical trees: 2x4, 4x2, and 2x2x2. The results for these three cases are shown in
Figures 3.1a-3.1c (in these and all other graphs in this section, the units on the Y-axis
are in thousands, showing the number of lines selected at that LRU position out of
100,000 random permutations, or alternatively percent selected).

Generalized Tree-LRU Replacement

- 3 -

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

LRU Position (0=LRU)

0

5

10

15

20

25

30

35

T
ho

us
an

ds
N

um
be

r
S

el
ec

te
d

4x4 TreeLRU Replacement Statistics
16-Way (100,000 random permutations)

 Next consider the case in which the degree of set-associativity is 12. There are seven
possible logical trees: 2x6, 6x2, 3x4, 4x3, 2x2x3, 2x3x2, and 3x2x2. The results for
these seven cases are shown in Figures 3.2a-3.2g. Although 2x6 and 6x2 trees are
probably not practical (for implementation), they are included for completeness.
 Finally consider the case in which the degree of set-associativity is 16. There are
again seven possible logical trees: 2x8, 8x2, 4x4, 2x2x4, 2x4x2, 4x2x2, and 2x2x2x2.
The results for these seven cases are shown in Figures 3.3a-3.3g. Similarly to the 2x6
and 6x2 trees for N=12, the 2x8 and 8x2 trees are impractical for implementation, but
are shown for completeness.

Generalized Tree-LRU Replacement

- 4 -

0 1 2 3 4 5 6 7

Figure 3.1a
LRU Position (0=LRU)

0

10

20

30

40

50

60

N
um

be
r

S
el

ec
te

d
8 way 2x4

0 1 2 3 4 5 6 7

Figure 3.1b
LRU Position (0=LRU)

0

10

20

30

40

50

60

N
um

be
r

S
el

ec
te

d

8 way 4x2

0 1 2 3 4 5 6 7

Figure 3.1c
LRU Position (0=LRU)

0

10

20

30

40

50

60

N
um

be
r

S
el

ec
te

d

8 way 2x2x2

Generalized Tree-LRU Replacement

- 5 -

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2a
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d
12 way 2x6

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2b
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

12 way 6x2

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2c
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

12 way 3x4

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2d
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

12 way 4x3

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2e
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

12 way 2x2x3

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2f
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

12 way 2x3x2

0
1

2
3

4
5

6
7

8
9

10
11

Figure 3.2g
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

12 way 3x2x2

Generalized Tree-LRU Replacement

- 6 -

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3a
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d
16 way 2x8

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3b
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

16 way 8x2

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3c
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

16 way 4x4

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3d
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

16 way 2x2x4

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3e
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

16 way 2x4x2

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3f
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

16 way 4x2x2

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Figure 3.3g
LRU Position (0=LRU)

0
10
20
30
40
50
60

N
um

be
r

S
el

ec
te

d

16 way 2x2x2x2

4. Conclusion

 A generalization of tree-LRU has been described, in which the branching factor at
each level of the logical tree is not limited to two. Results have been shown illustrating
to what degree these generalized tree-LRU methods approximate LRU replacement,
assuming all permutations of access orderings of the lines in a set are equally likely, for
all logical trees for 8, 12, and 16 way set-associative caches. These results are
preliminary since in practice all permutations are not equally likely; in particular, the
probability of re-reference of a line in a set decreases sharply with increasing age.
Nevertheless the results shown give a good indication of the degree to which each
logical tree approximates LRU replacement. In practice these methods would have to
be evaluated using the usual approaches (detailed studies of design tradeoffs, with
projected miss ratios found using traces, execution driven simulation, and so on).
 These generalized tree-LRU methods have been known by practitioners for some
time [1]. Nevertheless, in the past, tree-LRU has usually been chosen as the standard
method to approximate LRU replacement (of course alternative design approaches
have been used as well that do not approximate LRU replacement, for example
"random" replacement and other approaches). However there currently seems to be a
trend towards increasing degrees of set-associativity in cache design. If conflict misses
contribute significantly to the overall miss ratio, even with a relatively high degree of set
associativity, then closer approximations to LRU replacement could prove useful in
increasing cache performance.

References

[1] William Starke, personal communication, July 10, 2004.

Generalized Tree-LRU Replacement

- 7 -

