
RC23343 (W0409-135) September 21, 2004
Computer Science

IBM Research Report

Pervasive Query Support in the Concern
Manipulation Environment

Peri Tarr, William Harrison, Harold Ossher
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Pervasive Query Support in the Concern Manipulation Environment

Peri Tarr, William Harrison, Harold Ossher
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

+1 914 784 7278
{harrisn,ossher,tarr}@watson.ibm.com

Abstract

Queries play a fundamental role in aspect-oriented
software development (AOSD). They are used to find
and define concerns, and to specify how concerns are
to be woven together. The Concern Manipulation En-
vironment (CME) is an open-source environment in-
tended to support AOSD across the software lifecycle
and to provide an integrated development environment
for developers using AOSD This paper describes the
pervasive query support CME provides for use by all
components and tools within the environment, though
both its query language (Panther) and its query im-
plementation framework (PUMA).

1. Introduction

Aspect-oriented software development (AOSD) re-
lies on flexible specification of modules and their inter-
connections. The static definitions found in conven-
tional programming and architectural description lan-
guages are inadequate: flexible description of modules
and their interconnections intrinsically requires queries.

The queries are used to describe points of interest in
software. These include join points1 and concerns2,
which may be crosscutting. Queries form part of the
definition of aspect-oriented software, in much the
same way that methods and classes form part of the
definition of object-oriented software. Queries must
therefore be elevated from a support capability for de-
velopers, who ask questions about the software, to a
first-class part of the software description itself.

Queries are needed, in fact, in several different con-
texts in AOSD. Perhaps the best-known is in the ex-
pression of weaving. Pointcuts in AspectJ [10] and

1 The locations at which aspects are integrated.
2 Collections of software artifacts or artifact fragments
that have some common semantic meaning or purpose,
whether localized features or systemic behavior.

related languages, for example, are queries over run-
time events at which advice can be applied, such as
object creation, method call or execution, or field ac-
cess. There are related queries that find corresponding
elements in the program itself. Similarly, some compo-
sition relationships in Hyper/J [11] use patterns that are
queries over static software elements, such as classes
and their members, and Hyper/J’s default mergeBy-
Name involves a query that finds tuples of entities with
matching names.

In this context, the use of queries instead of simple
references is essential for two reasons: multiplicity and
intensional specification. A single weaving specifica-
tion often involves multiple elements, such as applying
a single piece of advice to multiple joinpoints, or speci-
fying a multiplicity of class compositions through a
single mergeByName. It would be prohibitively cum-
bersome to enumerate all of these. But far more impor-
tant, such an extensional specification would fall out-
of-date when additions were made to the software. Us-
ing queries as an intensional specification ideally al-
lows the developer to express the semantic essence of
the desired weaving, which can be automatically up-
dated when the software changes. The correctness of
the update does depend, of course, on the nature of the
query, making semantic queries (such as finding all
public classes or all methods reachable from a starting
point) attractive. Intensional specifications can also
help to address the well-known problem of enforcing
properties consistently across the different artifacts of
the software lifecycle. For example, when writing re-
quirements or use cases, a developer may want to state
properties expected of, and relationships to, artifacts—
like design, code, and test cases—that do not yet exist.
Intensional specifications facilitate such definitions.

AOSD also involves a variety of activities other
than weaving. There has been growing interest in iden-
tifying, modeling, extracting and reengineering con-
cerns that occur in existing software, though not as
separate modules. The process of finding such con-

1

cerns, and those parts of the software elements that
pertain to them, involves analysis, understanding and
navigation of the software. Queries, whether semantic,
name-based, or text-based, play a prominent role here.
Tools such as FEAT [14] and JQuery [6] provide a
variety of query capabilities to facilitate this task.

Once exploration has led to the identification of
concerns, it is valuable to record that knowledge in a
concern model, as allowed by FEAT, for example. A
concern can be defined extensionally, as precisely the
current results of the query; intensionally, as the query
itself; or both. As in the case of weaving, intensional is
generally far preferable, as such queries provide a
characterization of the concern that can be re-evaluated
if the underlying software changes.

Queries are thus necessary in at least three contexts
in AOSD: identifying concerns, modeling (or defining)
concerns and other artifacts, and weaving (or compos-
ing) concerns. In an environment that supports AOSD
as a whole, it is therefore clearly valuable to have uni-
form, shared support for queries throughout. This pro-
vides a consistent user model, where, for example, que-
ries used for exploration can later be used for weaving,
or as part of the definition of artifacts (e.g., as point-
cuts), or, conversely, queries in an artifact can be used
for exploration. It also provides reuse, consistency, and
integration across AOSD technology implementations,
where different components and tools in the environ-
ment all use the same query support.

The Concern Manipulation Environment (CME) is
just such an environment, intended to support AOSD
across the software lifecycle. It contains a growing set
of tools for specific software-engineering tasks, includ-
ing identification, modeling and composition of con-
cerns, with concern extraction to come shortly. It is
built on a set of flexible, extensible components, in-
tended as a platform on which AOSD tools can be built
and integrated. The CME is available as an Eclipse
open-source technology project [4].

This paper describes the pervasive query support the
CME provides for use by all components and tools
within the environment. One of the goals of the CME is
to support experimentation with and interoperation of
multiple AOSD languages and approaches. Since each
of these might involve its own pattern or query lan-
guage, the CME’s generic query support component
(called PUMA), is flexible and extensible, and can ac-
commodate multiple query languages. A second goal of
the CME is to provide an integrated development envi-
ronment for developers using AOSD. Towards this
goal, we have also developed a specific query lan-
guage, called Panther, built on PUMA, which we be-
lieve provides a powerful, general means of querying

software structure and relationships. It also includes the
static part of the AspectJ pointcut language, making it
natural for AspectJ developers.

Section 2 describes a model of software--the domain
of queries--used by the CME query support. Section 3
defines concepts underlying the query languages it
supports, illustrated with examples expressed in Pan-
ther. Section 4 shows Eclipse views for entering que-
ries and examining their results. Section 5 discusses the
architecture of the query support, including the support
for multiple query languages. The remaining sections
discuss experience, related work, and conclusions.

2. The Software Model

To be able to serve as a platform for AOSD across
the lifecycle, the CME must be able to handle many
kinds of artifacts, and to accommodate new kinds of
artifacts easily. The central CME support for queries,
concern modeling, extraction and composition there-
fore uses a general model of software that is independ-
ent of artifact details. Specific kinds of artifacts are
supported by artifact plugins that know the details of
their artifacts and can read the artifacts’ representations
and populate the general model. The plugins can also
perform some artifact-specific tasks at the request of
the CME. This section describes the general model of
the software being searched.

2.1. Entities

An entity is any named software element. Some enti-
ties can be containers, whose elements are other enti-
ties. We distinguish several kinds of names in the
CME, differing in their qualification. In this paper we
use “name” to mean self-identifying name, a name that
is complete enough to identify the entity within a work-
ing context. This is typically a qualified name or path
name with name components for each container sur-
rounding the entity. Names can include signatures, as
in the case of methods in languages with overloading.

Most entities have other properties of interest too,
such as location and content. Their nature is, of course,
dependent on the nature of the entities, but the CME
requires a way to deal with them that is not. The fol-
lowing subsections describe how the CME deals with
four kinds of properties in an artifact-independent way.

2.1.1. Modifiers. Modifiers are tokens or keywords
that convey some information about an entity, such as
“interface” or “public” in Java. Entities can have arbi-
trary modifiers, and queries can refer to them. The
query support treats them simply as strings.

2

In many languages, the absence of a modifier essen-
tially implies a default modifier. For example, a Java
class with no visibility modifier implies “package” visi-
bility. Artifact plugins synthesize actual modifiers for
these cases to enable them to be handled uniformly and
to allow them to be differentiated from any in queries.

2.1.2. Classifiers. Some modifiers are used to catego-
rize entities. For example, “interface” in Java is used to
distinguish interfaces from classes. The CME provides
classifiers for expressing this categorization in queries.
For example, interfaces and classes in Java, aspects in
AspectJ and classifiers in UML are all “type” con-
structs. In some situations, one might want to simply
ask for all types, rather than having to identify (or even
know) the different kinds of types.

Classifiers are also treated as simple tokens, like
“type,” arranged in a classification hierarchy. The hier-
archy is prepopulated with some common classifiers,
but artifact plugins supporting artifacts with new kinds
of entities can register new classifiers and specify their
place in the hierarchy. They can also register relation-
ships between modifiers and classifiers, specifying that
an entity with a particular modifier classifies as the
specified classifier. For example, the modifiers “inter-
face” and “class” in Java, “aspect” in AspectJ and
“classifier” in UML all classify as “type.”

2.1.3. Attributes. As simple tokens, modifiers and
classifiers convey limited information. Entities can also
have attributes, which are name-value pairs. The values
can be simple, such as a location attribute with a string
value, or collections or other more complex structures.

2.1.4. Methoids. The most complex information asso-
ciated with an entity is usually its contents, such as the
text of a document (or section) or the body of a
method. We deal with searches inside content in an
artifact-independent fashion, with a construct called a
methoid. A methoid characterization is a pattern that
can be used to find material within an entity, such as
“all gets of variable v.” Each piece of matching mate-
rial found is called a methoid occurrence, which may
be materialized as an entity itself. The pattern matching
is artifact-specific, and must be performed by the arti-
fact plugins. Each artifact plugin registers the methoid
characterizations it can deal with, so that the central
CME support can use methoids in a uniform manner.

2.2. Concern Model

Although the CME support for concern modeling is
the topic of a separate paper [6], this section gives a

brief outline of the concepts that are needed to under-
stand queries involving concern models.

A concern is a first-class software element (entity)
that represents a particular concept and that brings to-
gether other entities that are related to that concept. A
concern is not itself a container, in the sense of a pack-
age that “owns” the entities, preserving their existence.
It is more akin to an indexing structure that brings to-
gether entities that have their own independent exis-
tence. Entities are known to belong to a concern be-
cause they are listed explicitly or because they satisfy
the expression of some query. Concerns can be nested,
and the same entity or concern can be in multiple con-
cerns. It is clear that certain more-specialized con-
structs in various AOSD approaches, like the pointcuts
of AspectJ, can also be seen as concerns, defined by
queries.

A concern space models the entities making up a
body of software. It provides flexible means of model-
ing concerns and which entities pertain to them. The
concern space also models relationships among enti-
ties, such as reference, inheritance, dependency and
traceability. Artifact plugins, separate analyzers and
other tools can populate the concern model with rela-
tionships they know about. Relationships, like other
kinds of entities, are subject to classification (Section
2.1.2).

Some concerns can be designated as contexts, and
relationships can be scoped by them. This allows for
multiple views of software and context-dependent ma-
nipulation.

3. Query Concepts

Two key goals of the CME’s query support are to
enable queries to become first-class elements of the
definition of aspect-oriented software, and to serve as a
platform for different AOSD artifacts, methodologies,
and activities. To accomplish this, it must both provide
a powerful set of generally-applicable and extensible
query concepts, and accommodate specializations and
new query capabilities readily. It should do so in such a
way that the new capabilities are integrated seamlessly
with existing concepts and artifact types. The query
language concepts apply to any kind of artifact. To
enable special-purpose support for particular artifacts,
relationships, or tasks, a number of language constructs
are tied to the extension and plugin points provided by
the search engine for use by artifact plugins.

CME’s query concepts can be grouped roughly into
four categories: what can be sought, where to look, and
how to express the query and the desired result. This
section’s subsections address each of these key issues.

3

They also address how the language is extended for
multiple types of artifacts, paradigms, tasks, and proc-
esses, exploring tradeoffs that AOSD tool and technol-
ogy providers must address when supporting queries
across different types of artifacts.

The performance of query evaluation is always an
important issue, and addressing it adequately requires
accommodation even at the conceptual level. There-
fore, a number of query language concepts specifically
enable a wide variety of optimization strategies. Opti-
mization is discussed in more detail in Section 5.

3.1. What can be Sought: Selectables

CME queries search for selectables, which are ele-
ments or points of interest in software. Different para-
digms and formalisms support different kinds of select-
ables, but some common examples are classes, meth-
ods, and fields in Java, joinpoints (such as sets and gets
of field values) in AspectJ, task and dependency defini-
tions in Ant, tags and attributes in XML, and use cases,
types, attributes, constraints, and associations in UML
diagrams. Artifact plugins must identify and classify
(see Section 2.1.2) the selectables relevant to their arti-
fact types. Queries can then be formed over them, and
existing types of queries can immediately be applied to
them.

Selectables can be characterized (or referred to) in a
number of ways. Two very common ones are by name
(e.g., “everything named foo*) and by classification
e.g., “all methods”), and these are often combined (e.g.,
“all methods named foo*”). Other important charac-
terizations include by property (e.g., all entities with a
given attribute value or member), by structure (e.g., all
methods in the control flow of a given method), and by
relationship (e.g., all subtypes of a given type, or all
entities that refer to a given entity). These kinds of
characterizations are supported in CME’s query facil-
ity, and the facility is open to others.

The wide variety of artifacts in the software devel-
opment process, and of the kinds of selectables within
them, might seem to impose significant conceptual
overhead on developers. Fortunately, as noted in Sec-
tion 2.1.2, many different, artifact-specific kinds of
selectables are classified into common categories,
which represent concepts developers use every day.
The CME query facility specifically supports multiple
classification of selectables, and queries involving both
classifications and specific kinds of selectables. This
reduces the complexity for end users, and it also pro-
vides for an extremely powerful, extensible mechanism
for supporting queries involving multiple artifact types.

Different tools’ use of the query facility can limit
the kinds of selectables to be sought to a subset of
those introduced by the artifact plugins. For example,
the selectables in AspectJ’s use are limited to the join
points that are used for purposes of weaving. This
limitation is appropriate in the context of AspectJ
weaving, though other selectables might be of interest
in other contexts. Clearly, the more a tool constrains
the kinds of selectables it addresses, the more limited
that tool will be with respect to supporting different
AOSD usage scenarios across the software lifecycle.

3.2. Where to Look: Query Contexts

Query contexts define the universe or scope over
which a given query operates. The results of a given
query are bounded by the definition of the context—
results are either elements of the context or are deriv-
able algorithmically from elements of the context.
Query contexts are important for a number of reasons,
not the least of which is as a means of reduction of
complexity for developers. A developer can iteratively
reduce the set of entities s/he sees by applying the same
query to more and more constrained query contexts,
and consequently, s/he ends up “drilling down” into a
smaller, less complex set of entities. Query contexts
include:
• An input collection, which contains the set of ele-

ments to be searched, which may be the universe.
• A universe which is the largest set of elements that

may be examined during any search. For example,
consider a query that computes the set of subtypes
of a given set of types, t. In this case, the input
collection is t, and the set of potential subtypes that
may be considered would be included within the
universe, perhaps along with other elements.

• Any auxiliary information for use when comput-
ing the query. For example, this may include pre-
viously-computed structures, such as control-flow
graphs or indices, or collections other than the in-
put collection, that may be considered when evalu-
ating a query. Auxiliary information is self-
describing, to facilitate its use.

• Variables that can be used and set in the query.

3.3. Queries

Queries are specified using some notation, and the
CME specifically makes provision for multiple query
notations to accommodate different activities and do-
mains. This section describes the set of generic query
concepts defined by CME. We illustrate some of these
concepts with examples from the Panther query lan-

4

guage, a query notation we have developed to support
AOSD in the CME. To lower the entry barrier for the
many people who are familiar with AspectJ, Panther’s
syntax is intended to embed some of the AspectJ que-
ries (called pointcuts in AspectJ). But Panther also
incorporates a richer set of queries, required to support
AOSD across the lifecycle and to permit the use of
queries in defining artifacts.

The fundamental concept underlying the realization
of queries is the query operator, which is simply a
function that takes zero or more parameters and return
values or collections of values. Query operators can be
arbitrarily nested (i.e., the result of one is passed as a
parameter to another) and connected (using set opera-
tors, described subsequently). The following subsec-
tions describe different kinds of operators.

We note that, although “wild cards” are not a man-
datory part of query notations, they are very common,
especially in AOSD languages. At present, Panther
supports the AspectJ wild cards: “*”, which matches
any sequence of identifier characters (or, when used
alone, any complete name) and “..”, which matches any
number of name or signature elements.

3.3.1. Predicates. Predicates produce a boolean value
indicating the truth or falsity of a proposition about an
object (which may be an element in the input collection
or query context, or any other object). Predicates may
examine an element’s name, signature, modifiers, clas-
sifiers, or other attributes. Two common predicates in
PUMA are isEqual and isNull.

Predicates may also contain wild cards to permit
parts of the query to be unspecified and the values that
would be required of them to make the predicate true
become part of the query result. For example, the
predicate “* register(..)” is true of methods whose
name is “register,” irrespective of their return type or
parameters, and the predicate “call(* register(..))” is
true of calls of such methods.

3.3.2. Selectors. Selectors produce collections of se-
lectables that are derived from an input collection. The
selector is governed by a predicate that must hold for
the results, and the selector examines all candidates,
selecting the ones for which the predicate is true. Selec-
tors may implicitly select from the input collection in
the input context. For example, the selector “* regis-
ter(..)” returns all methods in the input collection that
return any type, take any parameters, and whose name
is “register”. Different kinds of selectors include:

Declaration selectors, like decl and relationship,
are used to choose selectables that are declarations of
entities, of which relationships are a special case. For

example, decl(type C*) selects the declarations of all
entities whose name starts with C and that classify as
types. Relationships are selected based on the relation-
ship’s name and signature (a description of the rela-
tionship’s endpoints). For example, relationship im-
plements(*, interface I) selects all “implements” rela-
tionships between any entity and any interface named I.
Wild cards can be used—for example, relationship
implements(..) selects all “implements” relationships,
regardless of the endpoints, and relationship *(..) se-
lects all relationships.

Methoid selectors choose selectables that are
methoid occurrences. In Panther, these include the As-
pectJ pointcut designators that do not require runtime
tests: get and set (read and write of fields, respec-
tively), execution (the execution of any entity that clas-
sifies as a method), adviceexecution (the execution of
any entity that classifies as advice), call (a call to an
operation), staticinitialization (the execution of a static
initializer), and handler (the execution of an exception
handler). Panther will include throw (the site where an
exception is thrown) and label (a named point) soon.

Containment selectors. The in selector returns se-
lectables that occur within a given entity. For example,
in(class C) returns all selectables (methoid occurrences
or declarations) that occur within class C. An important
consequence of the openness of selectables in the CME
is that the kinds of selectables returned depend on the
artifact plugins in use and what they register. This is
true of many other queries also, and supports the seam-
less introduction of new kinds of artifacts. However, in
some contexts, such as when working with AspectJ
pointcuts expecting AspectJ semantics, this is not ap-
propriate. The user can restrict the kinds of selectables
sought using classifier-based queries, or can use more
specific selectors as shortcuts. For example, Panther
also supports the AspectJ pointcut designators within
and withincode, picking those selectables that occur
within a given type or method (respectively), but only
those that correspond to AspectJ join points. Thus,
within(class C) returns any get, set, execution, call,
staticinitialization, and handler methoid occurrences in
class C, in accordance with AspectJ’s semantics.

Observe that selectors can represent shortcuts for
commonly used compound queries involving other
operators. For example, the containingType and in
selectors are shorthands for queries involving the “con-
tains” relationship. The definition of such shortcuts is
left as a design activity for query language designers.

3.3.3. Navigators produce an entity found by follow-
ing a “navigation direction” from a given object to an-
other object. The most ubiquitous example of a naviga-

5

tor is an attribute accessor, which takes an object and
attribute name and returns the attribute value. At pre-
sent, Panther navigators include elements (returns the
members of one or more input aggregates or collec-
tions), parents, and containingType (for collections of
declarations that are members of types, returns the
types that defines them). Relationship navigators in-
clude endpointsof, sourceof, targetof, and expand. The
latter applies to summary relationships between coarse-
grained entities, such as concerns or classes, and ex-
pands them into relationships between their elements.

3.3.4. Set operators including union, intersection, and
difference, and logical operators, including and, or,
and not, are supported in Panther.

3.3.5. Transitive closures of relationships allow the
results of a relationship query to be followed without
knowing how many applications of the query would be
needed for all results to be found. For example, the
Panther “+” query (analogous to AspectJ) traverses the
“extends” and “implements” relationships transitively
to find all subtypes of its argument type.

3.3.6. Variables and unification: In addition to oper-
ating on the collection from which they select elements,
selectors are parameterized by other values, such as the
parts of names, modifiers, or relationships governing
the selection. As an alternative to specifying them liter-
ally, these values can be specified using variables,
whose values are set and stored in the query context, or
using unification variables. Unification variables are
variables whose value is instantiated each time a differ-
ent value for it can be found that makes a predicate
true. So, for example, a planned Panther query such as
“call(* register(<x>,<x>))”3 identifies all calls to any
method that returns any type, whose name is “register,”
and which takes two parameters, both with the same
type. For each such call found, the unification variable,
x, is bound to the parameter type.

3.3.7. Panther example. Suppose a Java system in-
cludes an open capability for displaying data structures.
Supporting a particular data structure involves provid-
ing a suitable implementation of the Printer interface
that must register itself by calling a static register
method provided by the Registrar class. The query
 <printers =
 sourceof(relationship
 implements((class || aspect) *, interface Printer))>

3 PUMA provides basic support for unification, and Panther will
expose it in future.

finds all classes or aspects that implement Printer and
records them in the printers variable. The query
 <regcalls = in(<printers>) &&

 call(static * Registrar.register(..))>
assigns all registration calls to regcalls. A common
error in these situations is forgetting the registration:
 <printers> - containingType(<regcalls>)
finds any printers that do not contain registration calls.

3.4. Query Results

Executing a query can both produce a result and
cause a change to the query context. The query context
may be changed to record or provide access to useful
computed intermediate results or other information,
such as analysis results (e.g., control-flow graphs, de-
pendence graphs) or indices, or to set new values for
variables. The query result itself has a structure that is
potentially complex, reflecting the effect of unification
variables. Rather than being simply sets of values, the
results of a query need to be viewed as a multiplicity of
sets of values. Each set of values in this multiplicity has
associated with it the bindings indicating the value of
each unification variable which causes the set of values
to be a valid result.

The CME query infrastructure permits the person or
software that issued a query to specify the structure of
both the output collection and its elements. For exam-
ple, the desired result may be a collection of tuples <x,
y> where x is a concern named C*, and y is a concern
named C*Extension (where the value of “*” is the same
in all elements of any tuple). Such tuples are used, for
example, as correspondences, specifying entities to be
composed with one another [7]. Particularly in an
AOSD context, where queries are used both to identify
concerns in existing software artifacts and to define
parts or all of software artifacts, this ability to generate
new values as results, rather than simply selecting a
subset of input values, is critical.

4. Query User Interface

The CME includes tools for developers provided as
Eclipse plugins. The query capability is supported by
the “CME Search” view for entering queries, and the
“CME Search Results” and “Visualizer” views for dis-
playing the results. They support queries against a con-
cern model, which is viewed and manipulated by means
of the “Concern Explorer” view [6]. This section gives
an outline of the search views, illustrated in Figure 1.

The search view allows textual entry of queries and
saving of queries for later use. It also includes a query
wizard that guides users through construction of differ-

6

ent sorts of queries, showing them the available options
at all stages. A third way of issuing queries is to select
an element in the Concern Explorer, right click, and
select “search for.” This will list some useful queries
applicable in the context of the selected element.

The search results view displays the query results in
tabular form. If the results are relationships, multiple
columns are used to display the relationship names and
endpoints. Users can sort on any column, and can dou-
ble-click any element to show it in an editor. Users can
also select one or more relationship results and use the
context-sensitive menu to run “expand” query on them.

The visualizer was generalized from the one devel-
oped for AJDT [1] (with a venerable history, back to
SeeSOFT [5]). In the CME, it is configured to display
query results, showing how they are distributed across
groups (such as packages) or members of those groups
(such as files or classes). For relationships, all end-
points are shown, with sources and targets in different
colors in the case of directed relationships.

5. Search Engine Architecture

As noted earlier, the CME architecture is designed
to support multiple query languages. It does so though
a central query engine, called PUMA, which supports
optimization and execution of query graphs4. A query

4 Directed-acyclic graphs can describe expressions with common

subexpressions.

in a CME query language must be compiled to a query
graph. PUMA and the Panther compiler are outlined in
this section; details are beyond the scope of this paper.

5.1. PUMA

PUMA is a general query engine that can be cus-
tomized to search arbitrary data structures. This is nec-
essary to support the CME’s ability to handle arbitrary
artifacts. It accomplishes this by allowing for registra-
tion of two kinds of plugins, operators and attribute
accessors, for use in query graphs. An attribute acces-
sor is associated with a particular type of data, and is
capable of determining the value of a particular attrib-
ute of that data, such as the name or modifiers of a
UML Classifier. An operator is capable of performing
a particular query operation on a data structure (or col-
lection of data structures), such as finding all calls
within a method. The CME provides a set of standard
operators and attribute accessors, to deal with collec-
tions and material in concern models. Since arbitrary
artifacts can be represented in the concern model, these
are often sufficient. Artifact plugins can, however, pro-
vide additional operators and attribute accessors suit-
able for querying their artifacts.

PUMA provides flexible opportunities for optimiza-
tion, based on query-graph transformation, leveraging
of available auxiliary information, such as indices or
domain knowledge acquired from a particular usage
context, and other techniques. For example, queries

Textual
query entry

Saved
queries

Query
wizard

Restrict to
Build concern

Build concern,
defined by
earlier query

Concern
Explorer

Eclipse
projects as
concerns

Cross-artifact
relationship

(Ant � Java)
selected

Relationship
sources

Relationship
targets

Source of
selected

relationship
in editor

build.xml file
showing
sources

conmanbuild.xml
file showing

targets

Relationship
source
gutter

annotation

Summary
relationships

Figure 1 – CME Visualization Perspective in Eclipse

7

involving multiple uses of a unification variable are
converted to fronts, each responsible for a single use,
and each consisting of multiple stages. Execution of the
stages across multiple fronts is then ordered dynami-
cally based on collection sizes, so as to bind the vari-
able in the smallest collection and then use the bindings
in the larger ones. Extensive exploitation of the optimi-
zation capabilities remains future work.

5.2. The Panther Query Compiler

The Panther compiler parses the query language into
an abstract syntax tree (AST), then uses pattern-
matching on the AST to select plugins to process it.
Each plugin handles a root node and, optionally, de-
scendants, down to but excluding specified fringe
nodes; other plugins are found to process the fringe
nodes and their descendants. A plugin can transform
the AST and/or generate a portion of the PUMA query
graph needed for query execution.

Panther plugins are chosen based on the form of the
AST regions they apply to, the types of results they
expect for fringe nodes, and the information they ex-
pect to be available at execution time, such the type of
collection being searched and what indices are avail-
able. Plugins can thus be written to handle, and opti-
mize, a variety of specific situations. Such plugins are
registered with Panther, describing their requirements.
Panther finds all applicable plugins in a particular con-
text, asks each for its cost in that context, and selects
the lowest-cost plugin. This flexible plugin architecture
makes the panther compiler a suitable basis for imple-
menting other query languages also.

6. Experience

Juri Memmert reported to us some experience with
using the Panther query language in his consulting
practice [11]. He needed to identify the characteristics
of a specific component within a code base of about
1000 classes to prepare it for extension. The compo-
nent used the command pattern. It was important to
identify the callers of the command’s execute method
as a new concern, and to characterize the calls with
respect to the other concerns they belonged to. These
calls cut across 4 different applications and more than
12 previously-identified concerns.

Memmert began defining the concern with a query
to find all calls of the execute method, then added
qualifications based on the other concerns they be-
longed to. This revealed some calls from within the
component implementing the commands themselves.
This was a violation of the intended architecture, which

assumes that all commands are atomic in nature.
Memmert then formulated desired architectural con-
straints as further queries. These revealed a number of
violations, leading to significant reengineering. After
that, queries correctly characterized the new concern.

Memmert reported being hampered by lack of
documentation of the query language, but, nonetheless,
the ability to work with the concern as a first-class en-
tity made it easier to accomplish the original task, and
the reengineering resulted in valuable improvements to
the system. Commands are now guaranteed to be
atomic, enhancing the predictability of the system and
removing a long-standing bug. The queries also re-
vealed that the commands used fell into two categories:
core commands common to all applications and ex-
tended commands used in only some applications. It
became obvious that the concerns of the core com-
mands always appeared together, while the extended
commands and their concerns were not similarly dis-
tributed. So, instead of treating the use of commands as
one concern, they were better modeled as one concern
for all core commands and one concern per extended
command. This insight led to a plug-in architecture that
furthers the extensibility of the component.

 During the course of CME evolution to date.
PUMA has been used to implement three query lan-
guages: a low-level language that allows PUMA opera-
tors to be called directly, used for testing and debug-
ging; a subset of Panther that supports name matching
with wildcards and unification variables, currently used
in the Concern Composition Component [7]; and Pan-
ther itself, exposed via Eclipse views, as noted above,
and used to implement intensional concerns in concern
models [6]. The query support has thus been used for
three key AOSD activities: concern identification,
modeling and composition. It has also proven flexible
enough to address multiple types of artifacts (Java,
AspectJ and Ant to date). The Ant artifact plugin was
developed after Panther was mostly implemented, and
it immediately enabled queries against Ant artifacts.

A forerunner of the Panther query language, imple-
mented as an API on the concern model, was used in a
significant refactoring project [2]. The task was to
separate support for Enterprise JavaBeans™ (EJBs),
from the rest of a large application server. The server
consisted of some 15,000 Java classes, separated into
over 250 components. The EJB support and its use cut
broadly across these components.

A simple concern model was constructed, consisting
of some 80 top-level concerns, into which the compo-
nents were grouped, and a new EJB support concern to
contain all the EJB support. Initially, the EJB support
concern was set to contain those components wholly

8

devoted to its implementation. Then an iterative proc-
ess was followed to refine this concern. Each iteration
began with determining all links from the other con-
cerns to the EJB support concern, using our queries.
Then some of the links were selected for removal dur-
ing the current iteration, and the removal was accom-
plished by a variety of refactorings. At peak, the num-
ber of links reported was about 1000. Despite the size
of the system, each report of all links was generated in
under 5 minutes.

7. Related Work

The problem of being able to ask questions about in-
terrelated software artifacts is not a new one, and it has
been explored at length in the software engineering
environments literature over the past two decades.
Numerous approaches have been employed for repre-
senting and querying software artifacts and their inter-
relationships, including relational databases, object-
oriented databases and database programming lan-
guages, rule-based languages, predicate calculus, and
functional languages; more recent efforts, such as
XLinkit [12] and InfiniTe [2], have used combinations
of XML, XLink, and/or OCL. Our work specifically
takes into account some of the results and experiences
produced by these efforts. While all of these efforts
provided a subset of the capabilities of the CME’s
query facility, we are not familiar with any that in-
cluded all of the capabilities required to support que-
ries in the AOSD context, in large part because of the
difference in purpose and software model.

Several efforts in the AOSD area have produced
tools that support flexible queries over particular types
of artifacts. One of these is JQuery [9], which supports
queries over Java code. It includes a customizable
GUI, which enables users to define query-based views
of a working set of Java code, a capability that is not
yet present in CME. JQuery is implemented on a
Prolog-like logic query language, which gives it con-
siderable expressive power, including unification, but
its queries are limited to a single type of artifact. An-
other, related effort [8] has used XML to represent Java
class files, and implemented a subset of AspectJ’s
pointcut queries using XQuery [16] (a functional pro-
gramming language with specialized support for query-
ing XML structures). Unlike JQuery, this approach
does not support unification, but it is not clear that ei-
ther approach is more expressive than the other. The
authors argue for the extensibility of the set of queries
based on the computational completeness of XQuery,
an argument that can also be made for JQuery. Neither
of these approaches have addressed the non-trivial is-

sues involved in supporting queries for a wide range of
purposes and across multiple types of highly interre-
lated artifacts, as this work has, and both approaches
are vulnerable to representation sensitivity. FEAT [14]
supports the identification and modeling of concerns in
Java software. It supports relational queries and per-
mits the definition of concerns based on queries, which
is an important use case for us as well. FEAT’s query
language is deliberately not as expressive as ours—e.g.,
it excludes transitivity for simplicity [15], but we in-
clude it because it is essential for a variety of AOSD
tools—and it does not address multiple artifacts.

OCL specifies a notation for constraints over UML
entities. As a specification, it does not identify or ad-
dress issues required to realize the specification (such
as performance and extensibility), as we have. None-
theless, OCL is interesting in that it uses many of the
same query concepts provided by the CME. OCL can-
not be used to define artifacts, and it is restricted to
UML artifacts, making it inherently less broadly appli-
cable than the CME’s query facility, but we considered
OCL as a possible end-user query language, as it is a
standardized, relevant notation, and we believe the
CME’s query framework would support it well.

We observe that OMG has recognized the need for
capabilities similar to those in the CME’s query facil-
ity, and, as part of its Model-Driven Architecture effort
(to which has strong relevance), issued a request for
proposals for QVT, a query, view, and transformation
mechanism that will work on MOF,making it applica-
ble to a wider range of artifacts. A QVT specification
does not yet exist for comparison.

8. Conclusions and Future Work

The aspect-oriented paradigm fundamentally
changes the way software is defined, modularized,
viewed, and interconnected by expanding the ways in
which entities can be modularized and the interrelation-
ships among modules can be specified. The successful
definition and use of aspects in software mandates in-
clusion of queries as a first-class notion. Queries are
used both to enable developers to locate areas of inter-
est in software that are not modularized, and to form
part of the definitions of concerns and their interrela-
tionships. Moreover, queries must apply across the
software lifecycle: both to the interrelated artifacts and
different activities in a software process, including
concern identification, extraction, and integration.

To address these significant requirements and con-
straints, the CME provides pervasive query support,
realized by an open, extensible, artifact-neutral query
component, for use by all components and tools in the

9

environment. The query infrastructure provides, as part
of its fundamental concepts, a set of key open points.
These include selectables, modifiers, classifiers, rela-
tionships, and query operators. It also provides core
support for wide range of optimization strategies--a
critical issue that cannot be addressed as an "add-on."

Some initial validation for the claims of broad ap-
plicability and utility exist. We have used the CME's
query facility in the implementation of components that
support three different but ubiquitous activities in an
AOSD process--concern identification (the Panther
language), (re)modularization and modeling, and com-
position. We have also used it successfully to express
queries over three types of artifacts (Java, AspectJ, and
Ant) and their interrelationships. Most of the open
points have been used, and a number of important de-
sign and implementation issues that are faced by AOSD
technology providers have been identified. An inde-
pendent consultant has also applied the Panther query
language successfully to a project.

The use of a CME-like query capability, while man-
datory in AOSD, is useful in any software engineering
process, to help developers locate concerns of interest.
We note that the earliest version of the query facility
was used with a strictly Java software base, and the
developers involved reported significant benefit from
using queries to identify latent, unmodularized con-
cerns and to explore interrelationships among those
concerns in their software. For this reason, the CME's
query capability represents an important path for in-
cremental adoption of AOSD.

Much work remains for future, most notably in the
area of fully exploiting some of the open points. We
have not yet used the optimization infrastructure to its
full capacity. Exploring the issue of incremental query
(re)evaluation will likely be critical to scalability in an
IDE, such as Eclipse. We would also like to exploit
existing open points to integrate relevant existing capa-
bilities, such as analysis (e.g., as provided by FEAT)
and data mining, to enable a wider range of semantic
queries based on such information.

9. Acknowledgements

Matt Chapman, Andy Clement, Helen Hawkins and
Sian January developed the CME Eclipse views and
provided valuable input and feedback on the CME
query facility. Andy and Matt developed CME support
for AspectJ and Ant artifacts. Andy and Adrian Colyer
provided recommendations regarding the query lan-
guage and insights from their early use of the CME.
We are grateful to Juri Memmert for being an adven-
turous and understanding user, for his insights into

what is needed, and for sharing his experience. Stan
Sutton provided helpful input during the design of Pan-
ther and on an earlier version of the paper.

10. References

[1] AJDT: AspectJ Development Tools Eclipse Technology
Project. http://www.eclipse.org/ajdt.

[2] K.M. Anderson, S.A. Sherba and W.V. Lepthien. “To-
wards Large-Scale Information Integration.” In Proc.
24th International Conference on Software Engineer-
ing. May 2002.

[3] A. Colyer and A. Clement. “Large-scale AOSD for
Middleware.” In Proc. 3rd International Conference on
Aspect-Oriented Software Development, March 2004.

[4] Concern Manipulation Environment Eclipse Technol-
ogy Project. http://www.eclipse.org/cme/.

[5] S.G. Eick, J.L. Steffen, E.E. Sumner, Jr. "SeeSoft - A
Tool for Visualizing Line Oriented Software Statistics",
IEEE Transactions on Software Engineering 18(11), pp.
957—968, November 1992.

[6] W. Harrison, H. Ossher, S.M. Sutton, Jr. and P. Tarr.
“Concern Modeling in the Concern Manipulation Envi-
ronment.” Submitted for publication.

[7] W. Harrison, H. Ossher and P. Tarr. “Concepts for De-
scribing Composition of Software Artifacts.” Submitted
for publication.

[8] M. Eichberg, M. Mezini, and K. Ostermann. “Pointcuts
as Functional Queries.” In Proc. 2nd Asian Symposium
on Programming Languages and Systems, 2004.

[9] D. Janzen and K. De Volder. “Navigating and Querying
Code Without Getting Lost.” In Proc. 2nd International
Conference on Aspect-Oriented Software Development,
March 2003.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm and W.G. Griswold. “An Overview of AspectJ.” In
Proc. 15th European Conference on Object-Oriented
Programming, June 2001.

[11] J. Memmert, JPM Design. Personal communication.
[12] C. Nentwich, L. Capra, W. Emmerich and A. Finkel-

stein (2002). xlinkit: A Consistency Checking and Smart
Link Generation Service. ACM Transactions on Internet
Technology, 2(2):151-185.

[13] H. Ossher and P. Tarr. “Using Multi-Dimensional Sepa-
ration of Concerns to (Re)Shape Evolving Software.”
CACM 44(10): 43–50, October 2001.

[14] M.P. Robillard and G.C. Murphy. “Concern Graphs:
Finding and Describing Concerns Using Structural Pro-
gram Dependencies.” In Proc. 24th International Con-
ference of on Software Engineering , May 2002.

[15] M.P. Robillard and G.C. Murphy. “Capturing Concern
Descriptions During Program Navigation.” OOPSLA
2002 Workshop on Tool Support for Aspect Oriented
Software Development, October 2002.

[16] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery.

10

