
RC23344 (W0409-136) September 21, 2004
Computer Science

IBM Research Report

Concern Modeling in the Concern Manipulation Environment

William Harrison, Harold Ossher, Stanley Sutton Jr., Peri Tarr
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Concern Modeling in the Concern Manipulation Environment

William Harrison, Harold Ossher, Stanley Sutton Jr., Peri Tarr
IBM Thomas J. Watson Research Center, Hawthorne, NY

{harrisn, ossher, suttons, tarr}@us.ibm.com

Abstract

The Concern Manipulation Environment (CME) is
an AOSD environment in which software is organized
and manipulated in terms of concerns. ConMan sup-
ports the identification, definition, encapsulation, ex-
traction and composition of concerns in the CME.
ConMan models software in terms of concerns, rela-
tionships, constraints, units, artifacts, and associated
information. The concern model is multidimensional
and concerns can be defined extensionally and/or in-
tensionally. ConMan is neutral with respect to artifact
types and formalisms, and it can be used with both
aspect-oriented and non-aspect oriented software and
methods. ConMan is intended to serve both as a tool
for directly modeling concerns and as a platform for
developing alternative concern-modeling approaches.

1. Introduction

Concerns are pervasive in software development.
They originate in the interests of the stakeholders of a
software system, including customers, developers, us-
ers. They arise throughout the software life cycle,
from ideas for features or functions that inspire new
development, through to properties such as maintain-
ability and adaptability that affect the utility and value
of a product long after initial development. We recog-
nize many categories of concern, including concerns
relating to the physical and logical organization of sys-
tems; application-specific concerns such as functions,
features; developer-oriented properties such as under-
standability and maintainability; and user-oriented
properties, such as performance and ease of use. Con-
cerns of many different kinds are important across the
full range of software engineering activities.

The representation, separation, and integration of
concerns are important elements in programming lan-
guages, modeling formalisms, and software engineer-
ing methods. Nevertheless, many problems with soft-
ware can still be traced to the limitations of current
approaches to managing concerns. These include the a

priori imposition of particular concerns or types of
concern, the failure to treat concerns as first-class enti-
ties across the software life cycle, and the imposition
of rigid decompositions on software artifacts. At-
tempts to address these problems have given rise to
aspect-oriented software development (AOSD) [13], in
which software is fundamentally represented, organ-
ized, and manipulated in terms of concerns.

The Concern Manipulation Environment (CME)
[12] is an AOSD environment based on the premise
that concerns should be treated as first-class entities in
all stages of the software life cycle. The CME ad-
dresses two main groups of users. For software devel-
opers using AOSD, the CME offers tools for creating,
manipulating, and evolving aspect-oriented software
across the lifecycle. For AOSD tool providers and
researchers, the CME offers a flexible, open set of
components and frameworks on which to build and
integrate aspect-oriented technologies. A key goal of
the CME is to promote incremental adoption of
AOSD. The CME allows developers to identify,
model, and analyze concerns in existing software, re-
gardless of whether it was developed using AOSD.

Any software environment that organizes and op-
erates on software according to concerns requires sup-
port for concern modeling. This paper describes Con-
Man, the Concern Manager component of the CME.
Section 2 introduces the topic of concern modeling and
gives some scenarios of concern modeling in software
development. Section 3 states our requirements for a
concern-modeling facility. Section 4 then presents the
ConMan schema and addresses issues of implementa-
tion. Section 5 discusses ConMan in the context of the
CME and Eclipse [12], and Section 6 describes our
experience with it. The final sections address related
work and summarize our results.

2. Concern Modeling

Concern modeling is simply the representation of
concerns themselves as first-class entities. The fol-
lowing scenarios suggest how concern modeling might
be used in a variety of development scenarios:

1

In a COTS-based process1, a concern model of
the system under development can be constructed to
provide a framework for evaluating the compatibility
and contribution of COTS products that are candidates
for adoption. The suitability of candidate products can
be evaluated based on the range and compatibility of
concerns addressed, the need for tailoring, and the
number of concerns not addressed.

In new development, a concern model can be
elaborated to represent the initial concerns that moti-
vate or constrain the project. As development pro-
gresses the concern model can be elaborated. Con-
cerns can be related to the work products in which they
are addressed, and relationships between concerns can
be drawn to capture semantic and other dependencies.
The concern model can be analyzed for consistency
and coherence. As the life cycle is iterated, changes at
various stages can be validated against the concern
model, and the model can help to propagate updates
through both the concern space and the artifact space.

In the retroactive development of a product line
based on an existing product, concern modeling can be
used to characterize the potential feature space and to
position different product variants in that space. The
existing product can be decomposed into units corre-
sponding to specific concerns. Concerns representing
additional features can be identified and related to the
existing model, and additional work products can be
developed to support implementation of the additional
concerns. Variants within the family can be specified
by selecting concerns of interest from within the fam-
ily concern space. Compositional technologies can
then be used to compose variants using implementa-
tions associated to the selected concerns.

We could elaborate many additional scenarios, for
example, relating to software understanding, exten-
sion, deployment, and multi-team development.
Concern modeling thus has a role in many kinds of
development tasks and processes.

3. Concern-Modeling Requirements

While many of the requirements for concern mod-
eling are to be expected of any meta-modeling facility,
a good concern modeling tool must address several
important modeling requirements that are less com-
mon: specific modeling concepts for concerns and
their organization, neutrality and open-endedness with
respect to artifacts, and specification that captures the

1 That is, a process using commercial, “off-the-shelf”
software

intended structure of material rather than simply re-
flecting existing structure.

As part of the CME, the tool itself faces several
noteworthy requirements: it should be able to deal
with artifacts across the whole lifecycle, with software
creation as well as with result artifacts, and with mate-
rial that is often incomplete and incorrect as it is being
developed. It also requires a modern interactive inter-
face to developers that have to work with the model

3.1. Schema Requirements

The concern-modeling schema must be “concern
neutral”, that is, able to capture arbitrary concerns.
This is necessary to represent concerns for all kinds of
stakeholders and all sorts of development tasks. To
represent arbitrary concerns it is necessary to represent
both abstract and concrete concerns. Abstract con-
cerns include conceptual entities, such as features in
the abstract, properties, topics of interest, and so on.
Concrete concerns represent physical entities, notably
the work products of software development.

The concern modeling schema must support multi-
ple, concurrent, overlapping classifications or dimen-
sions of concerns. Concern spaces are certainly mul-
tidimensional [30], that is, concerns are typically or-
ganized according to multiple classifications. For ex-
ample, a particular class in an object-oriented applica-
tion might be classified according to stakeholder rele-
vance, development stage, features, complexity, size,
and more, each of which may be taken as a dimension
of concern. We must be able to support multiple levels
of concern, representing arbitrary levels of abstraction
or detail. These may include multiple levels of classi-
fication, structure, aggregation, and so on. For exam-
ple, functionality may be organized by feature by spe-
cific functions, and by functional variants (within func-
tions). It should be possible to form arbitrary groups of
concerns or other model elements, on demand. This
supports the flexible formulation of concerns and also
allows for “working sets” of model elements that may
needed during concern-modeling activities

It is necessary to represent various types of arti-
facts, but our schema must be neutral with respect to
the kinds of artifacts that can be modeled. This is to
be able to capture artifacts of interest to the whole
range of stakeholders, from across the life cycle. Simi-
larly, our schema should be neutral with respect to
the formalisms used to represent particular types of
artifacts. This is important for capturing artifacts from
across the life cycle and across different development
methods. Our schema should also be neutral with
respect to the development approach. In particular,

2

it should be useful not only within AOSD methods but
also in more traditional development methods. As a
particular case of method neutrality, the schema should
be symmetry-neutral: useful in a variety of aspect-
oriented development methods and tasks, including
both those with distinguished aspects and bases
(asymmetric models) and those without distinguished
aspects and bases (symmetric models).

It is not sufficient to represent concerns in isolation;
we must also represent relationships among con-
cerns. These arise from many sources, including the
semantic properties of artifact types and instances,
dependencies in the development process, characteris-
tics of the application domain, and stakeholder world-
views. Relationships among concerns are important
because they contribute directly to an understanding of
software, help to organize development tasks, and con-
stitute concerns themselves. For broad applicability,
we must represent relationships of arbitrary kinds,
among arbitrary types of elements. Moreover, rela-
tionships should be first-class entities in the concern
model. To represent arbitrary levels of abstraction or
detail, we want to be able to aggregate detailed rela-
tionships over lower-level elements and represent them
as more general relationships between higher-level
elements. Constraints on concerns arise from many
sources, including domain models, customer require-
ments, methodology, implementation contingencies,
and more. Constraints are important because they de-
fine consistent states of models and assure that con-
cerns are used consistently in development. Con-
straints, like relationships, should be first-class entities.

It should be possible to define a wide range of con-
cern model elements, including concerns, relation-
ships, and constraints, by either extensional or inten-
sional specification (or both). This affords flexibility
and simplicity in building and maintaining concern
models. To support intensional specifications, a nota-
tion for writing the specifications is also required.
Much concern modeling will directly involve software
artifacts and information or elements they contain.
Although we want a concern-modeling schema that is
artifact-neutral, it will often be helpful to be able to
capture artifact-specific information, although in
ways that are independent of the artifact formalism. It
will also be useful to attach arbitrary information to
model elements. This may be information that is not
essential to the concern model itself but is useful in
some particular context, such as determining how a
model should be displayed or processed. In order to
support not just concern modeling but also the devel-
opment of additional concern-based or aspect-oriented
tools and methods, our schema should be open and
extensible. Some points of openness have already

been indicated, for example, openness to types and
instances of concerns, and the need to accommodate
artifact-related and general kinds of information. The
schema should also provide a framework for the defi-
nition of additional kinds of modeling entities.

 We intend our concern modeling schema to be
used directly to model concerns. However, we recog-
nize that there are other approaches to concern model-
ing (for instance, [28], [22], [34]), and we hope to
promote development and experimentation with varied
modeling approaches, tools and methods. Thus, we
want a concern modeling schema that can serve as a
unifying basis or metamodel for defining alternative
and higher-level concern modeling schemas.

3.2. Component Requirements

The basic requirement for a concern-modeling
component for CME is to support concern modeling
according to a schema that addresses the requirements
outlined above. Additionally, there are important re-
quirements beyond support for the schema..

Because we expect concern modeling to occur in
many different phases and in many different contexts,
a concern-modeling component must be able to ac-
commodate incremental and incomplete modeling.
Although the concern-modeling schema must allow
concerns to be modeled on many different levels, a
concern-modeling component must allow users (hu-
man or automated) to collapse or expand the view and
to access the model on any of the different levels and
to move between levels. And because we plan to apply
concern modeling to large-scale, real-world systems, a
concern-modeling component must perform well and
scale to large bodies of software.

We view concerns as constituting an extensive and
highly structured space, and a concern-modeling com-
ponent should support users in locating themselves in
and navigating through that space. As a means of navi-
gating through a concern space, focusing user atten-
tion, obtaining information about a concern or space,
and also for defining concerns, a concern-modeling
component should support queries over the space.

Supporting the incremental adoption of AOSD is
one of the principal goals of the CME. Toward that
end, it should be possible to use a concern-modeling
component without requiring the use of other aspect-
oriented technologies. There are additional properties
that are of interest to us for a concern-modeling com-
ponent that we expect to address mainly in subsequent
work. These include incrementality, concurrency,
inconsistency management, and others.

3

4. ConMan Schema and Component

Here we describe the main elements of the Con-
Man schema and discuss implementation issues.

4.1. Schema Design

At the topmost level a ConMan model consists of
a concern space, which contains elements representing
concerns, relationships, constraints, and units.2 Ex-
amples are shown in Figure 1, which represents the
Concern Explorer view from the CME (an Eclipse
plugin).

ConMan concerns represent the conventional no-
tion of a concern and can contain other concern model
elements (such as nested concerns or units). Concern
contexts (which specialize concern) can also have as-
sociated relationships and constraints (which are
maintained separately from any relationships or con-
straints that the concern may include as elements).
Thus the structure of a concern space can be built up
both by the grouping of model elements and by ex-
plicit relationships and constraints among them. In
Figure 1, “Workspace”, “example.cme”, “Features”,
“Naming”, “Error types” are all examples of concerns.
“Workspace” is a concern context, and its associated
relationships are found in the folder “ContainedRela-
tionships.”

Concerns can be assigned elements extensionally,
intensionally, or by a combination of these approaches.
Extensionally defined concerns (such as “Printing”)
are assigned their elements directly. Intensionally de-
fined concerns (such as “Naming”) obtain their ele-
ments through evaluation of an associated query (and
users can specify policies as to when these queires are
evaluated).. A particular subtype of concern context is
composition, which contains a set of elements to be
composed and a set of composition relationships that
describe how to compose them.

Relationships in ConMan represent relationships
among concern model elements of various types. Re-
lationships are typed in the ConMan schema by their
structure and access methods. ConMan relationships
can be binary or n-ary, and the elements in them can be
ordered or not. Relationships with positioned elements
can be considered directed, relationships with named
elements can be considered directionless. In imple-
mentation, ConMan relationships are not typed by
relationship semantics; so, for example, directed binary
relationships are used to represent many kinds of se-
mantics, such as implements, extends, refersTo, and

others among Java artifacts. To allow for the represen-
tation of such semantics, ConMan also supports spe-
cialized attributes on relationships. In Figure 1 rela-
tionships are shown for the Java interface
org.eclipse.cme.Entity.

Figure 1. The CME Concern Explorer View

Whereas relationships group related elements,

constraints group constrained elements. Constraints
can also be added to concern contexts in a distin-
guished role (that is, as constraints associated to the
context, not as elements of the context). ConMan does
not yet have a constraint definition language, but Java
can be used to provide an implementation of constraint
semantics, as can patterns in the CME query language.

 Concerns, relationships, and constraints are all
specializations of concern model element, the basic
type of ConMan models. As such, all have first-class

2 In this section we use italic font to distinguish references to model-
ing concepts in the ConMan schema.

4

status, and all can be applied to one another. Conse-
quently, any concern model element can be loaded into
a concern space, grouped into a concern, related by a
relationship, or constrained by a constraint. These
elements also support multidimensional separation of
concerns MDSOC and crosscutting associations. For
example, in Figure 1 the feature “Naming” occurs un-
der both the “Features” concern and also under a
“Topic” concern o which it is related. Units (discussed
below) can also crosscut multiple concerns, relation-
ships, and constraints in a concern space, such as the
interface org.eclipse.cme.Entity in Figure 1.

The elements described so far support concern
modeling in the abstract, but concerns will often be
related to artifacts that represent the work products of
development. To represent these, ConMan uses units
and artifacts. Units are concern model elements whose
purpose is to represent, in the concern model, the work
products of software development (or other sorts of
documents, models, and so on). Units may be simple
or compound. In Figure 1, compound units are used to
represent classes and interfaces, simple units to repre-
sent fields and methods. A unit has a definition, which
is a reference to an artifact. Artifacts are not concern
model elements as such but represent (either directly or
by proxy) the entities that are modeled as units. An
artifact has a location that indicates where the actual
artifact represented by the unit can be found. Artifacts
may represent many sorts of things, including files in a
file system, distinguished elements of files, elements of
other models (including in-memory models), elements
stored in databases, and so on.

Although ConMan is intended to be artifact neu-
tral, many of the artifacts that will be modeled during
software development will come from formalisms that
have rich semantics. To enable some of that informa-
tion to be captured in a ConMan model, elements can
have associated modifiers classifiers, and attributes.

Modifiers represent terms in an artifact formalism
that play a qualifying role, such as visibility-
controlling keywords. Classifiers are terms that repre-
sent kinds artifact in the artifact formalism (e. g,
classes in Java). For example, the Concern Viewer
(Figure 1) uses classifiers to discriminate Java classes
and interfaces, and it uses modifiers to distinguish pub-
lic from private members. Thus, specific sets of modi-
fiers and classifiers are formalism-specific (although
some may be shared by multiple formalisms), but the
notions of unit and artifact and the modifier and classi-
fier mechanisms are generic. ConMan also has a gen-
eral-purpose attribute mechanism that allows arbitrary
information to be associated with any element.

A concern space also has associated loaders and
builders. Loaders are responsible for loading elements

into a concern model from some source domain (typi-
cally software artifacts or other models). Loaded ele-
ments may include concerns, relationships, constraints,
units, and so on. Builders extract information from a
concern model for use by tools (possibly outside of
ConMan) in building new concern model elements
(e.g., in composing new artifacts). Detailed discussion
of loaders and builders will appear in later work.

The ConMan schema includes a number of open
points that support our goal that the CME should be a
platform for development of new aspect-oriented tools
and approaches. The attribute, modifier, and classifier
mechanisms allows users to associate arbitrary infor-
mation with concern model elements. The ConMan
schema can also be used as a framework for the defini-
tion of new types of concern model element. Loaders
and builders also constitute extensible frameworks.
Examples of specific extensions are discussed in Sec-
tion 6. Of course, the specific types and instances of
concerns, relationships, and constraints in a concern
space, and the structure of the space, are also open.

Additionally, ConMan works with other elements
in the CME. One of these is Panther, a query manager
that supports the definition of intensional concerns in
ConMan. Another is CIT, the Concern Informant
Toolkit, which provides a standardized, abstract inter-
face for artifacts and their elements. CIT enables
ConMan (and its loaders and builders) to access a vari-
ety of types of artifacts in a uniform way. It provides a
generic object-oriented interface that can be imple-
mented by specific object-oriented types and also other
types that are based on a container-element model.

We believe that the ConMan schema, as designed
and implemented, generally addresses the requirements
set out in Section 3 and affords great flexibility in the
modeling of concern spaces. Some experience that
helps to bear this out is described in Section 5.

4.2. Operational Issues

One of our operational requirements was to sup-
port incremental and incomplete concern modeling.
This is readily accommodated by the ConMan schema,
which has no a priori completeness requirements. It is
also accommodated by the loader model and imple-
mentation, which support the loading of individual
elements and small sets of elements. To further ad-
dress this objective, we have introduced into com-
pound unit implementations the ability to lazily load
the details of a unit as needed. We also support the
loading of different categories of relationship at differ-
ent times.

Performance and scalability are critical to the
adoption of concern modeling for large, real world

5

systems. We have addressed these issues in several
ways. One is through incremental loading of concern
models as-needed. Another is by the use of different
means of accessing the artifacts from which a model is
built. For instance, for accessing Java artifacts, we
have made use of both JikesBT [18] and Shrike [26],
which offer different performance and space character-
istics. The implementations of grouping data struc-
tures can also be optimized for space or access. Addi-
tionally, we are pursuing space optimizations in the
ConMan implementation and performance optimiza-
tions in the loader architecture and algorithms. As
most of our implementations represent evolving proto-
types, it is not possible at this time to give representa-
tive size or performance figures; however, an early
ConMan implementation was able to provide practical
support for the simple concern modeling of a system of
in excess of 15,000 Java classes (Section 6.1 and [8]).

A typical software system contains many kinds of
element with many kinds of relationship. For Java
systems, we compute over a dozen relationships
among code units alone. In order to simplify the view
of relationships, and to represent them at higher levels
of granularity, our relationship loaders for ConMan
support the propagation of relationships from lower-
level (contained) elements up to higher-level (contain-
ing) elements, summarizing at higher-levels of granu-
larity the relationships at lower-levels of granularity.
For example, if two classes are related by some rela-
tionship (e.g., “extends”), that relationship is propa-
gated to containing concerns that represent, for exam-
ple, packages, projects, components and features.

ConMan has both a GUI and an API. The API
represents the kinds of schema elements described in
Section 4.1 and is used by the loaders and other tools.
Elements of the GUI are described next.

5. ConMan in the CME and Eclipse

ConMan is represented in the Eclipse plug-in for
CME through perspectives that combine a number of
views related to concern modeling and use.

The Concern Explorer view (Figure 1) displays a
ConMan concern model in a tree-structured form (al-
though the models can have more general structures).
The default loader for ConMan models of Eclipse
workspaces creates three top-level elements. One of
these represents the workspace itself, with concerns
and units under it representing the folders, packages,
and files of the workspace. These are, after all, key
concerns in the software. The model has an organiza-
tion parallel to that of the workspace and a representa-
tion in the GUI like that used in the Eclipse Package

Explorer view. An addition that we make to the repre-
sentation of the workspace is to add the “Relation-
ships” folder for each unit represented.

Another top-level element in the default model is a
folder for “Contained Relationships” in the concern
space; by default these are initialized to hold all of the
relationships among the Concerns and Units in the
workspace. These include summary relationships, that
is, relationships aggregated from lower-level elements
to higher-level elements (as shown by the “extended
by” relationships for org.eclipse.cme.Entity).

The third top-level element, the “Features” con-
cern, is initially empty and represents a default location
for users to add feature-related concerns through the
UI (as we have done in Figure 1). Other top-level con-
cerns can also be added (such as “Topics” in Figure 1).

The CME Search and Search Results views sup-
port a concern-oriented search capability based on a
pattern-matching query language [29]. Searches can
be executed over the entire concern model, the work-
space, or specific concerns, and they can be focused on
specific kinds of concern-model elements. The results
of query evaluation are displayed in a Search Results
view. Query results can also be sent to a concern and
used to define a concern extensionally. Alternatively,
the query itself can be sent to a concern and used to
define the concern intensionally.

Finally, the CME has a Visualizer view that
shows overviews of workspace elements, highlighting
parts identified by query. This is useful for showing
the distribution of concerns across units.

6. Experience

In this section we discuss three sorts of experience
with ConMan: The modeling of a large software base
for purposes of concern extraction; the implementation
of another concern-modeling schema; and extensions
to the ConMan schema and loader framework to ac-
commodate new types of artifacts in concern models.

6.1. Extracting a Concern

As reported in [9], our colleagues at IBM Hursley
Park (supported by the authors) used CME capabilities
to conduct an experiment in concern extraction. The
goal was to take a large application server (over
15,000 classes) and extract the components relating to
the use of Enterprise Java Beans (EJB) [27], thus form-
ing a small product line in which the application server
could be deployed with or without EJB support.

ConMan was used to defined a concern model in-
cluding the EJB container concern and concerns for

6

each of about 80 components. The EJB container con-
cern was initially populated with components that im-
plemented the EJB support. An iterative process
guided by queries over the ConMan model was used to
identify and eliminate dependencies between other
components and components in the EJB concern. This
often involved refactoring, sometimes creating AspectJ
[20] aspects, and sometimes putting additional code
into the EJB concern. The separated components were
subsequently recombined using AspectJ through the
Eclipse AspectJ Development Toolkit [2].

The experiment was considered a success overall.
Although the tools used needed refinement, the authors
in [9] were happy to recommend the cautious adoption
of AOSD in commercial projects.

6.2. Modeling an Alternative Schema

Like ConMan, Cosmos [28] is a “next generation”
concern modeling schema. Like ConMan, Cosmos
was designed to overcome limitations in the Hyper-
spaces model [17], supports symmetrical modeling,
supports multidimensional separation of concerns
(MDSOC) [30], and uses notions of concern, relation-
ship, and predicate (or constraint). Nevertheless, there
are some significant differences between them.

One important difference is that Cosmos has
mainly “flat” elements (lacking nesting) but uses rela-
tionships for structuring, whereas ConMan has mainly
structured elements (with nesting) although it also in-
cluding relationships. Another is that Cosmos has
more elements with more specific semantics whereas
ConMan has more elements with more generic seman-
tics. For example, Cosmos includes metamodeling
concepts (e.g., concern types for classifications,
classes, and instances) whereas ConMan has the more
generic and less strongly typed classifier mechanism.
Cosmos also has a richer model of physical entities.

On the other hand, Cosmos omits intensional defi-
nitions for concerns whereas ConMan includes them,
Cosmos has fixed sets of attributes whereas ConMan
has several flexible attribute mechanisms, and Con-
Man has a greater variety of grouping mechanisms.

These differences are attributable mainly to the
fact that Cosmos commits to specific concern model-
ing semantics whereas ConMan is intended to be a
more general platform, able to support concern model-
ing directly and alternative modeling approaches.

To test the latter goal, we have experimented with
modeling the Cosmos schema and models in ConMan.
One approach is to make use of explicit containment
(i.e., grouping) in ConMan to model certain sorts of
relationships among elements in Cosmos. This works

well for modeling the Cosmos schema, which com-
prises a near-hierarchical system of categories: Con-
Man concerns representing higher-level Cosmos cate-
gories (such as “logical concerns”) can contain Con-
Man concerns representing Cosmos subcategories
(such as “logical topics”). It was also possible to build
specific Cosmos models using this technique. In this
case, containment serves to represent the typing of
specific model elements. However, if containment of
elements is used to represent subtyping, then (to avoid
ambiguity) it should not be used to represent other
sorts of relationships among schema elements (for ex-
ample, the association of a Cosmos concern to a “logi-
cal topic”). For these other sorts of Cosmos relation-
ships we were able use ConMan relationships.

A limitation of this approach is that the typing of
Cosmos Elements is not replicated by containment
(grouping) relationships among corresponding ele-
ments in the ConMan realization. For instance, certain
types of Cosmos elements can only participate in cer-
tain types of Cosmos relationships (such as Cosmos
“logical classes in Cosmos “generalization relation-
ships”). Such restrictions cannot be achieved by con-
tainment. However, the desired semantics can be at-
tained through the use of ConMan constraints.

An alternative approach to this problem is to ex-
tend the ConMan schema with new types to represent
Cosmos elements (e.g., one subtype of Conman con-
cern to represent Cosmos “logical concerns” and an-
other to represent “physical concerns”). This creates a
closer semantic match between the Cosmos model and
the ConMan realization. However, a complete match
is not possible by specialization alone, as Cosmos se-
mantics require covariant specialization, which is not
supported in Java. Thus, constraints still must be used.

6.3. Extending the Schema

The initial CME and ConMan implementations
focused specifically on Java-related concerns, artifacts,
and relationships. However, the architecture of the
CME is intended to be open and extensible in multiple
dimensions. With respect to ConMan and related ele-
ments, we have taken advantage of this in several
ways.

The original artifact types were supplemented by
support for Ant [1]. Ant is a language for describing
software builds in XML [33]. Because Ant artifacts are
an integral part of a body of software, it is desirable to
include them in the concern model. This was simply
accomplished by building a small Ant loader, extended
from ConMan’s original Java loader, in about two per-
son-weeks. This loader added the artifacts, entities, and
relationships needed to the concern model. Types of

7

relationship and artifact appropriate for Ant were de-
fined by extension from ConMan’s core types.

Support for AspectJ [10] was also added to the
CME. The AspectJ loader was implemented by provid-
ing a “concern informant component” [15] for AspectJ
that enabled AspectJ artifacts (aspects, pointcuts, etc.)
to be loaded with existing “Java” loaders that also use
the generic concern-informant interface. Types for
AspectJ elements were defined by extension from ex-
isting ConMan units and artifacts.

The original ConMan loader implementations
were relatively ad hoc. Subsequently, a more general,
extensible loader framework was designed that has
been instantiated for several artifact models, including
the Eclipse core resource model, the Eclipse JDT re-
source model, the CME Concern Informant Toolkit
(CIT) [16] type spaces, and files and directories based
on java.io.File. The time required to instantiate each
of these of loaders varied from two to five person-
days. Loaders representing combinations of these
models have also been instantiated. The introduction
of these models into ConMan also entailed just limited
extension to ConMan Artifacts and Relationships.

Additionally, as part of the implementation of a
Conman schema and loaders for Cosmos, some exten-
sions to ConMan concerns and units were made com-
parable to those made for AspectJ support.

7. Related Work

Much work in non-aspect oriented modeling ad-
dresses concerns in particular life cycle stages (al-
though some spans multiple stages). Examples include
(from requirements) i* and Tropos [35], [7] and KAOS
[5], and (from architecture) Attribute-Based Architec-
tural Styles [21] and Domain-Specific Software Archi-
tectures [32]. In ConMan these play the role of “arti-
fact formalisms”; they address specific types of con-
cerns but do not treat concerns in general as first-class.

A more general category of non-aspect oriented
modeling approaches is represented by UML [24] and
comparable “generic” modeling formalisms. These
don’t overtly restrict the kind of concern that can be
addressed, or even necessarily the “meta level” of
model, but they provide a specific kinds of constructs
for performing modeling (such as packages, classes,
associations, attributes, and so on). When such for-
malisms are applied to software development, the
kinds of things modeled can readily be seen as ad-
dressing specific kinds of concern (indeed, the various
kinds of diagrams in a formalism like UML can be
seen as defining various dimensions of concern).
However, the constructs in these models more general-

purpose than those in ConMan, which embodies no-
tions particular to the domain of concern modeling
(such as concern space, concern, and composition rela-
tionships) that are absent from more general modeling
formalisms.

Another perspective on generic software modeling
is represented by “feature modeling.” Features are
often considered to represent some distinguished, often
user visible function or property of a system [19][23],
and we often model “features” as one dimension of
concern in a space. However, the concept can be ex-
panded to encompass anything of interest in a system
[11] (although this extreme view is not typical in prac-
tice). Features are commonly modeled using concepts
similar to those we propose for concern modeling:
aggregation, decomposition, generalization , speciali-
zation, parametrization, constraints, relationships. and
so on. Thus we believe that concern modeling as we
propose it can support feature modeling. (Although
ConMan itself does not address parameterization, con-
cerns can be defined based on parameterized queries.)
Additionally, concern modeling can complement fea-
ture modeling by relating feature modeling and models
to other development activities and artifacts.

With the rising popularity of aspect-oriented soft-
ware development there has been a flurry of work in
aspect-oriented modeling. Some of this addresses spe-
cific phases of the life cycle, including aspect-oriented
requirements engineering [1], [6] architectural analysis
[4], [31], and design [8], as well as in the area of more
general concern modeling. In contrast to the modeling
approaches reviewed above, a major goal of these re-
cent approaches is to identify concerns (or aspects) as
such, bringing aspect-orientation into the formalisms
used for particular development stages or artifacts.

Concern modeling in a still more general sense is
now addressed by several approaches. ConMan is a
generalization of the Hyperspaces approach first pro-
posed in [31] and implemented in Hyper/J [17]. Hy-
per/J used a multidimensional concern model but one
that was flat (in that concerns could not be nested) and
lacked support for relationships and constraints other
than related to artifact composition. ConMan accom-
modates hierarchical concern models and incorporates
relationships and constraints as first-class elements.
Wagelaar [34] proposed a concept-based approach
called CoCompose for the modeling of early aspects.
In CoCompose the concepts involved in a software
system are first modeled independently of any imple-
mentation; the conceptual models can then be proc-
essed to automatically generate an implementation.
Lohman and Ebert [22] also proposed a generalization
of Hyperspaces [17] that replaces orthogonal dimen-
sions of concerns with non-orthogonal clusters of con-

8

cerns and allows a unit to be assigned to more than one
concern in a dimension. Lohman and Ebert also dis-
tinguish primary and secondary dimensions in which
the primary dimensions are based on artifacts and the
secondary dimensions represent user interests that are
not derived from corresponding artifacts. ConMan, in
contrast to Hyper/J, does not require concerns to be
orthogonal and does not restrict a unit to being in only
one concern in a dimension. ConMan also supports
the uniform modeling of both artifact-based and arti-
fact-independent concerns from throughout the life
cycle, although it does not require it. Thus, we believe
that ConMan can support the specific approaches pro-
posed in both [34] and [22].

FEAT [25] [14] is a tool for locating, describing,
and analyzing concerns in source code. It contains
three components, one of which is a model component,
more or less analogous to ConMan. Like the CME,
FEAT can operate as an Eclipse plug-in and also inter-
operates with other Eclipse views. A concern in FEAT
is a container for an element of source code that repre-
sents a class, member, or relationship of interest.
These can be identified by iteratively querying the
source code. Queries comprise a set of analyses over
the structure of a program. FEAT can also analyze
dependencies among elements in concerns, although it
lacks constraints. Thus, FEAT contains a set of capa-
bilities that are similar in spirit and partly overlapping
with those in ConMan and the CME. However, FEAT
is more strictly code-focused. For example, FEAT
concerns cannot nest, and only relationships in code
are addressed. Also, FEAT lacks many of the open
points of CME and ConMan. FEAT does support a
richer set of program analyses than CME does. Thus
the strengths of FEAT and ConMan/CME are some-
what complementary, and it would be exciting to have
FEAT capabilities integrated with ConMan and CME.

 Cosmos [28] is another extension of the Hyper-
spaces model. It overcomes some of the limitations of
that model in ways that are similar to ConMan, but
there are also significant differences between the ap-
proaches. Cosmos is discussed in Section 6.2.

8. Summary

In AOSD software is represented, organized, and
manipulated in terms of concerns. The Concern Ma-
nipulation Environment is an AOSD environment that
treats concerns as first-class entities across the life cy-
cle. ConMan is the Concern Manager of the CME.

ConMan addresses an extensive set of require-
ments, including support for arbitrary concerns, sup-
port for abstract and concrete concerns, modeling of

multidimensional and multilevel concern spaces, sup-
port for software units and artifacts, neutrality with
respect to artifact types, artifact formalisms, and de-
velopment approach, the ability to support symmetric
and asymmetric modeling, and the ability to represent
relationships and constraints. ConMan also allows
concerns to be defined extensionally or intensionally
and to have associated information representing ge-
neric attributes or formalism-specific modifiers and
classifiers. ConMan is also intended to serve both as a
tool for directly modeling concerns and as a platform
for developing alternative concern-modeling ap-
proaches.

The modeling concepts in ConMan speak directly
to these requirements and include concern spaces, con-
cerns, relationships, constraints, units, artifacts,
groups, and others. These are generally first-class no-
tions, enabling the construction of highly structured
and semantically rich concern models. Additionally,
the implementation architecture of ConMan is open
and extensible in several dimensions. In the CME,
ConMan works with a number of other components
and capabilities, including the query engine, visualiza-
tion capabilities, and composition and extraction
mechanisms.

We have used ConMan in a number of validation
exercises. These include the extraction of a complex
concern from a large body of software, the representa-
tion of an alternative concern-modeling schema, and
extension to accommodate new types of artifacts, all of
which were accomplished with substantial success.

AOSD holds unique promise for addressing per-
sistent problems in software engineering. We believe
that concern modeling is at the heart of AOSD and that
it can also help significantly with “traditional” soft-
ware development. With ConMan we have identified
and addressed key requirements for concern modeling
capabilities. Thus ConMan can support concern mod-
eling in a wide variety of development scenarios and
can serve as a platform for further research in this area.

Acknowledgments

We thank Matt Chapman, Andy Clement, Helen Haw-
kins, and Sian January for their work in implementing
CME components and Matt and Andy for extending
the components to AspectJ and Ant. We thank Andy
and Adrian Colyer for their recommendations regard-
ing concern modeling and their early use of Conman.
We are also grateful to Juri Memmert for his com-
ments on concern modeling, as well as to Isabelle
Rouvellou for her help in formulating Cosmos.

9

References

[1] Apache Ant, http://ant.apache.org/
[2] AJDT: AspectJ Development Tools Eclipse Technology

Project. http://www.eclipse.org/ajdt/.
[3] E. Baniassad and S. Clarke, “Finding aspects in re-

quirements with Theme/Doc”, In Early Aspects 2004:
Aspect-Oriented Requirements Engineering and Archi-
tecture Design Workshop; at 3rd Int'l Conf. on Aspect-
Oriented Soft. Dev., 2004. http://trese.cs.utwente.nl/
workshops/early-aspects-2004/Papers/Baniassad-
Clarke.pdf

[4] L. Bass, M. Klein, and L. Northrop, “Identifying aspects
using architectural reasoning”. In Early Aspects 2004:
Aspect-Oriented Requirements Engineering and Archi-
tecture Design Workshop; at 3rd Int'l Conf. on Aspect-
Oriented Soft. Dev., 2004. .http://trese.cs.utwente.nl/
workshops /early-aspects-2004/Papers/BassEtAl.pdf

[5] P. Bertrand, R. Darimont, E. Delor, P. Massonet, and A.
van Lamsweerde, “GRAIL/KAOS: An environment for
goal driven requirements engineering”, Research Hand-
out, 20th Int'l Conf. Soft. Eng., 1998.

[6] I. Brito, and A. Moreira, “Integrating the NFR frame-
work in a RE model”, In Early Aspects 2004: Aspect-
Oriented Requirements Engineering and Architecture
Design Workshop; at 3rd Int'l Conf. on Aspect-Oriented
Soft. Dev., 2004. .http://trese.cs.utwente.nl/work-
shops/early-aspects-2004/Papers/BritoMoreira.pdf

[7] J. Castro, M. Kolp, and J. Mylopoulos, “Towards re-
quirements-driven information systems engineering:
The Tropos project”, Inf. Sys. 27, 6, 365–389, 2002.

[8] S. Clarke, W. Harrison, H. Ossher, and P. Tarr, “Sub-
ject-oriented design: Towards improved alignment of
requirements, design and code”, In 14th Conf. Object-
oriented Programming, Systems, Languages, and Appli-
cations. ACM, 325–339, 1999.

[9] A. Colyer and A. Clement, “Large-scale AOSD for
Middleware.” In Proceedings of the 3rd Int'l Conf. on
Aspect-Oriented Soft. Dev., pp. 56—65, 2004.

[10] A. Colyer, A. Clement, G. Harley and M. Webster.
Eclipse AspectJ, Addison-Wesley, 2004.

[11] K. Czarnecki and U. Eisenecker, “Generative Program-
ming—Methods, Tools, and Applications”, Addison-
Wesley Professional, 864 p., 2000.

[12] Eclipse.org. “Concern Manipulation Environment Pro-
ject”, http://www.eclipse.org/cme

[13] T. Elrad, R. Filman, and A. Bader, “Aspect-oriented
programming”. Comm. ACM 44, 10, 29–32, 2001.

[14] FEAT, http://www.cs.ubc.ca/labs/spl/projects/feat/
[15] W. Harrison, H. Ossher and P. Tarr, “Concepts for De-

scribing Composition of Software Artifacts.” Submitted.
[16] W. Harrison, H. Ossher, P. Tarr, V. Kruskal, and F. Tip,

"CAT: A Toolkit for Assembling Concerns" IBM Re-
search Report RC22686, December, 2002

[17] IBM Corp. http://www.research.ibm.com/hyperspace/.
[18] JikesBT, dev.eclipse.org/viewcvs/indextech.cgi/

org.eclipse.cme/contributions/jikesbt/
[19] K. Kang, S. Cohen, J. Hess, W., Novak, and A. Peter-

son, “Feature-Oriented Domain Analysis (FODA) Fea-

sibility Study”,. Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, 1990.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J-M Loingtier, and J. Irwin, “Aspect-oriented
programming”, In ECOOP'97 Object-Oriented Pro-
gramming, 11th European Conf., M. Akşit and
S. Matsuoka, Eds. LNCS, vol. 1241. Springer-Verlag,
220–242, 1997.

[21] M. Klein and R. Kazman, “Attribute-based architectural
styles”, Tech. Rep. CMU/SEI-99-TR-022, Software En-
gineering Institute, Carnegie Mellon Univ.. Oct., 1999.

[22] D. Lohmann, and J. Ebert, “A generalization of the
hyperspace approach using meta-models”, In Early As-
pects 2003: Aspect-Oriented Requirements Engineering
and Architecture Design Workshop, at 2nd Int'l Conf. on
Aspect-Oriented Soft. Dev., 2003. http://www.cs.
.bilkent.edu.tr/AOSD-EarlyAspects/Papers/LohEbe.pdf

[23] G. Miller, “Java Modeling: Holonic software develop-
ment, Part 2”, http://www-106.ibm.com/ developer-
works/java/library/j-jmod1023/?loc=j#5

[24] Object Management Group. 2001. OMG Unified Mod-
eling Language specification, version 1.4.

[25] M. P. Robillard and G. C. Murphy. “Concern Graphs:
Finding and Describing Concerns Using Structural Pro-
gram Dependencies.” In Proceedings of the 24th Int'l
Conf. of on Soft. Eng., pp. 406—416, 2002.

[26] Shrike, http://dev.eclipse.org/viewcvs/indextech.cgi
/org.eclipse.cme/contributions/shrike/

[27] Sun Microsystems, Inc., “J2EE Enterprise JavaBeans
Technology”, http://java.sun.com/products/ejb/.

[28] S. Sutton Jr. and I. Rouvellou, “Modeling of software
concerns in Cosmos”, In 1st Int'l Conf. Aspect-Oriented
Soft. Dev., ACM, 127–133, 2002.

[29] P. Tarr, W. Harrison, and H. Ossher, “Pervasive Query
Support in the Concern Manipulation Environment”,
Submitted.

[30] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr., “N
degrees of separation: Multi-dimensional separation of
concerns”, In 21st Int'l Conf. Soft. Eng, IEEE, , 1999.

[31] B. Tekinerdogan, “ASAAM: aspectual software archi-
tecture analysis method”, In Early Aspects 2003: As-
pect-Oriented Requirements Engineering and Architec-
ture Design Workshop, at 2nd Int'l Conf. on Aspect-
Oriented Soft. Dev., 2003. http://www.cs.bilkent.edu.tr/
AOSD-EarlyAspects /Papers/Tekinerdogan.pdf

[32] W. Tracz, “DSSA frequently asked questions”, Software
Engineering Notes 19, 2, 52–56, 1994.

[33] W3C, http://www.w3.org/XML/
[34] D. Wagelaar, “A concept-based approach for early as-

pect modeling”, In Early Aspects 2003: Aspect-Oriented
Requirements Engineering and Architecture Design
Workshop, at 2nd Int'l Conf. on Aspect-Oriented Soft.
Dev., 2004. http://www.cs.bilkent.edu.tr/AOSD-
EarlyAspects /Papers/Wagelaar.pdf

[35] E. S. Yu, and J. Mylopoulos, “Understanding ‘why’ in
software process modeling, analysis, and design”, In
16th Int'l Conf. Soft. Eng., IEEE, 159–168, 1994.

10

http://www.eclipse.org/ajdt/
http://trese.cs.utwente.nl /workshops/early-aspects-2004/Papers/Baniassad-Clarke.pdf
http://trese.cs.utwente.nl /workshops/early-aspects-2004/Papers/Baniassad-Clarke.pdf
http://trese.cs.utwente.nl /workshops/early-aspects-2004/Papers/Baniassad-Clarke.pdf
http://trese.cs.utwente.nl/ workshops /early-aspects-2004/Papers/BassEtAl.pdf
http://trese.cs.utwente.nl/ workshops /early-aspects-2004/Papers/BassEtAl.pdf
http://dev.eclipse.org/viewcvs/indextech.cgi /org.eclipse.cme/contributions/shrike/
http://dev.eclipse.org/viewcvs/indextech.cgi /org.eclipse.cme/contributions/shrike/

	1. Introduction
	2. Concern Modeling
	3. Concern-Modeling Requirements
	3.1. Schema Requirements
	3.2. Component Requirements

	4. ConMan Schema and Component
	4.1. Schema Design
	4.2. Operational Issues

	5. ConMan in the CME and Eclipse
	6. Experience
	6.1. Extracting a Concern
	6.2. Modeling an Alternative Schema
	6.3. Extending the Schema

	7. Related Work
	8. Summary
	Acknowledgments
	References

