
RC23345 (W0409-140) September 22, 2004
Computer Science

IBM Research Report

Concepts for Describing Composition of Software Artifacts

William Harrison, Harold Ossher, Peri Tarr
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Concepts for Describing Composition of Software Artifacts

William Harrison, Harold Ossher, Peri Tarr
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

+1 914 784 7339
{harrisn,ossher,tarr}@watson.ibm.com

Abstract

This paper treats the “compositor” component as a
new, distinct, kind of software component. This is
analogous to recognizing that compilers, parsers, and
UI-generators are distinct kinds of software compo-
nents. Each has its own domain of discourse and base
of concepts, its own structure for expressing desired
results, its own internal solution structure, and its own
set of research problems. This paper describes a base
of concepts suitable for expressing composition and
shows how a general composition engine realizing
these concepts can be used to effect the composition
needs of several existing AOSD approaches.

1.1. Introduction

Many approaches supporting Aspect-Oriented Soft-
ware Development (AOSD) ultimately require the
composition or weaving together of separate elements
drawn from separately encapsulated concerns. This is
true not only for programming-language artifacts, but
for requirements, use case, and design artifacts like
those expressed in UML, and for other build and run-
time artifacts like test suites, images, audio streams,
user-interface descriptions, and menu material, Make,
ANT, or WSDL scripts, or even just for simple pack-
aging constructs like directories or jar files.

Most AOSD support is described in terms of com-
plete approaches. An approach is far more than a pro-
gramming language, tool, or component, though they
may lie at its bottom. An approach consists of:

1. A characterization of a problem domain for
which the approach is suitable,

2. A description of how a developer is expected to
structure solutions for problems in that domain,
and then

3. A tool or component that supports problem-
solving with that solution structure

AspectJ [12], for example, is an approach to AOSD:
1. For the problem domain of attaching additional

behavior to an existing software base
2. By creating constructs called “aspects” contain-

ing, for example, “advice” that can be attached
to the existing base at “join-points”

3. Supported by a programming language (As-
pectJ), designed for expressing those constructs
and their attachment, and its compiler and run-
time library.

Hyper/J[17] , Composition Filters[2], and Adaptive
Programming[15] are other approaches to AOSD that
can be described in similar terms, but differently ad-
dress different parts of the problem space.

Though differing in the problem domains they ad-
dress, their pedagogical structure, and the way their
support is presented to their developers, these ap-
proaches rely on two common elements:

1. Language constructs that require creating addi-
tional artifacts to be woven with the developer-
produced artifacts,

2. A “compositor” or “weaver” component to
actually effect the desired composition.

For example, many of AspectJ’s pointcut specifications
employ a run-time residue [10] to filter the events indi-
cating execution of a join point according to conditions
that can be tested only at run-time. This generated resi-
due amounts to an additional artifact that is woven into
the base program at appropriate points. The AspectJ
compiler also contains a weaver that interprets other
information in the pointcut to compose the advice code
and the residues with the base code. Hyper/J’s com-
positor employs a set of composition relationships to
govern how a multiplicity of bodies of source code are
to be composed into a new body of software.

This paper treats the “compositor” component as a
new, distinct, kind of software component that ad-
dresses the second of the elements introduced above.
This is analogous to recognizing that compilers, parsers
and UI-generators, for example, are distinct kinds of

1

software components. Each has its own domain of dis-
course and base of concepts, its own structure for ex-
pressing desired results, its own internal solution
structure, its own set of research problems. This paper
describes a base of concepts suitable for expressing
composition and shows how a general composition
engine realizing these concepts can be used to effect
the composition needs of several existing AOSD ap-
proaches. That is not to say that AOSD approaches are
expected to manifest these concepts to developers in
their full generality, but rather that the approaches’
composition needs can be described in terms of these
concepts and realized on a compositor that implements
them.

A composition component based on these concepts
has been developed and is available as part of the Con-
cern Manipulation Environment (CME) [5], an Eclipse
Open-source Technology Project. It underlies the com-
position capabilities made available by the Concern
Explorer and other CME tools. A description of the
implementation and the research problems it presents is
beyond the scope of this paper, but some additional
concepts needed in realizing Java™ Composition and
Extraction (of new artifacts from existing ones) in the
CME are discussed.

The remainder of the paper is organized as follows:
Section 2 presents a very small example, used in ex-
plaining the application of the concepts. Section 3 de-
scribes a model for material to be composed, and Sec-
tion 4 discusses the concepts that are used for describ-
ing composition. Section 5 briefly discusses the CME
Concern Composition Component CCC). Section 6
describes how CCC could be employed to effect the
composition needs of AspectJ, Hyper/J, Composition
Filters, or Adaptive Programming.

2. A Very Small Example

Consider designing a feature for a hypothetical, pre-
existing thermostatic control system as a separate con-
cern. The existing “basic” system contains Sensor
classes that record temperature, maintain an updated
average, and report when asked. They have methods
for “report” and “update.” The system is implemented
with many independent subclasses, most but not neces-
sarily all of which are named “*Sensor,” each with its
own style of implementation.

The “alarm” feature to be added is to produce a fire
alert if temperature exceeds some threshold. The Sen-
sors must now know a “controller”, and alert it when
needed. So they need have an added field: “controller”.
This feature is to intercept updates, and generate an
alert when necessary.

Composition is the process of creating a new artifact
or set of artifacts from a set of input artifacts by com-
bining the content of the input artifacts according to
some given specifications. For example, sensors that
alert the controller must be created by composing the
basic sensors and the alarm enhancements. Composi-
tion is thus only part of many AOSD approaches, and
would not, for example, include the generation of code
to track control flow as needed by AspectJ’s “cflow”
specifications. The artifacts to be composed fit a gen-
eral model that allows the meaning of the specifications
to be given. The model and the specifications are dis-
cussed in Sections 3 and 4.

3. A Model for Material to be Composed

Any description of how artifacts are to be composed
presumes a common underlying/abstract representation
for the artifacts themselves. The artifacts can be data
objects, such as directories of files, or meta-data ob-
jects, such as programs and UML diagrams. It turns out
that composition is similar across both, though meta-
data material requires some extra concepts, such as
typing. We present a single model, based on the richer,
“meta-” context, with the understanding that not all
capabilities of the definitions are applicable to all arti-
facts. We use Java programming elements in the dis-
cussion for illustrative purposes only—the model is
applicable to artifacts defined in many languages and
formalisms.

Spaces. A space encapsulates a body of material
with a well-defined interpretation of all names used to
reference other elements within it. Spaces simply con-
tain named container definitions. They are artificial
elements, not expected to be first-class elements in any
of the material being composed, but to provide ways of
dealing with a multiplicity of separately-defined cor-
pora of first-class elements within which the same
names might be used for different purposes. In dealing
with Java programs, for example, a space may be de-
fined by a classpath, consisting of all classes on that
path.

Container Definitions. A container definition
specifies a collection of named software elements that
are its members. Members can be nested containers or
interpretable material definitions, but not spaces. In
dealing with Java programs, for example, classes and
interfaces are treated as containers.

Interpretable Material Definitions. Interpretable
material definitions provide the “meat” of the material
subject to composition. Each interpretable element
definition has a body whose content has a meaning, or
interpretation, and whose correct interpretation may

2

require proper resolution of by-name references to
other elements. Each interpretable element definition
may also identify the name of a container definition
indicating, for example the type defining the result of
interpreting the body. The use of the model for meta-
data implies the existence of an “execution” time later
than the time when name resolution takes place.

Purely-procedural Interpretables. Interpretable
definitions are purely-procedural if they have no exe-
cution constraint other than their interpretability; for
example, no state. They can be combined and may be
rewritten differently for different uses when needed.
For example, one can rewrite a method to delegate its
call to another method. It is important that references to
them be parameterized to achieve different effects on
different executions, so references may be qualified by
a signature, consisting of a sequence of container
names, for example for representing parameter types.
This signature is considered to be part of the interpret-
able’s name. In dealing with Java programs, for exam-
ple, methods are examples of purely-procedural inter-
pretables.

Data-bearing Interpretables. Interpretable defini-
tions are data-bearing if they indicate more than just the
interpretable material, but also, for example, a place in
storage to which values may be assigned. Although
there may still be material whose references need to be
interpreted, such as an initialization expression, the
presence of their additional constraints limits flexibility
of composition. For example, unlike methods, one can-
not rewrite the value of a field to indicate that the real
value is in another place. In dealing with Java pro-
grams, for example, fields are treated as data-bearing
interpretables, with their bodies interpreted for initiali-
zation.

References. Interpretable material may contain ref-
erences, by name, to itself or other elements within the
same space. In dealing with Java programs, for exam-
ple, references can be found to types, fields and meth-
ods.

Methoids. It is frequently the case that a developer
performing composition needs to work with constructs
within element bodies. For example, if an element body
is the text of a paper, there might be a need to compose
each page footer with a copyright notice. Or in the
coding sphere, it may be that additional behavior is
needed whenever the value of some field is written or
read; the field access might have been written as a call
to a get/set method, available for composition, but it
was not. Such “might-have-been” elements can be
treated as explicit elements by characterizing them with
some pattern to be matched in the body and asserting

that occurrences of this pattern should be treated as
references to synthesized elements called methoids.

An extended treatment of the characterization and
handling of methoids is beyond the scope of this paper.
The key point, however, is that query, extraction, and
composition mechanisms can manipulate content
structure within element bodies and that doing so is
described and effected in the same way as for ”regular”
elements. An example of the identification of a methoid
in this way appears in the next section at 4.1.1[3].

Uninterpreted information: Modifiers and At-
tributes. Elements may have additional information,
not requiring interpretation of references within it. Ex-
amples of this information include modifiers like “pub-
lic”, “private”, “synchronized” in Java, and attributes,
like “association name” in UML. This information is
represented and available for composition, but its com-
position follows a rather simple model and tends to be
handled in ways that depend on the particular kind of
artifact being manipulated.

4. Concepts for Describing Composition

To describe composition, it is necessary to identify
what elements are to be joined, and to specify how
those elements are to be joined. We do this by means
of correspondences and weaving models, respectively.
Together, these make up weaving directives. This sec-
tion describes these concepts, discusses how multiple
weaving directives interact, and then discusses the na-
ture of implicit assumptions made by developers using
composition, and how those implicit assumptions are
made explicit.

4.1. Identifying Correspondences

The first component of a weaving directive estab-
lishes elements to be joined. The elements to be iden-
tified with one another for composition purposes may
be indicated explicitly or implicitly, and a name must
be given to the composite result.

The n-tuple of input elements that are to be joined,
along with the name of the result element to be pro-
duced by the join, is called a correspondence.

4.1.1. Explicit Identification. Explicit correspondences
result from queries, which simply mention the item by
name. Each query produces a set of correspondences.
This model allows us to subsume the query capabilities
of a variety of existing AOSD languages and tools.
Correspondences supporting AspectJ advice consist,
for example, of 3 parts: the “base” to which the aspect
or advice is being attached, the aspect or advice itself,

3

and the result (which is by default given the name of
the “base”). The structure of AspectJ is such that the
set of correspondences is formed by applying a single
advice to a set of “base” elements indicated by a query,
called a “pointcut.” Hyper/J’s “by-name” matching
structure, on the other hand, produces a set of corre-
spondences for elements with matching names.

The query languages employed for identification in
the CME is described elsewhere[8]. However, it is im-
portant to note that the query processor is capable of
forming tuples containing elements matched by a unifi-
cation-based search. This allows embedding of both
AspectJ’s queries (pointcuts) and queries required to
support Hyper/J’s capabilities into a query structure
much more powerful than that provided by either. Ex-
amples of queries that may be useful for the very small
Thermostatic Control example described above are1:

[1] (class basic:*Sensor, alarm:SensorAddition)
which produces a set of correspondences, each having
a pair of inputs consisting of a class in the space “ba-
sic” whose name ends with “Sensor” and the class
named “SensorAddition” in the space “alarm”, and
defaulting the result class’s name to the one in “basic.”
The nature of the result class is determined by the
weaving model used in the weaving directive.

[2] (method basic:*Sensor.update(<type>),
alarm:SensorAddition.update(<type>))

which produces the set of correspondences, each iden-
tifying an “update” method of a class whose name ends
with “Sensor” in the space “basic” and that takes a sin-
gle parameter of any type, and the method named “up-
date” in the class “SensorAddition” in the space
“alarm” that has the same type signature as the one in
“basic,” also defaulting the result method’s name to the
one in “basic.” The nature of the result method is de-
termined by the accompanying weaving model.

[3] (method basic:[set <type> av<suffix>],
alarm:sensorAddition.update(<type>))
as setAv<suffix>

which produces the set of correspondences, each iden-
tifying a “set” methoid for a field whose name starts
with “av” in the space “basic” and the method named
“update” in the class “SensorAddition” in the space
“alarm” that has the same type signature as the type of
the field in “basic”, with the result method’s name
based on the name of the field in “basic.” The nature of
the result is determined by the accompanying weaving
model. An actual method can be produced, called in
place of each assignment to the variable, or what would
be the method body can be inlined at each assignment.

1 The syntax used here is simply a direct reflection of the underlying
concepts for expressing composition, and not meant to be suggested
as an actual language in use by any approach to AOSD.

4.1.2. Implicit Identification. Implicit correspondences
result from implicit elaboration of container defini-
tions. Unless inhibited, a correspondence established
between two container definitions also establishes im-
plicit correspondences between members of the con-
tainers, so that the resulting containers will contain
contents equivalent to the originals. Depending on the
developer’s expectations (see section 4.4), these corre-
spondences can either apply to like-named members or
can simply reflect “copying” of the individual defini-
tions from the inputs in the correspondence. The names
assigned in the output are generally the same as those
used in the inputs, except where name-clashes arise. As
described in section 1.1.1.1, it is possible to diagnose
such clashes as erroneous, if desired.

4.2. Weaving Models

The weaving model is the part of a weaving direc-
tive that provides directions on how the output named
in a correspondence is to be derived from the inputs.
There are two fundamental aspects to a weaving model:
selecting from the inputs, and describing how the se-
lected elements fit into the result’s structure.

4.2.1. Selection. Each selection of inputs is governed
by an ordering that applies to the elements that it se-
lects from. We describe selection modes, then ordering.

4.2.1.1. Selecting Elements from the Inputs. Not all
inputs in a correspondence are necessarily intended to
be part of the result. One obvious case of this is often
called override, where of the inputs is intended to re-
place another entirely. Another obvious case arises
from the desire to indicate that name clashes are not
allowed. This selection is called unique. Other kinds of
selection occur when one of the inputs is selected to be
wrapped around other members, or when any member
is slected from a set of equivalent inputs .

A single weaving model can contain multiple selec-
tions, such as several override selections applying to
different inputs. When no special selection is to apply,
the remaining inputs are all selected to be combined.
This default is called merge selection.

When applied to container definitions, an ambiguity
can arise – does the selection apply to the whole con-
tainer, or are the containers intended to be merged but
to have the selection apply to like-named members? As
a result, many selection modes are available as pairs,
like override and overridemember.

We make no claim that this list is exhaustive, so de-
velopment of a generally-useful composition compo-
nent like that discussed in Section 5 should provide for
extensibility of the selection modes made available.

4

An example of a simple weaving directive that
might be used in the Thermostatic Control example
described above is:
merge (class basic:*Sensor, alarm:SensorAddition)
which uses a query described in section 4.1.1 and a
weaving model using the “merge” selection. It indicates
that the material from the SensorAddition class in
“alarm” is to be merged with the material from the
class in “basic” to make the composite result class.

4.2.1.2. Ordering the Selected Elements. The order-
ings provided for override or around govern which
input overrides or is wrapped around which others. The
ordering provided for merge applies in the case of in-
terpretable elements, such as methods, and determines
the order in which they are combined within the result.

The simplest general model for ordering is that of a
partial order. The exact manner in which an ordering is
specified is another point at which a generally-useful
component should try to provide for extensibility. Sup-
posing that names like “before” can be used to indicate
previously-defined orderings, an example useful for the
Thermostatic Control example is:
merge before
 (method basic:*Sensor.update(<type>),
 alarm:SensorAddition.update(<type>))
which uses a query described in section 4.1.1 and a
weaving model using the “merge” selection, putting the
method from the alarm feature before the correspond-
ing method from the basic system.

Since a single weaving model can contain multiple
selections, each with its own ordering, it will often be
necessary to harmonize independently-specified or-
derings that apply to the same inputs. This issue will be
discussed in section 5.1 where we describe a manner of
expressing orderings that we have found particularly
useful.

4.2.2. Specifying the Result Structure. When a com-
posite if formed from several inputs, there are many
issues that may or must be resolved about its structure
– about how the individual inputs participate in the
composite. Though exactly which issues are important
to a particular composition approach vary, the ability to
specify and control structure is necessary. In one
analysis [7] we discuss the issues that concern the iden-
tity, the lifetime, and the delegation relationships
among participants in a group, but other issues can
apply as well, including specialized linkage conven-
tions or the use of particular run-time representations.
As with the other aspects of the weaving model, the
exact manner in which the structure is established for a
correspondence is a point at which a general composi-
tor component should try to provide for extensibility.

Using simple names explained below, like aspect,
facet, or copy, to indicate the structure allows us to
phrase some of the compositions needed for the Ther-
mostatic Control example:
[1] merge (class basic:*Sensor as facet,

feature:SensorAddition as aspect)
which merges the classes as described in the example
in section 1.1.1.1, but adds to that the specification that
the base classes are to be treated as “facets” – object
components with the same lifetime and identity as the
composite object itself – while the additions are to be
treated as “aspects” having a separate lifetime and
identity.
[2] merge before

(method basic:*Sensor.update(<t>) as facet,
feature:SensorAddition.update(<t>) as copy)

which merges the methods as described in the example
in section 1.1.1.1, but adds to that the specification that
the “update” method is to be treated as a “copy” – an
equal partner copied from an original, with the copy
having the same lifetime and identity as the composite
(but, being a copy, not as the original).

4.2.3. The Weaving Model as a Point of Extension.
The weaving model is a part of the composition speci-
fication likely to have great natural variation. Particular
needs of an approach may require weaving models that
bundle choices together in particular ways. But, as de-
scribed in section 5, CME’s Concern Composition
Component directly and openly provides independent
choices for selections, orderings and structure.

4.3. Resolving Multiple Weaving Directives

A composite element’s characteristics may be speci-
fied as part of multiple directives. The need to resolve
separate directives requires that it be possible to pro-
vide information about how the directives themselves
are related. There are two aspects to the relationship
among directives for a result element: precedence and
exclusivity. In addition, it is often necessary to indicate
characteristics that apply to any output composed of
particular inputs. These specifications are called con-
ditional weaving directives.

4.3.1. Precedence. In this case, it is clear that the sec-
ond directive is more specific than the first. In other
cases, however, it is not clear which directive is more
specific. Section 4.2.2’s example [1] is a directive that
adds the capabilities of the SensorAddition class to all
classes with names ending in “Sensor.” But the sensor
subclasses provided for use in Alaska may need a dif-
ferent addition to accommodate the cold weather. This

5

can be indicated with a second weaving directive:
merge (class basic:*AlaskaSensor as facet,
 alarm:ColdWeatherAddition as aspect)

We cannot simply rely on the circumstance, obvious
here, that one specification is narrower than the other,
and build this in as a rule, because instances often arise
where the question of which of two rules is more gen-
eral is not quite so clear. For generality’s sake we can
fall back once again on the use of partial orderings to
establish precedence among weaving directives. One
way to specify them is by means of “except” clauses. If
several directives apply to the same result element, the
precedence and exclusivity together determine the out-
come.

4.3.2. Exclusivity. Not all information about a
composition product need be provided by a single di-
rective. In fact, when the queries used to form corre-
spondences are complex, each directive may direct the
formation a set of composition products, and the sets
produced by different directives may overlap in non-
nested ways. Attaching an indication of exclusivity --
one choice from among the three alternatives of exclu-
sively, inclusively and initially -- to each directive al-
lows expression of these relationships.

If the there is a unique highest-precedence directive
that is exclusive, it alone is used. Otherwise, if the
unique highest-precedence non-inclusive directive is
initial, it is used along with any inclusive directives
with the same or higher precedence. Otherwise, all in-
clusive directives are used whose precedence is greater
than the unique highest-precedence exclusive directive.
If the partial ordering renders any of the above state-
ments undefined, an error is reported.

4.3.3. Conditional Weaving Directives. It is neces-
sary on occasion to provide directives that constrain the
relationship among the inputs composed to produce a
result element without actually describing the result.
These are specified by means of conditional weaving
directives. For example,

whenever (A, B) use before
which specifies that whenever inputs “A” and “B” par-
ticipate in the same result, as dictated by other direc-
tives, they are to be related by the “before” ordering.

4.4. Making Implicit Assumptions Explicit

Prior experience with use of Hyper/J has indicated
that, in ways described below, developers have differ-
ent expectations of a composition tool, reflecting their
own knowledge of the software they are manipulating.
Failure to take these different expectations into account

leads to results which may be expected by some but
surprise others. “Software surprise” is a situation to be
shunned. This section discusses two of the most com-
mon areas of differing expectation, with ways to make
the expectations explicit, to avoid surprise.

4.4.1. Encapsulation. The implicit correspondence of
like-named elements is a great convenience for devel-
opers creating new software as extensions of other
software or as concurrently-developed features for
later, pre-planned integration. On the other hand, these
development scenarios presume some level of famili-
arity with the internal details of the material being
composed. The use of composition to produce artifacts
for further use by developers (versus for runtime exe-
cution only) also makes this presumption. When devel-
opers treat software to be composed as “black boxes,”
however, as they might if it is purchased or subject to
change, the presumption that name correspondence has
meaning may be entirely inappropriate.

The simplest way of exposing the implicit by-name
correspondence assumption is to make it explicit, by
means of queries, but this is often too onerous. When
the expectation is that the material is co-developed or
when the correspondences involve complex uses of
precedence, the implicit correspondence of like-named
members may suit better. So, to control the application
of implicit correspondence, each weaving directive has
a property that indicates what level of encapsulation
the developer expects – are like-named containers to
correspond implicitly (type encapsulation), or like-
named members (member encapsulation), or nothing at
all (space encapsulation)?

4.4.2. Opacity. A more subtle skein of issues is illus-
trated by a small example. The expected result of com-
posing the presumed-corresponding methods shown in
the classes in Figure 1 is clear, but not so in Figure 2.
Developers who know only about the leaf classes, and
have no awareness of the inheritance structure, would
expect “aA,” as in Figure 1, whereas developers who
are fully aware of the inheritance structure would ex-
pect just “a.”

a A aA�+

Figure 1 - Clear Composition Expectation

6

a

A

?�+

Figure 2 - Unclear Composition Expectation

We can make these implicit expectations explicit by
indicating whether a space is opaque or exposed. For
an opaque space, the developer disavows any claim to
know how its classes were implemented – the treatment
of their members is the same whether they are inher-
ited, implemented, or reimplemented in the class. For
an exposed space, the developer expects both to know
the implementation structure and that the same knowl-
edge will be used by the composition software.

5. CME’s Composition Component

The conceptual base described in section 4 has been
used in designing and implementing the Concern Com-
position Component of CME, called CCC. As dis-
cussed above, this component is intended to support a
wide variety of approaches to AOSD, and rather di-
rectly reflects the concept base. For reasons of length,
this paper cannot be a description of the choices made
for CCC, and we will not list explicitly the particular
alternatives provided for aspects of the weaving model:
selections, orders, or structure. However, section
1.1.1.1 contains an implicit claim that a useful,
composable, model for order specifications exists that
must be supported. In addition, there are implicit as-
sertions that the component can be specialized for tasks
other than simply composition, such as extraction of
encapsulated source, and that it can be specialized to
accommodate the quirks of particular languages like
Java. This section is intended to support those asser-
tions, by reference to CCC as an example.

5.1. Specifying and Reconciling Orderings for
a Selection

While CCC supports a variety of ways to create and
express them, all selection orderings it deals with must
ultimately be represented as combination graphs. A
combination graph has two parts: an abstract combina-
tion graph and a population. An abstract combination
graph is a directed acyclic graph, each node of which
1) can be labeled with a name, called its role and 2) can
be ”pre-filled” with predefined content, such as a fixed
library class to include. If there are multiple nodes with
the same name (including unlabelled), they must all

have the same in and out edges; this ensures that all
nodes for a role are treated uniformly. The population
maps graph nodes to selected input elements. Not all
graph nodes need be mapped. Method combination
graphs are a specialized form of combination graph
with additional information attached to each edge, such
as conditions for following the edge based on the value
returned by (or the exception thrown by) the method
that is mapped to the node from which the edge ema-
nates. The method combination graphs in the CME
Concern Assembly Toolkit [9] also realize this con-
cept.

Figure 3 shows an abstract combination graph called
PrePost, which represents the the composition of a
method with precondition and postcondition checks.

post:pre:

Figure 3 - PrePost Abstract Combination Graph

One combination graph using it might have the
population (pre:A, :B). Another might have (:B,
post:C). As described in sections 4.3.2 and 4.3.3, a
result can be created according to several weaving di-
rectives. It must be possible to construct from them a
merged combination graph that embeds all of them
within it. In the case just mentioned, that would be a
PrePost combination graph with the population: (pre:A,
:B, post:C).

The ability to merge combination graphs is one of
the driving reasons for adopting this form of ordering.
The constraints governing the result of the merge are:
1) Each node in any input graph is assigned a node

in the result graph with the same population and
role (if specified).

2) Nodes of input graphs that are populated with the
same input are assigned the same result node.

3) Pre-filled nodes with the same roles specified for
them are expected to have the same contents, and
are assigned the same result node.

4) Other nodes of input graphs are assigned different
nodes.

5) If there is an edge between two nodes in an input
graph, there is an edge between the nodes as-
signed them in the result.

6) If there an edge of a node with a specified role in
any input graph to or from another node, there is
an edge of each result node with that specified
role to or from the node assigned the other node.

7) The resulting graph must be a valid combination
graph – i.e. it must be a directed acyclic graph.
Additional constraints may apply to merging spe-
cializations like method combination graphs.

7

These constraints produce the result described for
PrePost, above, or, for example, the more complex re-
sult of combining the two graphs in Figure 4, shown in
Figure 5. (Primed edges are introduced by rule 6.)

post:Zpre:B X

post:Xpre:A Q
21

43

Figure 4 - Two Combination Graphs

post:Zpre:B

post:Xpre:A Q

4

3'

2

1'
3 2'

1

Figure 5 -- Combined Combination Graph

5.2. Specializing CCC for a purpose

Not all behavior needed for a tool like extraction or
composition is embedded in CCC. The tool may coun-
termand or supplement decisions made by the “natural”
composition process, for example to add declarations
for referenced elements during extraction. The tool
may have additional implicit rules that, for example,
preserve characteristics important to its approach, and
it may have linguistic structures that use subsets of the
weaving model, provide particular orderings or graphs,
or that apply the directives with specifically orches-
trated precedences. These characteristics of a tool are
expected to be provided by extending the CCC imple-
mentation class. This extension can also provide im-
plementations invoked at important predefined points
of processing flexibility.

5.3. Accounting for artifact peculiarities

The process of tailoring CCC’s behavior at these
points is called rectification. In addition to its use to
adapt the component to various functional needs, it is
used to “make right” the composite result. The target
system for the composition activity may have linguistic
rules, like prohibition of multiple inheritance, that must
be applied to the natural composition result. The recti-
fication plug-in for Java, for instance, adapts for multi-
ple inheritance, for construction protocols, and for
proper behavior of the “instanceof” operator. The
analysis and transformation needed for Java rectifica-
tion presents a collection of significant technical prob-

lems of its own, and is left as the topic of a separate
paper.

6. Supporting Existing Approaches

Treating the compositor as a component facilitates
the definition, implementation, integration, and com-
parison of a wide spectrum of aspect-oriented lan-
guages, formalisms, and paradigms. To help demon-
strate how this can be done, this section briefly de-
scribes the mapping of constructs contained in some
existing aspect-oriented approaches to the core compo-
sition concepts described in this paper. Due to space
constraints, we have not exhaustively elaborated the
full mappings here, but rather, we highlight the map-
pings of some particularly interesting and key features
of these approaches to CCC.

6.1. Hyper/J

Hyper/J[17] supports the representation and compo-
sition of concerns whose contents are standard Java
classes and interfaces. The concerns may overlap, in
the sense that multiple concerns may contain defini-
tions for corresponding classes, interfaces, or members.
It uses composition relationships to specify correspon-
dences and the manner of composition of the Java ma-
terial. The composition relationships are specified
separately from the concerns, in a manner analogous to
that of module interconnection formalisms. Composi-
tion involves the integration of multiple Java type hier-
archies in a way that satisfies the composition relation-
ships, to produce a set of composed Java types that
contain the woven material.

Hyper/J’s concerns map to CCC spaces (Section 0),
containing Java classes and interfaces. Hyper/J’s join-
points are classes, interfaces, and their members (fields,
operations, constructors, and types).

The composition relationships in Hyper/J specify a
wide variety of weaving directives. Some control the
establishment of correspondences. NonCorresponding
and ByName specify whether like-named elements of
related concerns should correspond. These map to
CCC’s space- and member-encapsulation (Section
4.4.1) mechanisms, respectively. Other composition
relationships indicate how corresponding elements
should be integrated. Merge and override map directly
to CCC’s merge and overridemember selection modes
(Section 1.1.1.1) and the facet result structure (Section
4.2.2). The execution order of merged elements is
specified with before and after order constraints on
correspondences. These are expressed using CCC’s
combination graphs (Section 5.1). Bracket specifies a

8

“before” method and an “after” method for the same set
of inputs, and would be defined as a new, predefined
method combination graph) in CCC. The before and
after methods are composed with the copy structure,
allowing them to bracket many different methods. Hy-
per/J also supports summary functions, methods whose
parameters are the return values of a set of composed
methods, and which perform some computation over
them, returning a single value as the result of the com-
posed method. An example summary function is boo-
lean “and,” which returns true if all the composed
methods return true. Summary functions are realized in
CCC with method combination graphs. Edges exiting
from nodes in these graphs can contain “accumulator
variables,” and each node can add a value to the accu-
mulator. At the end is a method node that calls the
summary function, passing it the accumulator.

6.2. AspectJ

AspectJ [12] is a Java extension that adds the aspect
construct to represent concerns that cut across multiple
Java classes. Aspects are class-like entities that can
define their own behavior and state (standard Java
fields and methods), behavior and state to be intro-
duced into other classes (intertype declarations), and
advice to be attached as specified by pointcuts (queries
that identify the applicable join points). Advice con-
structs can be treated as weaving directives coupled
with the code (represented as methods) that is to be
woven with Java methods. Weaving involves the in-
sertion of code to attach aspect objects to Java objects
and to trigger advice, so as to satisfiy the advice and
other weaving directives, notably, declare specifica-
tions.

The types (aspects, classes, and interfaces) that are
to be woven are listed in AspectJ’s “.lst” files. Each
“.lst” file specifies a single CCC input space (Section
3), containing the set of types to be composed.

AspectJ’s pointcuts describe execution-time events,
but these events occur at a set of points in the pro-
gram’s static structure. As noted in Section 1.1, the
generation of code to collect runtime information or
perform runtime tests on dynamic state is an activity
separate from composition. The composition activity
involves joining that code, which AspectJ compiler
produces, together with the applicable aspect code, at
the relevant points in the program’s static structure
[12]. These points are specified in correspondences
(Section 4.1.1) in CCC, using CME’s query facility.

If an advice is to be woven at some point in a class,
the aspect containing the advice is woven with the class
itself, using a specialization of CCC’s aspect attach-

ment [7] structure. This means the aspect is represented
as a separate object with separate identity from the
“base” object(s) to which it is attached. The lifetime of
the aspect attachment depends on the aspect’s “per”
specification. By default, the lifetime is CCC’s sin-
gleton, meaning that there is one aspect instance for all
of the classes with which the aspect is woven. The
other AspectJ “per” specifications—percflow, per-
cflowbelow, perthis, and pertarget—are specified as
having CCC’s dynamic lifetime. All of these specifi-
cations depend on dynamic residue, which is, as noted
earlier, treated separately from composition.

 AspectJ supports three types of advice: before, af-
ter, and around. The before and after advice from an
aspect must be run as a “bracket” around the advised
join point, so the same method combination graph so-
lution is used as for Hyper/J’s bracket directive (Sec-
tion 6.1). Two variants of after advice, after throwing
and after returning, are realized using edge conditions
in these method combination graphs. Around advice is
not simply an ordering constraint, but rather, a different
selection mode, called around, causing the advice to be
“wrapped around” another element. Around advice can
include a special language construct, proceed(), which
executes the wrapped element. One common imple-
mentation of proceed() [10] employs AroundClosure
objects which are created, passed, and used in the com-
posed code. The run-time conventions appropriate to
the continuation-related code is specific to the chosen
implementation of AspectJ, and therefore, it is realized
in CCC as part of AspectJ’s rectification (Section 5.3).

Most of AspectJ’s declare specifications and inter-
type declarations are handled as compile-time checks
or by treating them as though they were written as Java
classes with the desired characteristics (parents, fields,
etc.) and composed using “merge,” as described in
Section 6.1. One exception is declare precedence,
which specifies order constraints that apply to the
weaving of advice. If aspect A2 is declared to have
precedence over aspect A1, then at any join point, j,
that both aspects advise, the order is: [beforeA2, -
beforeA1, j, afterA1, afterA2]. The method combination
graph would be generated to ensure the required prece-
dence semantics.

6.3. Other Major AOSD Technologies

A number of other major AOSD technologies and
languages exist, particularly for implementing aspect-
oriented code. Space constraints preclude additional
detailed mappings of these technologies to CCC, but
we believe that the key features of all of them are cov-
ered by the descriptions of AspectJ and Hyper/J. For

9

example, AspectWerkz [1]and JBoss [14] support an
AspectJ-like composition model, but they differ in their
specification languages (standard Java, with XML or
tags for specifying composition), and both provide
more extensive support for dynamic attachment of as-
pects. Support for of dynamic responses to events re-
quires little accommodation by a composition engine,
so these distinctions do not significantly affect the
mapping to CCC. Mixin layers [16] are mapped to
CCC like Hyper/J’s concerns, with corresponding
classes in different layers combined using around
wrapping and support for super() in extensions that
resembles the support for proceed() for AspectJ.
Composition filters [2] are realized in a way similar to
AspectJ, but with different attachment semantics and a
variety of method combination graphs to realize
different filter semantics. Detailed mappings of these
and other important AOSD technologies and paradigms
is left for future papers.

7. Summary and Related Work

This paper presented a base of concepts suitable for
expressing composition of artifacts in a general setting
independent from language or AOSD approach. It pro-
vides examples of many useful choices that can be pro-
vided or used in particular cases. It offers additional
material about an existing open-source implementation
based on this concept base, and shows how that im-
plementation can be used to realize the composition
needs of several existing AOSD approaches.

There are existing tools for manipulation of Java
classes, usually at load time, such as Javassist [3],
JMangler [13], JOIE [4] and Binary Component
Adaptation (BCA) [11]. These operate at a lower level
than the kind of composition engine described above,
generally applying to single types or methods, only
combining at the level of types and not providing direct
support for the combination of interpretable elements
discussed above.

Section 6 also discussed other AOSD technologies
that provide a high-level approach and embed a com-
position engine to perform their composition needs.
But these existing tools and approaches, while making
use of individual particularizations of the concepts pre-
sented here (like selection or ordering), do not treat
them as concepts subject to the abstraction needed for
creating a generalized composition engine. Further-
more, these systems are all specific to single kinds of
artifacts like Java bytecodes or source. This paper has
identified and described key concepts needed to ad-
dress composition of the variety of artifacts encoun-
tered throughout the development lifecycle.

8. References

[1] AspectWerkz web site, http:aspectwerkz.codehaus.org
[2] M. Aksit, L. Bergmans and S. Vural. “An Object-Ori-

ented Language-Database Integration Model: The Com-
position-Filters Approach.” Proc. European Conference
on Object-Oriented Programming, 1992.

[3] S. Chiba, “Load-time Structural Reflection in Java.”
Proc. 2000 European Conference on Object Oriented
Programming, LNCS 1850, Springer Verlag, 2000

[4] G. Cohen and J. Chase, “Automatic Program
Transformation with JOIE”, USENIX Annual Technical
Conference, June, 1998

[5] Concern Manipulation Environment web site,
http://www.eclipse.org/cme

[6] W. Harrison and H. Ossher. “Subject-Oriented
Programming: A Critique of Pure Objects.” Proc. 8th
conference on Object-oriented programming systems,
languages, and applications, 411-428 (1993).

[7] W. Harrison and H. Ossher, “Member-Group Relation-
ships Among Objects”, at Workshops on Foundations of
Aspect Languages, on Aspect-Oriented Design, and on
UML in Aspect-Oriented Software at International Con-
ference on Aspect-Oriented Software Development,
March 2002

[8] W. Harrison, H. Ossher, P. Tarr, “Pervasive Query Sup-
port in the Concern Manipulation Environment”, sub-
mitted for ICSE’05.

[9] W.H. Harrison, H.L. Ossher, P.L. Tarr, V. Kruskal, F.
Tip, "CAT: A Toolkit for Assembling Concerns" IBM
Research Report RC22686, December, 2002

[10] E. Hillsdale and J. Hugunin, “Advice Weaving in As-
pectJ”, Proc. 3rd International Conference on Aspect-
Oriented Software Development, 26-35 (2004)

[11] R. Keller, U. Hölzle, “Binary Component Adaptation,”
Proc. 1998 European Conference on Object Oriented
Programming, LNCS 1445, Springer Verlag, 1998.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, Jef-
frey Palm and William G. Griswold. “An Overview of
AspectJ.” Proc. 15th European Conference on Object-
Oriented Programming, 327-353 (2001).

[13] G. Kniesel, P. Constanza, M. Austermann, “JMangler –
A Framework for Load-Time Transformation of Java
Class Files, November 2001. IEEE Workshop on
Source Code Analysis and Manipulation (SCAM),

[14] JBOSS web page, http://www.jboss.org
[15] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play

Components for Evolutionary Software Development.”
Proc. Conference on Object-oriented Programming:
Systems, Languages, and Applications, 1998.

[16] Smaragdakis and Batory, Mixin Layers: An Object-Ori-
ented Implementation Technique for Refinements and
Collaboration-Based Designs, ACM Transactions on
Software Engineering and Methodology, April 2002.

[17] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton Jr. “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns.” Proc. 21st International Conference on Soft-
ware Engineering, 107-119 (1999).

10

