
RC23347 (W0409-145) September 22, 2004
Computer Science

IBM Research Report

Programming Model Alternatives for
Disconnected Business Applications

Avraham Leff, James Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Programming Model Alternatives for Disconnected Business Applications

Avraham Leff
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights

NY 10598
avraham@us.ibm.com

James Rayfield
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights

NY 10598
jtray@us.ibm.com

Abstract

We discuss some of the challenges that are inherent to
programming business applications for disconnected envi-
ronments, and outline various programming models that
address these challenges. We focus especially on a trans-
parent programming model that uses a “log/replay” ap-
proach, and describe our experiences in implementing this
programming model as middleware that supports discon-
nected Enterprise JavaBeans applications.

1 Introduction

This paper describes an ongoing project to build mid-
dleware that supports a transparent programming model for
building disconnected business applications. To explain
why this is useful, we first define “disconnected business
applications” and show how technology trends are increas-
ingly motivating the creation of such applications. We then
explain the challenges that are specific to “disconnected” in
contrast to “connected” business applications, and describe
three programming models that attempt to address these
challenges. Although there are tradeoffs between these pro-
gramming models, we explain why thelog/replayapproach
is superior. The rest of the paper focuses on ourdEJB
(disconnectedEnterpriseJavaBeans) middleware, which is
designed to transparently support the log/replay program-
ming model for disconnected business applications.

1.1 Disconnected Business Applications

A “business” application is characterized by the fact that
the application (1) involves updates to state that is shared
by multiple users and (2) these updates must be performed
transactionally [6]. A business application is “discon-
nected” if it executes on devices that operate, at least part

of the time, without being able to interact with the server’s
shared database. Mobile devices such as personal digital
assistants (PDAs), PDA phones, hand-held computers, and
laptop computers are examples of such disconnected de-
vices. Historically, resource constraints (e.g., memory and
CPU) have precluded disconnected devices from running
business applications. Ongoing technology trends, how-
ever, imply that such resource constraints are disappearing.
For example, DB2 Everyplace [3] (a relational database)
and WebSphere MQ Everyplace [11] (a secure and depend-
able messaging system) run on a wide variety of platforms
such as PocketPCTM , PalmOSTM , QNXTM , and Linux; they
are also compatible with J2ME [7] configurations/profiles
such as CDC and Foundation. It seems likely that even
an Enterprise JavaBeans [4] container can run on mobile
devices. As a result, business applications that previously
required the resources of an “always connected” desktop
computer can potentially run on a mobile device. This paper
therefore examines a key issue: what are the implications
(if any) of the fact that such devices are only intermittently
connected to the server.

Business applications, almost by definition, are struc-
tured as application logic that reads from, and writes to,
a transactional database that can be concurrently accessed
by other applications. Business applications have taken for
granted that the transactional database can always be ac-
cessed by the application. Even if business applications are
structured so as to access locally cached data for “read” ap-
plication, state changes (“updates”) must still applied to the
shared, master database [5] [9]. In contrast, disconnected
business applications are forced to read from, and write to,
a database that isnotshared by other applications and users.
This observation raises the possibility that business applica-
tions must be fundamentally restructured in order for them
to run in a disconnected environment.

There are three basic programming models that ad-
dress this fundamental characteristic of disconnected busi-
ness applications:Messaging, Row-level replicationand

1

Log/Replay.

2 Programming Model Alternatives

In this section we discuss the various programming-
model alternatives for disconnected client applications. We
focus on the client-side execution and client-to-server repli-
cation of updates. Suitable technologies already exist for
server-to-client database-subset replication [12], and the
log/replay programming model does not improve upon
these.

2.1 Messaging

The messaging programming model takes the approach
that a disconnected business application must be explictly
partioned into two portions. Developers explictly code one
portion to execute on the disconnected device and another
portion to execute on the server. On a per-application basis,
developers devise a suite of messages that are sent by the
mobile device to the server when it reconnects. Upon re-
ceiving these messages, the server invokes programs that
propagate the disconnected application’s changes to the
server’s database. For example, the portion of anorder en-
try application that runs on a disconnected device is respon-
sible for saving enough of the new order information to al-
low the server to update its database as if the order had been
placed by a server-side application program. This might
include the name of the agent executing the order, the cus-
tomer for whom the order is executed, and the set of items
in the order. The message suite transmits this state and in-
vokes a server-side program that executes the order on the
server using the state that was previously saved on the dis-
connected device.

The messaging approach has the advantage of (poten-
tially) minimizing the required bandwidth needed to propa-
gate the device’s state to the server. This is possible because
only the minimum amount of state needed to invoke the
server-side program need be transmitted. On the other hand,
the messaging approach has important disadvantages. De-
velopers must “hand-craft” a two-part solution (client and
server) on a per-application basis. For example, the appli-
cation itself is responsible for transactionally constructing
and transmitting the message from the device to the server,
processing the message on the server, invoking the program
that executes the order on the server, and returning the re-
sults to the reconnected device. The messaging approach,
in this sense, is a step backward from the historical trend in
software to push as much function as possible into generic
middleware. It is also a distraction to the developers, who
would be more productive if they were able to focus their
efforts solely on the user interface and business logic.

From the standpoint of productivity, as well, businesses
would prefer to develop only one version of an application,
and deploy that application to both connected and discon-
nected environments. The messaging approach usually re-
quires that two versions of an application must be devel-
oped: thepartitionedversion of the application, described
above, and aconnectedversion, for machines which are al-
ways connected to the server. Thus the partitioned version
requires additional development, test, and maintenance ef-
fort beyond that required for the standard connected ver-
sion.

The messaging approach also has difficulty enabling the
disconnected device to see locally-applied state changes
— that is, state changes made by the application to the
cached database. This is because the straightforward im-
plementation of the messaging approach does not actu-
ally make changes to the local database; instead, they are
saved for eventual transmission to the server. Applying the
changes locally complicates the implementation because
the changes must be transactionally merged with the up-
dated server state after the server has executed the applica-
tion messages.

Stock

Client

Item name Count

Stapler 9

1 stapler
sold to Mike

Message queue
Client

Application

Stock

Server

Item name Count

Stapler 10

Server
Application

Figure 1. Messaging Programming Model

Figure 1 sketches the use of messaging programming
model to implement an “order entry” application for a dis-
connected environment. It shows the client portion of the
application as having decremented the stock level of sta-
plers because one was sold to Mike; it also shows the subse-
quent message to the server, instructing the server to decre-
ment its stock level so as to process the customer’s order on
the server.

2

2.2 Row-Level Replication

In contrast to the messaging programming model, the
row-level replication programming model for disconnected
business applications takes the approach that the client ap-
plication reads and modifies the local copy of the database
without worrying (directly) about concurrent operations by
other clients, and without keeping a separate record of the
changes it makes. Instead, middleware running on the dis-
connected device tracks which database rows have been
modified. Upon reconnecting to the server, all modified
rows are replicated to the server, thus propagating the ap-
plication’s disconnected activity. One advantage of this ap-
proach is that the client application closely resembles a stan-
dard server-side (connected) application. Another advan-
tage is that it takes a “middleware” approach in which the
fact that the application executes on a disconnected device
is (largely) transparent to the application and to its develop-
ers.

However, the row-level replication approach has disad-
vantages of its own. For example, some business logic may
be too expensive to run on disconnected clients (e.g. ad-
dress validation), or may require access to external systems
(e.g. credit-card verification). The business-logic for these
kind of operations must essentially queue this work some-
how to be done later by the server. Other problems arise
from the limitations of various row-replication implemen-
tations. Typically, unmodified rows are not compared at
replication time against the current server state (i.e. only
write-write conflicts are detected). If the server state was
modified while the client was disconnected, the client may
have made decisions based on stale data. Also, many imple-
mentations do not record the transactional boundaries of the
client application execution or the order of the row updates
which were made. If any replication conflicts are detected,
the replication session must be manually corrected or dis-
carded.

Row-level replication often introduces false conflicts at
replication time. For example, the middleware must detect
a conflict if a modified row has also been modified on the
server while the client was disconnected, because this could
lead to a transaction serializability violation (lost-write [6]).
In the order-entry example, two different clients may decre-
ment the stock level for the same item. At replication time
the middleware sees this as a conflict, because two differ-
ent clients modified the same row of the database. Al-
though this false conflict could easily be resolved by hu-
mans (decrement by 2), row-replication middleware does
not have enough semantic information about the application
and database to resolve this automatically. The semantics
(forcibly) introduced by the row-replication middleware are
that the stock level upon reconnect must be identical to the
stock level at disconnect. However, the desired semantics

Item name Count Dirty
Stock

Stapler 9 Yes

Client

Item name Count
Stock

Stapler 10

Server

Synchronize

Figure 2. Row-Level Replication Program-
ming Model

are merely that sufficient stock exists at reconnect to satisfy
the order.

Figure 2 sketches the use of the row-level replication
programming model to implement the same scenario shown
by Figure 1.

2.3 Log/Replay

The log/replay programming model for disconnected
business applications firstlogs an application’s activity
while the device is disconnected and thenreplaysthe previ-
ously logged activity when the device reconnects with the
server. We introduce this programming model because it of-
fers the advantages of both the messaging approach (repli-
cation is based on the application’s business logic) and the
row-level replication approach (the application and its de-
velopers are unaware that it may execute on a disconnected
device). Note that we do not log database state changes,
as this would be equivalent to the row-level replication ap-
proach. Instead, we log the activity performed by the ap-
plication itself, or more precisely, we log (and replay) at
business transaction granularity.

The log/replay approach can be viewed as a middleware-
based version of the messaging programming model. As
with the messaging approach, the disconnected application
tracks the key business activities that have occurred dur-
ing the application’s execution. Unlike the messaging ap-
proach, middleware is responsible for tracking these busi-
ness activities; the application itself is unmodified, and
remains unaware that log activity is occuring. As with
other comparisons between hand-crafted and automated so-
lutions, the messaging approach may well (at least initially)

3

Stock

Client

Item name Count

Stapler 9

sell(“stapler”,
1, “Mike”)

Log queue
Log

Middleware

Stock

Server

Item name Count

Stapler 10

Replay
Middleware

Figure 3. Log/Replay Programming Model

provide a more optimal solution than the log/replay ap-
proach. For example, a hand-crafted solution will record
the minimal state needed to invoke the server-side part of
the application. The usual tradeoff applies, however: de-
velopment and maintenance costs are considerably cheaper
with an automated approach. In the next section we describe
how thedEJB system provides middleware that supports
the log/replay programming model.

Figure 3 sketches the use of the log/replay programming
model to implement the same scenario shown by Figures 1
and 2.

3 dEJB Middleware

We are currently working on thedEJB project, middle-
ware for implementing the log/replay programming model
for disconnected business applications that are coded as En-
terprise JavaBeans[4] (EJBs). EJBs are a component model
for enterprise applications. EJBs automatically supply com-
mon requirements of enterprise applications such as per-
sistence, concurrency, transactional integrity, and security.
Bean developers focus on the business logic of their ap-
plication; when deployed to an EJBcontainer, the compo-
nents are embedded in an infrastructure that automatically
supplies the above requirements. The chief design goals
of dEJB are that the log/replay function (1) be application-
independent and (2) be as transparent as possible. That is,
our goal is to enable a business application developed for
a connected environment to be deployed to a disconnected
environment with no (or few) changes. Although focussing
on EJBs, the algorithms and infrastructure used in dEJB
apply to other transactional component models[8] such as
CORBA[1] and DCOM[2].

dEJB requires that the business logic be implemented
as a set of stateless session beans (SSBs), representing the
“business tasks” of the application Our middleware logs the
top-level SSB methods executed by the application (that is,
those methods which initiate a transaction context).

3.1 Infrastructure

Figure 4 shows the client/server dEJB infrastructure. It
consists of a server that maintains a shared database and
that executes one or more business applications. Each of
these applications consists of EJBs that have been deployed
to an EJB container using the dEJB tooling. Note that the
business application’s EJBs are completely standard; it is
the dEJB tooling that adds the hooks to the dEJB runtime
that implement the log/replay programming model.

Application
Driver/GUI

Business
Logic (SSBs)

Database

SSB Method
Logger

Log Replay

Replicator

Business
Logic (SSBs)

Database

Client Server

Application

Application

dEJB runtime

Figure 4. dEJB: Client/Server Infrastructure

Multiple clients are intermittently connected to the
server in Figure 4, and each client can run any of the
business applications that are running on the server. The
two most important EJBs of the dEJB runtime are theLo-
gRecordandReplicatorbeans.

The dEJB tooling extends tooling that deploys stateless
session beans to a “connected” EJB container in the fol-
lowing way. Wherever the deployed component (e.g., the
class that implementsEJBObject) delegates a client invo-
cation to the bean implementation (e.g., the class that im-
plementsSessionBean), the dEJB tooling injects a call to
a utility method which creates the appropriate LogRecord
bean.

3.1.1 LogRecord

Every time that a stateless session bean (SSB) method is in-
voked, the (deployed) code determines whether the method

4

is executing within an existing transactional scope. If it is,
there is no need to log this method’s execution since its ac-
tivity is logged as part of the existing transaction’s activity.
If no transaction is currently active, a corresponding Lo-
gRecord entity bean is created that contains the following
state:

• The name of the method being logged.

• The signature of the method being logged.

• The method parameter values used during the (logged)
method invocation.

• The JNDI name of the Home which created the SSB

As an application executes on the disconnected device, a
set of unique LogRecord instances are created, each corre-
sponding to a single top-level business transaction. At re-
play time, the LogRecord contents provide enough informa-
tion to create a new instance of the SSB and re-execute the
same method with the same parameter values on the server.

3.1.2 ReplicatorBean

The ReplicatorBean SSB is responsible for the synchroniza-
tion process that is initiated when a disconnected device
synchronizes, at some point, with the server. The replay
protocol consists of three phases:

1. The replay protocol is initiated when a client invokes
initiateSync on the remote Replicator stub. This
method specifies asyncSessionIdthat groups the set of
LogRecords that are passed to the server.

2. The Replicator SSB implementation on the server iter-
ates over the set of LogRecords, invokingreplay on
each instance. Note that the original parameter values
are used when replaying the method.

A replay is considered to have “failed” if an exception
is thrown by the method or (optionally) if the value
returned by the method differs from the original value.

3. The server asynchronously contacts the client, and re-
turns the status of the replay operations.

4 Programming Model Semantics

The row-level replication programming model differs
significantly from the messaging and log/replay program-
ming models with respect to theintendedsemantics of a
synchronization operation. Row-level replication assumes
that operations performed by a disconnected client should
be considered “committed”, and should be transformed “as
is” to the server. For example, if an order was placed when

items cost $100, the synchronized device will place orders
using the $100 price. In contrast, messaging (typically) and
log/replay assume that operations performed by a discon-
nected client are “tentative”, and are only as a statement of
what the client intends to do when it synchronizes with the
server. In the previous example, if the price has changed to
$150, the order that gets committed will use that price rather
than the $100 price that was used to place the original order.

Neither of these semantics is obviously “right” or
“wrong”. On the one hand, clients that have run an applica-
tion without any problems likely assume that their activity is
valid and will be committed to the server without incident,
and “as is”. This can only occur with row-level replication
semantics. On the other hand, clients likely assume that
synchronization activities execute against the most up-to-
date server-side data; this can only occur with the log/replay
semantics.

Independent of this basic issue, the log/replay program-
ming model has the advantage of defining valid synchro-
nizations in terms of the application developer’s definition
rather than in terms of detected data conflicts. Recall that a
replay fails when the replayed method throws a (business)
exception. In contrast to row-level replication, this will tend
to reduce “false positives” as, for example, orders will be re-
jected only because of insufficient stock rather than conflicts
between the stock levels. This will also tend to reduce “false
negatives”, e.g., a client’s desire to place an order only if the
price is less than a threshold will not be re-evaluated during
synchronization under row-level replication approach since
it is a only a function of “read” data. Under log/replay the
entire business validation logic will be replayed so that if
the threshold constraint is violated at synchronization time,
the replay will be rejected.

4.1 Status

We have implemented the dEJB runtime and tooling
shown in Figure 4 and deployed a demonstration “order en-
try” application to that platform. The “order entry” appli-
cation can be viewed as a “TPC-C lite” application. The
application consists ofAgent, Customer, Item, Order, Or-
derLine, andStockentity EJBs, as well as aManageOrder
stateless session bean. These EJBs are standard EJB 2.0
beans, and are not modified in any way so as to enable de-
ployment to the disconnected environment.

Both the client and server portions of the demo execute
on the IBM Service Management Framework [13] (SMF),
an implementation of the Open Service Gateway initia-
tive [10] (OSGi) framework. OSGi is a specification for
lightweight (J2ME-compatible), Java-based containers to
which dynamic components are deployed. The container
handles interactions between components, provides basic
services to applications (e.g., web-services, authentication,

5

logging), and allows applications to be exposed as services
to other applications. Applications must implement the
suite of OSGi life-cycle methods: this allows the container
to install, start, stop, update, and delete any application pro-
grammatically or through an interactive console.

The server portion of the demo uses DB2 as its database,
and executes in the J2SE (standard edition) environment.
The clients use DB2e as their database and execute in the
J2ME environment, specifically using thejclRM Java class
libraries. The demo runs both on the server in “always con-
nected” mode, and in “intermittently connected” mode in
which the client runs the application while disconnected and
subsequentally synchronizes with the server. No changes
are made to the application code in switching between the
two modes.

References

[1] J. Siegel. Quick CORBA 3. John Wiley & Sons, 2001.

[2] F. E. Redmond. DCOM: Microsoft Distributed Compo-
nent Object Model. John Wiley & Sons 1997.

[3] IBM DB2 Everyplace.
http://www-306.ibm.com/software/data/db2/everyplace/index.html

[4] J2EE Enterprise JavaBeans Technology.
http://java.sun.com/products/ejb/

[5] M.J. Franklin, M.J. Carey, M. Livny. Transactional
Client-Server Cache Consistency: Alternatives and Per-
formance. ACM Transactions on Database Systems
(TODS), Volume 22 , Issue 3, 315 - 363, 1997.

[6] J. Gray. A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann. 1993.

[7] Java 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me/index.jsp

[8] A. Leff, P. Prokopek, J. T. Rayfield, and I. Silva-Lepe.
Enterprise JavaBeans and Microsoft Transaction Server:
Frameworks for Distributed Enterprise Components. Ad-
vances in Computers, Academic Press. Vol. 54. 2001. 99-
152.

[9] A. Leff and J. T. Rayfield. Improving Application
Throughput with Enterprise JavaBeans Caching. May
2003. 23rd International Conference on Distributed
Computing Systems.

[10] Open Services Gateway Initiative
http://www.osgi.org/

[11] IBM WebSphere MQ Everyplace.
http://www-306.ibm.com/software/integration/wmqe/

[12] Open Mobile Alliance (OMA), SyncML
http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

[13] IBM Service Management Framework
http://www-306.ibm.com/software/wireless/smf/

6

