
RC23349 (W0409-154) September 24, 2004
Computer Science

IBM Research Report

A Taxonomy of Internet Instant Messaging and Chat Protocols

Raymond B. Jennings III, Erich M. Nahum, David P. Olshefski,
Debanjan Saha, Zon-Yin Shae, Chris Waters

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 703
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Taxonomy of Internet Instant Messaging and Chat Protocols

Raymond B. Jennings III, Erich M. Nahum, David P. Olshefski,
Debanjan Saha, Zon-Yin Shae, Chris Waters

IBM TJ Watson Research Center
Hawthorne NY, 10532

ABSTRACT

Network chat and Instant Messaging have seen an
enormous rise in popularity over the last several
years. However, since many of these systems are
proprietary, little has been described about the
network technology behind them. This analysis
helps bridge the gap by providing an overview of
the system architectures, protocol specifications
and available features of several network chat
protocols. We present a survey of several popular
systems: AOL Instant Messenger, Yahoo!
Messenger, Microsoft Messenger, and Internet
Relay Chat. We describe common features across
these systems and highlight distinctions between
them. Where possible, we discuss advantages and
disadvantages of different approaches,
particularly with respect to security.

INTRODUCTION

Internet Chat and Instant Messaging have seen
enormous growth over the last several years.
There are on the order of 100 million Internet chat
users, where a user is defined as a unique name on
one of the major chat networks – AOL Instant
Messenger (AIM), Microsoft Messenger (MSN)
or Yahoo! Messenger (YMSG) [1]. To date, little
has been documented about the network protocols
used by these systems. The protocols are not
standardized, many of them are proprietary, and
they are even seen as a control point in this
business by the companies involved. This is
demonstrated by the repeated attempts of the chat
services to lock out users of other systems, in an
attempt to keep their customers private [2].
However, enough information is available to
determine the broad characteristics of these
systems.

We present an overview of chat protocols as
exemplified by four popular systems: AIM, MSN,
YMSG, and Internet Relay Chat (IRC).
According to instantmessagingworld.com as of
March 2004, AIM has estimated to have over 44
million users, and YMSN over 19 million [3].
MSN claims over 100 million users as of June
2003 [16]. IRC has over 1.3 million users across
over 700 networks [15].

While each has been designed and implemented
separately, the overall group exhibits similar
characteristics with respect to network and system
architecture. For example, all of the chat
protocols allow for authenticating with a central
server, engaging in private chats and conversing
in public chat rooms. In addition, some chat
systems allow for file transfers, Web cam usage,
using privacy controls, maintaining buddy lists,
voice chats and other options. We discuss these
topics in more detail in the coming sections. We
analyze the most recent chat clients available,
specifically, AOL Instant Messenger v. 5.5.3595,
MSN Messenger v. 6.2.0137, and Yahoo!
Messenger v. 6,0,0,1710. However, all of the
major chat protocols have undergone significant
revisions over the years, and changes to the
protocols occur on a regular basis.

As with all networked applications, chat protocols
have a large potential design space. This survey
helps expose some of the dimensions available to
a protocol designer and how existing chat systems
chose to decide them. Where possible, we
describe advantages and disadvantages of each
design choice, especially when the choice affects
security.

SYSTEM ARCHITECTURE

Figure 1: AIM System Architecture

We start by presenting an overview of the possible
system architectures. Chat providers typically
host a set of servers that customers log in to and
exchange messages with. A fundamental issue
faced by chat service providers, and thus
designers of the protocols, is how the systems will
scale with large numbers of users. Ideally, each
organization desires to have millions of customers
logged on to their systems at each time. This in
turn requires that organizations have a system
architecture that can scale with the number of
users. Two approaches are available here:
symmetric and asymmetric. In a symmetric
architecture, each server performs identical
functions, such that a client need not distinguish
which server it contacts to engage in an activity
with. In an asymmetric approach, each server is
dedicated to a particular activity such as logging
in, discovering other users on the network,
maintaining a chat room, or forwarding an instant
message. Of course, scaling can also occur by
using multiple IP addresses for each server using
dynamic DNS [5], and the three commercial
systems all appear to do this.

AIM and MSN take the asymmetric approach.
AIM defines several types of servers: login, BOS
(Basic Oscar Services), icon, user search, chat
room setup, and chat room hosting. MSN defines
three types: dispatch, notification, and
switchboard. We describe how these servers are
used in more detail below.

In contrast, YMSG and IRC take the symmetric
approach. Clients need only contact one type of
server and then route all kinds of activities though
that particular server. For example, YMSG
connects to a random server in the
cs##.msg.dcn.yahoo.com domain, where ## is a
two-digit decimal number. All subsequent
communication is routed through that server.

While IRC is also a symmetric architecture, it is
unique from the other systems in that it is a
system distributed across the wide-area. Servers
are connected using spanning tree that describes
the topology of the network. Thus, while a user
could potentially use any server in the network,
for the best response time and interactive
experience, contacting a server as close as
possible is preferred.

Figure 2: MSN System Architecture

One of the well-known limitations of IRC is that it
does not scale well with the number of servers.
The way that this is handled is that there are, in
fact, at least 4 different major IRC networks.
While how these networks came about is a
complex history, the net effect is that scale is
reduced by having disjoint networks.

SESSION DISTRIBUTION

We now examine in detail how the different
systems distribute sessions across the servers in
response to different actions.

The AIM system architecture is depicted in Figure
1. In AIM, after the client logs in with the main
authentication server, the client is directed to a
Basic Oscar Services (BOS) server. The client
opens a single TCP connection to the BOS server,
which is effectively the control channel. Most
subsequent communication occurs over this
connection, such as basic instant messages.
Persistent connections are also made to the email
server and the user interest server. New services
(checking email status, looking up a user, etc.)
require sending a service request to the BOS
server, which replies with a new IP address and
TCP port number to contact for that particular

service. A new connection is then made to that
server. The exception is when a user wishes to
join or create a chat room session. In this case,
the client first contacts the chat room setup server
to obtain permission and then presents that
credential to the BOS server, which then points
the client to a particular chat room server. Each
chat room session is maintained using a separate
TCP connection. The connection to the chat room
setup server persists until several minutes after all
chat room sessions are ended. The BOS server can
force a client to switch to another BOS server
through a migration message.

The MSN system architecture is shown in Figure
2. MSN also has an asymmetric architecture, but
with only three types of servers: dispatch,
notification, and switchboard. A client initially
contacts the well-known dispatch server if it does
not know of any notification servers. The dispatch
server then redirects the client to a notification
server. The client then opens a single connection
to the notification server and maintains this
connection as long as the client is logged into the
system. This is the control channel in the MSN
architecture. The notification server maintains the

Figure 3: YMSG System Architecture

presence of users in the system, and points the
client to individual switchboard servers when a
new chat or IM is created. The switchboard server
is used both for chats and IMs to other clients; this
differs from the other services in that MSN treats
instant messages and private chat rooms
identically. Instant messages are actually chat
rooms setup between two users where additional
users can be invited to the chat room (as long as
voice is not being used). The TCP connection to
the switchboard is open for the lifetime of the chat
or IM to the other client. The switchboard server
also handles invitations for file transfers and
NetMeetings. While MSN does not have an
explicit migration mechanism, the notification
server can close the client connection, forcing the
client to start over.

YMSG, on the other hand, is very simple due to
its symmetric architecture, and is shown in Figure
3. The same connection is used for all chat and
instant messages. IRC also only uses a single
connection, and is illustrated in Figure 4. IRC
does not have a notion of a chat room. Instead, a
similar mechanism called a channel is used, which
is more like a multicast channel.

Many corporate environments employ firewalls to
screen unwanted traffic, with a common default to
allow HTTP traffic. Because of this, many chat

systems allow tunneling over HTTP as a way
around these firewalls. Interestingly, the three
commercial chat systems all use the same
symmetric architecture when tunneled over HTTP;
namely, the client only interacts with a single
HTTP front-end server. The native chat protocol
is effectively encapsulated on top of HTTP, with
commands and responses being multiplexed on
top of the HTTP connection. AIM uses 2 HTTP
connections to speak with the network; 1 for
submitting requests asynchronously, and the other
that blocks waiting for the responses. YMSG use
a single synchronous connection, such that each
request blocks until a response is received from
the network. MSN also uses a single connection,
but submits requests asynchronously and either
receives a response or polls for a response
depending upon the type of request.

IRC, on the other hand, does not specify any
tunneling over HTTP; the RFC’s only discuss
straight IRC over TCP. However, this does not
preclude tunneling IRC over HTTP using a tool
such as httptunnel; of course, a second machine
would be required to terminate the tunnel and
gateway the IRC traffic directly onto an IRC
network.

LOGON AND AUTHENTICATION

Figure 4: IRC Architecture

The first thing users do is log on to a chat network,
in order to authenticate themselves to the system.
Again, several approaches are possible here, with
clear implications for security. Some chat
systems do not go through the full authentication
process that is done in other contexts (e.g., SSL),
since both the user and the system share a secret
key known only to the two of them: the user’s
name and password. While the initial system
sign-up is typically done using HTTP secured by
SSL, once the name and password are decided,
login authentication is typically done by
exchanging hashes of the shared secret, combined
with nonces and challenges provided by the peers.
In this way, the password is never transmitted in
the clear over the network, although the user name
is. Both AIM and YMSG work this way. The
advantage to this approach is that expensive
crypto operations are avoided, such as RSA public
key or AES shared key encryption. Instead,
relatively cheaper authentication algorithms based
on MD5 and/or SHA are used. The disadvantage
is that confidentiality is not provided; observers
can monitor the packet exchanges and determine
who has logged in, even if they cannot determine
the password. Since the hash algorithms are well
known, and the challenge and hash result are sent
in the clear, the systems are vulnerable to

dictionary attacks. Users must therefore use
passwords that are difficult to crack. In addition,
performing the exchange in the clear could lead to
connection hijacking; for example, AIM uses the
cookie returned by the logon server as a credential
sent in the clear to the BOS server. This
credential must be used within 30 seconds or the
connection will be terminated by the BOS server.
This suggests that there is a window of
opportunity where an adversary could monitor the
conversation, capture the cookie, and use it to
impersonate the victim to the BOS server.

MSN uses the Microsoft Passport system. After a
client identifies itself to the MSN notification
server, it is redirected to the Passport login server,
where authentication is performed over SSL. The
login server then supplies the client with several
encrypted cookies that serve as credentials to the
MSN notification servers. While the internal
crypto algorithms are not publicly documented,
the encrypted cookies are sent in the clear, leading
to several possible attacks, such as impersonation
and man-in-the-middle [11, 12].

IRC is the least secure of these systems in that the
protocol specifies that a user name and password
are sent in the clear, much like the original telnet
protocol. While not secure to an eavesdropper,
the RFC [4] notes that the security has been
considered sufficient in most cases for the use of
the network. While extra mechanisms are used in
practice, they are not codified in the standard.

CHAT DATA TRANSFER

One of the key issues in any chat or IM protocol is
how protocol headers are encoded. The
representation of this data can take two forms.
Historically, many network protocols have used a
binary representation of data in network byte
order; examples include TCP and IP.
Application-layer protocols such as HTTP and
SMTP have tended to use a text-based approach.
The main advantage to the binary representation is
that it makes most efficient use of space on the
network; a 16-bit value is smaller to express than
the text-equivalent 16,384. The advantage of the
text-based approaches is that the representation is
closer to the way humans view information, and
thus debugging is easier.

AIM and YMSG both use binary representation
for their headers. AIM uses a 2-level binary
structure, called FLAP and SNAC packets,
illustrated in Figures 4 and 5 respectively. FLAP
packets have fixed-length headers and variable-
length data; SNAC packets are a sub-type of
FLAP packets than include several additional
fixed-length fields and then a variable data
component.

Command
Start

(1 bytes)

Channel
ID

(1 byte)

Sequence
Number

(2 bytes)

Data
Length

(2 bytes)

Data
Field

(variable)

Figure 4: AIM FLAP Packet Format

Family
Type

(2 bytes)

Sub-
Type

(2 bytes)

Flags

(2 bytes)

Request
ID

(2 bytes)

SNAC
Data

(variable)

Figure 5: AIM SNAC Packet Format

YMSG, in contrast, has a single-level structure of
six fixed-length fields followed by variable-length
data, as shown in Figure 6. The data field is a

sequence of key-value pairs, where keys are
represented as a variable length ASCII number.

AIM and YMSG have different methods of
encoding header information. AIM appears to
favor a custom variable-length encoding that may
be more space-efficient in how much space on the
wire it takes; YMSG has a more regular structure
that appears to be more simply decoded.

Figure 6: YMSG Packet Format

VER 29 MSNP10 MSNP9 CVR0\r\n

CVR 30 0x0409 winnt 5.0 i386 MSNMSGR
6.2.0137 MSMSGS
erichnahum@hotmail.com\r\n

XFR 31 NS 207.46.106.126:1863 0
207.46.104.20:1863\r\n

Figure 7: MSN Message Examples

Unlike AIM and YMSG, MSN and IRC headers
are text based. MSN headers take the form of
<command, transactionID, parameterList, \r\n>,
where command is a 3-letter encoding,
transactionID is an integer number, and
parameterlist depends on the command. Figure 7
shows an example of some MSN messages.

IRC has a similar approach, where messages take
a straight <command, options, \r\n> format. The
number of options is variable based on the
command type.

One potential problem to chat service providers
are users that send data at excessive rates,
flooding the network with useless traffic and
inconveniencing other users. While TCP provides
some protection against this through congestion
control, some chat providers have apparently
decided that this is not sufficient. Thus, several
systems provide some kind of rate control to
prevent SPAM or denial of service within their
networks. AIM has a relatively complex

“YMSG”
(4 bytes)

Protocol Version
(4 bytes)

Data Length
(2 bytes)

Service
(2 bytes)

Status
(4 bytes)

Session ID
(4 bytes)

Data
(variable length)

mailto:erichnahum@hotmail.com

algorithm that has different rate limits based on
the message type. Rates are based on a time
window in seconds. If the client exceeds the rate,
the user will be warned, and if the bad behavior
persists, the server will start dropping messages
and even eventually disconnect the client. YMSG
has a static limit of three IM’s a second, which
appear to be enforced by the client. This implies
that rate limiting could be circumvented by third-
party clients (such as gaim or xchat) that do not
enforce the limit. Even IRC has a rate limiting
mechanism specified by the protocol as 1 message
every 2 seconds. MSN, on the other hand, does
not appear to have any rate limiting control.

Another way that chat systems minimize the load
on their networks is by getting rid of idle clients.
Thus, each system maintains a keep-alive
heartbeat message; if the client does not provide a
heartbeat or response to a query, the connection
may be terminated. In the case of AIM, the client
must send a keep-alive every minute to the server.
YSMG has two types of heartbeat requests, a
primary and a secondary, that the server generates
and the client must respond to. It is not
immediately clear why two types of timeouts are
used. Typical values are 60 minutes for the
primary and 13 minutes for the secondary. MSN
has both client and server heartbeats. When the
client pings, the server responds with how long
the client should wait until the next ping. When
the server pings, it is a challenge to the client
which must then respond with an MD5 hash of the
challenge and the client ID. IRC does not appear
to have any application-level timeouts; it thus
relies solely on TCP-level heartbeats.

OTHER FEATURES

A usability feature that some chat systems provide
is meta-messages that indicate that the other user
in a chat session is typing. This allows the user to
realize that the other party is in the process of
composing a message and potentially hold off on
their own typing. The “typing” messages are
consequently a message type in the chat protocol.
AIM, YMSG and MSN have such message types.
AIM even has three granularities: typing, not
typing, and typed but erased. IRC does not have
this feature.

One option YMSG provides that the others do not
is the ability to send IM’s to users that are not
currently logged on to the system. The system
stores the messages on persistent state and then
delivers them to the recipient when that person
logs on.

A popular feature provided by many chat systems
is voice chat, allowing users to talk in a full-
duplex, interactive fashion. Again, several
approaches are possible. AIM uses a peer-to-peer
(P2P) approach where the initiator talks directly to
the recipient, after coordinating through the
system. Two clients thus talk directly over UDP,
without using a chat room, using a proprietary
voice protocol which samples every 180
milliseconds. AIM allows only 2 participants in a
voice chat. YMSG also offers a voice service, but
all traffic is routed through a centralized voice
chat server. Clients first contact a setup server
“vc.yahoo.com” using a new connection on a
different port number. The setup server redirects
the client to the voice chat hosting server.
Invitations, accepts, and rejects are sent over the
standard yahoo message connection. Voice data
is routed through the voice chat server, and is
sampled every 60 milliseconds. YMSG voice
appears to be a proprietary format, since it has a
UDP/RTP header but with an unassigned type 22
voice codec. Voice communication can include
conferencing, i.e., more that 2 participants. MSN
offers both P2P voice chats and conferencing
through a chat room. MSN uses SIP, with
UDP/RTP for voice, with a voice codec type of
G723. The IRC protocol does not offer voice
chats, although a non-standard method could be
offered by the chat client.

Peer-to-peer text communication is also offered
by some systems using direct TCP connections
between clients. These are sometimes called “side
chats.” AIM and YMSG have this feature, but
MSN does not. IRC does not provide this feature,
although users can approximate it through a
PRIVMSG command to a single user, which is
not assigned to a channel, but it is still routed
through the server.

An interesting feature offered by AIM is the
ability to engage in secure communications by
encrypting the chat session. Clients can obtain

public keys and corresponding certificates to
verify them from AOL. Secure instant messages
are done using SSL and the two peer public keys.
Secure chat rooms are created using a shared 256-
bit AES secret key chosen by the chat room
creator; invitations to the chat room include the
secret key. YMSG, MSN and IRC do not appear
to have any similar capability.

ADMINISTRATIVE FUNCTIONS

Most chat systems have mechanisms for
maintaining lists of friends (and even enemies).
These are typically called “buddy lists”, “allow
lists” and “block lists.” These lists are maintained
as persistent state on the server, which the clients
synchronize with when they log in. The lists are
used to for several purposes. Buddy lists identify
people that a user wishes to monitor the presence
of (for example, to be notified when they log in).
Block lists identify people that a user wishes to be
isolated from, so that the user is not bothered or
harassed by those people. Block lists are a form
of blacklisting; some systems have the
complementary feature of a whitelist. Called
allow lists, these specify that only people on the
list may communicate with the user. AIM,
YMSG, and MSN all have buddy lists and block
lists. AIM and MSN also have allow lists. MSN
even has “reverse forward lists”, which informs
you of those users that have you on their forward
(allow) lists. AIM has an additional feature that
specifies a granularity of blocking, called a
warning. Warnings are sent in response to
received messages that the client finds unpleasant
or inappropriate. Recipients of warning messages
are penalized by having their sending rate lowered.
Warning levels degrade slowly over time.

FUTURE DIRECTIONS

A recent activity within the IETF is working to
make chat and instant messaging interoperable
through open standards. Two competing
standards are being developed: one based on SIP
[6] and one based on XMPP [9].

SIP defines two mechanisms: the session model
and the pager model. The pager model is
appropriate when a user wishes to send a small
number of short instant messages to a single (or

small number of) recipients. The session model is
intended for extended conversations such as chat
groups. Both models are transported under SIP.
Currently, there is no standard HTTP tunneling
method specified.

The pager model is currently more defined,
specified as SIMPLE (Session Initiation Protocol
for Instant Messaging and Presence Leveraging
Extensions) [6]. The pager metaphor is similar to
that of a two-way pager or SMS enabled handset;
there is no explicit association between messages.
IM payloads are carried inside the SIP packet via
a new MESSAGE method. Since SIP can be
encapsulated over UDP, there is potential for
traffic congestion within the SIP infrastructure
when a SIP message contains IM payloads. This
congestion could also interfere with SIP call
signaling traffic. To help address this issue, the
IM payload is limited at 1300 bytes in SIMPLE.

In the session model, there is an explicit
conversation with a clear beginning and end. In
the SIP environment, an IM session would be a
media session initiated with an INVITE
transaction and terminated with a BYE transaction.
The IM payload is not carried in the SIP message,
but in the media session established by SIP
message. In the pager model, since the IM
session is not sent within the same SIP
infrastructure as the SIP message, there is no
limitation on the size of the payload. The
message format conforms to the CPIM messaging
format.

SIMPLE messages may send bodies of type
message/CPIM. Since the message/CPIM format
is expected to be supported by other instant
message protocols, endpoints using different IM
protocols, but otherwise supporting
message/CPIM body types, should be able to
exchange messages without modification of the
content by a gateway or other intermediary. This
helps to enable end-to-end security and
interoperability between endpoints that use
different IM protocols.

In normal usage, most SIP requests are used to
setup and modify communication sessions, not
communicate data directly, which happens in the
media sessions. The MESSAGE method in SIP

changes this assumption, implying that
MESSAGE requests have a greater need for
security than most other SIP requests. The
SIMPLE specification thus requires user agents
implement end-to-end authentication, message
integrity, and message confidentiality mechanisms,
as specified by the S/MIME RFC.

To prevent the replay of old SIP requests, all
signed MESSAGE requests and responses must
contain a Date header field covered by the
message signature. Any message with a date
older than several minutes in the past, or which is
more than several minutes in the future, will not
be delivered to the user.

XMPP, the Extensible Messaging and Presence
Protocol, is the rival to SIP as an open-standards
based protocol for presence and instant messaging.
While XMPP provides a generalized, extensible
framework for exchanging XML data, it is
intended mainly for the purpose of building
instant messaging and presence applications that
meet the requirements of RFC 2779 [7]. The basic
syntax and semantics were developed originally
within the Jabber open-source community [8] in
1999. IETF chartered the XMPP working group
in 2002 with adapting the Jabber protocol to be
suitable as an IETF instant messaging (IM) and
presence technology. XMPP is thus more fully
developed and deployed, with current estimates of
over 200,000 registered users in the Jabber system
[8].

While XMPP is not bound to a specific
architecture, it is currently deployed in a client-
server manner, with two TCP connections
between client and server. The deployed
architecture is thus similar to IRC or network mail
(SMTP). XMPP supports both instant messages
and chat rooms, and relies on TCP for congestion
control. XMPP allows (but does not require) the
use of TLS as a method for securing the stream
from tampering and eavesdropping.

Table 1: Chat Protocol Comparison

SUMMARY

Little is known about the technical aspects of
commercial internet chat and instant messaging
protocols, due to the closed proprietary nature of
these systems. We presented a taxonomy of the
most common systems, namely AOL Instant
Messenger (AIM), Yahoo Messenger (YMSG),
and MSN Messenger (MSN), and compared them
with the open standardized Internet Relay Chat
(IRC). An overview of the protocols may be
found in Table 1. Out of all the systems, AIM
appears to support the most features and thus is
the most complex network chat protocol. This
may be a result of the fact that AIM has the
largest user base of the three systems. We also
briefly discussed possible future approaches to
chat and IM using IETF standardized protocols
such as SIMPLE and XMPP. It seems clear that
chat and IM protocols are here to stay, and will
continue to evolve over time.

AIM YMSG MSN IRC
Binary Based
Protocol

Y Y N N

ASCII Based
Protocol

N N Y Y

HTTP
Tunneling
support

Y Y Y N

Supports P2P
Connections

Y Y N N

Rate Limiting
support

Y Y N Y

Instant
Messages

Y Y Y Y

Private Chat
Rooms

Y Y Y Y

Public Chat
Rooms

Y Y Y Y

User created
public chat
rooms

N Y Y Y

Voice chat Y Y Y N
File Transfers Y Y Y N
Persistent
Server Storage

Y Y Y N

REFERENCES

[1] “Big Three Slug It Out for Consumer
Control,” May 2004,
http://www.instantmessagingworld.com/public/art
icle.php/3355251

[2] “Yahoo! Protocol Change Blocks Third Party
Clients,” June 2004,
http://www.instantmessagingplanet.com/public/art
icle.php/3373211

[3] “IMPlanet Roundup: The News,” October
2003,
http://www.instantmessagingworld.com/wireless/a
rticle.php/3096091

[6] B. Campbell, J. Rosenberg,, H. Schulzrinne, C.
Huitema, D. Gurle. Session Initiation Protocol
(SIP) Extension for Instant Messaging. IETF RFC
3428, December 2002.

[7] M. Day, S. Aggarwal, J.Vincent. Instant
Messaging / Presence Protocol Requirements.
IETF RFC 2779, February 2000.

[8] Jabber Software Foundation.
http://www.jabber.org

[9] IETF Extensible Messaging and Presence
Protocol Working Group.
http://www.ietf.org/html.charters/xmpp-
charter.html

[11] D. Kormann and A. Rubin. Risks of the
Passport Single Signon Protocol. Computer
Networks, V. 33, pp. 51—58, 2000.

[12] A. Pashalidis and C. Mitchell. A Taxonomy
of Single Sign-on Systems, 8th Australasian
Conference on Information Security and Privacy,
Wollongong, Australia, July 2003.

[13] A. Gelhausen. Summary of IRC networks.
http://irc.netsplit.de/networks/

[14] Blake Irving. MSN Messenger 6 Scores Big
With IMers.
http://www.microsoft.com/presspass/features/200
3/jun03/06-17MSNIM.asp

AUTHOR INFORMATION

The authors work at the IBM T.J. Watson
Research Center, Yorktown Heights, New York.
Raymond B. Jennings III is an advisory engineer
and works in the area of network system software
and enterprise networking. Erich Nahum is a
research staff member and works in the areas of
networked server performance, workload
characterization and generation, TCP, HTTP, and
security. David Olshefski is an advisory
programmer and works in the area of network
system software and enterprise networking.
Debanjan Saha is a research staff member and has
authored numerous papers on various topics of
networking and is a co-recipient of IEEE
Communications Society's 2004 Fred W. Ellersick
prize paper award and 2003 William R. Bennett
prize paper award. Zon-Yin Shae is a senior
engineer and works in the areas of multimedia
networking, SIP/VoIP converged networks,
multimedia traffic and data analysis. Christopher
J. Waters performs research in several areas
including network security and analysis of
communications metadata.

http://www.microsoft.com/presspass/features/2003/jun03/06-17MSNIM.asp
http://www.microsoft.com/presspass/features/2003/jun03/06-17MSNIM.asp
http://irc.netsplit.de/networks/
http://www.ietf.org/html.charters/xmpp-charter.html
http://www.ietf.org/html.charters/xmpp-charter.html
http://www.jabber.org/
http://www.instantmessagingworld.com/wireless/article.php/3096091
http://www.instantmessagingworld.com/wireless/article.php/3096091
http://www.instantmessagingplanet.com/public/article.php/3373211
http://www.instantmessagingplanet.com/public/article.php/3373211
http://www.instantmessagingworld.com/public/article.php/3355251
http://www.instantmessagingworld.com/public/article.php/3355251

	AUTHOR INFORMATION

