
RC23351 (W0409-168) September 28, 2004
Computer Science

IBM Research Report

Characterizing the Impact of Different
Memory-Intensity Levels

Ramakrishna Kotla
University of Texas at Austin

Anirudh Devgan, Soraya Ghiasi, Freeman Rawson, Tom Keller
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Characterizing the Impact of Different Memory-Intensity
Levels

Ramakrishna Kotla, Anirudh Devgan, Soraya Ghiasi, Freeman Rawson, and Tom Keller
University of Texas at Austin, IBM Austin Research Laboratory

Abstract

Applications on today’s high-end processors typically make varying load demands over time. A single

application may have many different phases during its lifetime, and workload mixes show interleaved

phases. This work examines and uses the differences between memory- and CPU-intensive phases to

reduce power. Today’s processors provide resources that are underutilized during memory-intensive

phases, consuming power while producing little incremental gain in performance. This work examines a

deployed system consisting of identical cores with a goal of running them at different effective

frequencies. The initial goal is to find the appropriate frequency at which to run each phase.

This paper demonstrates that memory intensity directly affects the throughput of applications. The results

indicate that simple metrics such as IPC (instructions per cycle) cannot be used to determine what

frequency to run a phase. Instead, one identifies phases through the use of performance counters which

directly monitor memory behavior. Memory-intensive phases can then be run on a slower core without

incurring significant performance penalties. The key result of the paper is the introduction of a very

simple, online model that uses the performance counter data to predict the performance of a program

phase at any particular frequency setting. The information from this model allows a scheduler to decide

which core to use to execute the program phase. Using a sophisticated power model for the processor

family shows that this approach significantly reduces power consumption. The model was evaluated using

a subset of SPECCPU and the SPECjbb and TPC-W benchmarks. It predicts performance with an average

error of less than 10%. The power modeling shows that memory-intensive benchmarks achieve about a

50% power reduction at a performance loss of less than 15% when run at 80% of nominal frequency.

1. Introduction

In the past, processor design had a single primary design focus – performance. While this focus has led to

faster processors and higher performance, it has introduced two significant, related problems – power and

the over-provisioning of systems [1]. Systems are designed for peak performance, with the result that

many resources are often under-utilized, resulting in wasted power. With the relative importance of these

problems increasing, power is now a first-level design constraint. Researchers have focused on two

different approaches to managing power. The first approach attacks power directly through the

introduction of low-power components including low-leakage devices and SOI technologies. The second

approach instead focuses on over-provisioned systems by exploiting workload variability.

Prior work has found that even a single application is composed of different phases [12]. Modern

processor design and research has tried to take advantage of the variability in processor workloads.

Examining an application at different granularities exposes different types of variable behavior which can

be exploited to reduce power consumption. At the circuit level, clock gating has been introduced into

commercial processors to eliminate unnecessary dynamic power consumption in unused components on a

cycle-by-cycle basis. Long-lived phases can be detected and exploited by the operating system.

Frequency and voltage scaling are common operating system level approaches for addressing workload

variability [2]. Complexity-effective designs have been introduced at the microarchitecture level to

exploit intermediate-length phases leading to a variety of different techniques including variably sized

instruction windows, self-balancing pipelines, and memory systems which use low power modes to save

power in unused banks.

Most complexity-effective designs respond to varying demands for the core and memory subsystems by

reconfiguring components to meet current demands. For example, an application in a low instruction-

level parallelism (ILP) phase may result in a system with small instruction window and a narrower

pipeline, while a high ILP phase requires a larger instruction window and wider pipeline. The core

dynamically responds these phase changes by reducing and expanding the number of available resources.

An alternative to dynamically adjusting the core features is to have a number of fixed designs, any of

which may be used at a given time. If done on a component-by-component basis, this approach greatly

expands the area consumed by the circuits. The area requirements are even larger if this is done on a core-

level basis, but such a design opens up the possibility of running on multiple cores simultaneously.

A complexity-effective approach using heterogeneous, or asymmetric, multi-core designs can be used

instead. Historically, designers have used heterogeneous processors to provide highly specialized

functions such as cryptographic processing, network address translation and I/O-related functions.

Generally, when systems use heterogeneous processors, they use them as coprocessors of some type of

general-purpose processing engine. Unlike these designs, but like some recent work ([3], [4], [5]), this

effort uses processors that have the same instruction architecture but offer different implementation

characteristics including different performance and power levels. This work is a significant contribution

beyond the earlier work in this area in the following ways.

• It demonstrates that there is an opportunity to use multiple processors with heterogeneous

implementation characteristics but a homogeneous instruction-set architecture. The opportunity

arises from the fact that the performance of memory-intensive programs saturates, so that

increasing frequency does not yield additional performance.

• The heterogeneity of the processors derives solely from voltage and frequency settings.

Memory-intensive programs suffer little performance penalty from running on slower

processors.

• It employs a standard, separately developed, methodology [6] to estimate peak power, given

the voltage, frequency and technology characteristics of the processors being used.

• It develops a simple but accurate model of the impact of processor frequency and memory-

intensity on application performance that allows a system to predict, based on the behavior of

the workload as measured by performance counters, what frequency yields the best

performance at the lowest power. This avoids the use of sampling to determine what core

should run the work. The model is valid because core heterogeneity arises only from frequency

and voltage differences and not from other factors. A scheduler can apply the model to select

the proper core on which to run a particular program or phase.

• All of the experimental work is on real, commercially available hardware.

2. Related Work

This work draws inspiration from a number of disparate areas. The eventual goal is a heterogeneous

design which incorporates voltage and frequency scaling, a memory-aware operating system, and the use

of performance counters to detect phase behavior which, in turn, is used to guide job selection and

placement. Relevant prior work in each of these areas is discussed in more detail below.

2.1. Dynamic Voltage and Frequency Scaling

Transmeta’s LongRun [7] and Intel’s Demand Based Switching [8] respond to changes in demands, but

do so on an application-unaware basis. In either approach, an increase in CPU utilization leads to an

increase in voltage and frequency while a decrease in utilizations leads to a corresponding decrease in

voltage and frequency. Flautner and Mudge [2] explored the use of dynamic voltage and frequency

scaling in the Linux operating system with a focus on average power and total energy consumption. Their

Vertigo system dynamically uses multiple performance-setting algorithms to reduce energy. One

algorithm responds to local, short-lived information while the other responds to a more global view of the

world. The combination of algorithms provides an energy savings over LongRun on their experimental

setup. However, Vertigo requires instrumentation of certain system components, such as the X server, to

track changes in workload demand.

This work differs by responding to easily observed changes in memory subsystem demands. Voltage and

frequency scaling are performed only when the memory subsystem indicates there are a large number of

memory stalls in the current phase. During CPU-intensive phases, as indicated by low numbers of

memory references, the core is run at full voltage and frequency.

2.2. Heterogeneous Cores

Prior work on single ISA, heterogeneous cores fall into two distinct categories. The first uses a processor

family which may be run at the same frequency, while the second category uses a processor family which

cannot be run at the same frequency. Both approaches take advantage of advances in processor design to

provide heterogeneity.

Single frequency heterogeneous cores have been studied by Kumar, et al. ([3], [4], [5]). Their work uses

different generations of the Alpha processor family all scaled into the current technology generation.

Since Alpha processors have similar complexities, as measured in fan-out-of-four inverter loads, it is

possible to scale processors to the same technology and run them at the same frequency. The goal of the

work is to minimize energy consumption while maintaining performance. Early work considered only a

single application on a single core and examined different metrics including energy per committed

instruction and energy-delay product for identifying the most suitable core. The authors examine both

dynamic and static core assignment. In later work, the authors extend these ideas to support multiple cores

running simultaneously. Sampling is used to identify the best-suited core. In contrast, this paper predicts

performance to find the appropriate core.

Ghiasi and Grunwald ([9], [10], [11]) explored single-ISA, heterogeneous cores of different frequencies.

Their work uses different generations of the Intel x86 processor family scaled into the current technology

generation. Intel’s x86 processor line has undergone significant changes in complexity over time, leading

to designs which cannot be clocked at the same frequency even after scaling. Their work focuses on the

thermal characteristics of a heterogeneous system and how they can be exploited to reduce and address

thermal emergencies. Applications are run simultaneously on multiple cores and an operating system

level component is introduced to monitor and direct applications to the appropriate job queues.

In contrast, this work uses a single generation in IBM’s PowerPC processor family, but cores are run at

different frequencies. It also differs from prior work by using a commercial product and direct evaluation

of techniques, rather than relying on simulation.

2.3. Phase Detection and Performance Counters

Phase detection is important to any real world system which is designed to take advantage of the

variability of applications. Sherwood, et al., [12] provides the most detailed analysis of phase detection,

but their work uses offline phase analysis. They use different performance-related metrics and correlate

them to different phases of a program. Dhodapkar and Smith [13] compared the use of working set

signatures, basic block vectors and conditional branch counters and illustrated the tradeoffs between

identifying stable phases and phase length. Dynamic phase detection is more prone to error and is not as

well studied at the operating system level. The simple performance model developed here can be used for

dynamic phase detection.

Most recent work in the area has been on identifying threads to run simultaneously on multi-threaded

systems via the use of core metrics accessible through performance counters. Snavely and Carter [14],

used sampling of a subset of possible application combinations to determine which applications can be

run together with minimal impact on the Tera MTA. Snavely differs from most work in this area by

performing experiments on commercial hardware. Kumar, et al, [5] also detects and responds to changes

in behavior through the use of sampling phases. Ghiasi [11] used temperature-defined phases, relying on

simulated temperatures rather than performance counters to detect phases.

3. Performance Model

On a system with heterogeneous cores, the operating system needs a simple and accurate model that

allows it to schedule application threads to the appropriate cores and to set frequency and voltage on

machines that allow them to change dynamically. Such a model is also useful to system designers in

determining what frequency and voltage settings to offer.

3.1. Motivation

The intuition behind this work is that programs obtain a limited benefit from increasing processor

performance. Once a certain level of processor performance is reached, increasing performance offers

very little incremental benefit. This performance saturation is due to the fact that memory is much slower

than the processor, so that at some point the speed of the program is bounded by the speed of the memory.

The ratio of memory-intensive to CPU-intensive work in the program determines the saturation point. The

saturation point is illustrated in Figure 1 for a number of ratios.

Impact of CPU/Memory Balance at Different Frequencies

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t
(P

er
ce

n
ta

g
e)

0

10

20

30

40

50

60

70

80

90

100

10%CPU-90%Mem

30%CPU-70%Mem

50%CPU-50%Mem

70%CPU-30%Mem

80%CPU-20%Mem

90%CPU-10%Mem

94%CPU- 6%Mem

96%CPU- 4%Mem

100%CPU-0%Mem

Figure 1: Performance saturation with a synthetic benchmark.

3.2. Examples
A synthetic benchmark, described in Section 4.5, illustrates the possible benefits of using heterogeneous

cores with frequencies determined by the memory demands of an application. It was run using a phase

length of 2 seconds. Phase 1 has an L1 hit rate of 100% and is considered “CPU-intensive”. Phase 2 has

an L1 hit rate of only 50% and is “memory-intensive”. Figure 2 suggests the performance counters

tracking memory can be used to identify phases. The memory-intensive phases are readily identified by

their much higher levels of L3 and memory references while the CPU-intensive ones appear as high

periods of low memory activity and high IPC. The curves nicely track the periodicity of the benchmark,

and the presence of information about all of the levels of the memory hierarchy allow the predictive

model to estimate accurately the level of memory intensity of a phase. The application throughput shown

in the figure lags the phase being reported since it is calculated at the end of each phase. Using the power

calculation methodology of Section 4.3, Figure 3 shows the reduction of cumulative energy by adapting

the frequency of the processor used to the phases of the synthetic benchmark.

50% /100% Phases Performance Metrics

1

10

100

1000

10000

100000

1000000

5 7 9 11 13 15 17 19 21 23 25 27 29

Time (Seconds)

P
er

fo
rm

an
ce

 M
ea

su
re

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Memory References L3 References L2 References

Application Throughput IPC

I
P
C

Figure 2: Performance counter results for the phased, synthetic benchmark.

0

500

1000

1500

2000

2500

3000

5.5 10.5 15.5 20.5 25.5 30.5

time (ms)

E
n
er
g
y

base energy adaptive energy

Figure 3: Cumulative energy with and without adaptation to the performance requirements of the phases.

In order to develop a model to predict the target effective frequency, data was collected for a range of

different effective frequencies, and at each frequency, counter data was gathered for a range of L1 hit

rates. The observed IPC versus the effective frequency is shown in Figure 4. It indicates reducing the

frequency is an effective way to mask the latencies in cycles of memory accesses.

IPC versus Frequency

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

In
st

ru
ct

io
n
s

p
er

 C
yc

le

20 60 92 98 99 99.2 99.6 99.9 100

Figure 4: Instructions per cycle versus frequency at different memory intensity levels.

These results suggested that IPC and frequency alone would be sufficient to predict the target effective

frequency. However, it is easy to construct a counter example. A simple synthetic workload with a critical

path of long-latency floating point instructions can be constructed to target any given IPC. An example is

shown in Figure 5.

IPC versus Frequency (CounterExample)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

In
st
ru
ct
io
n
s
p
er
 C
yc

le

Figure 5: IPC versus normalized frequency for a low-IPC but CPU-intensive program.

3.3. Initial Model
The counter example indicates that a more complicated scheme is necessary. Instead, a model of IPC was

developed and broken down into frequency-dependent and frequency-independent components. In the

following, � is the IPC of a perfect machine with infinite L1 caches and no stalls. In other words, � takes

into account the ILP of a program and the hardware resources available to extract it. Since ����������	�

determined accurately, for programs with an IPC less than 1, it is taken to be 1, and for those with an IPC

greater than 1, it is the IPC at the nominal frequency.

inststall CC

Instr

Cycles

nsInstructio
IPC

+
=≡

)(... __3_2__ stallsmemstallsLstallsLstallspipelinestallsbranch CCCCC
Instr

Instr

++++++
=

α

Instr

C
CNCNCN

Instr

stallsother

stallsmemmemstallsLLstallsLL

_

__33_22)(
11

1

++++
=

α

Instr

C
fTNTNTN

Instr

stallsother

stallsmemmemstallsLLstallsLL

_

__33_22)(
11

1

++++
=

α

Here each Nx is a count of the number of occurrences as provided by the performance counters, each Cx is

the number of processor cycles per event and each Tx is the time consumed by each event. Here Tx is pre-

determined for the particular processor. The equation assumes that the Cx values are all truly constant. In

reality, this is not true and is a source of error, but in practice it does yield a good approximation. This

point is discussed further in Section 5. Taking the reciprocals gives cycles per instruction (CPI) in the

following equation. This version of the equation is used later to calculate the percentage of memory stall

cycles for the program given that its CPI at 100 % frequency is known.

Instr

C
f

Instr

TNTNTN
CPICPICPICPI

stallsotherstallsmemmemstallsLLstallsLL
stallsothermem_stallsinst

___33_22
_

1 +
++

+=++=
α

The equation asymptotically reaches the following CPU-intensive and memory-intensive forms. Figure 4

gives a graphical representation of these approximations.

α

α

≈
+++

≈
)...(

11
1

pipelinebranch

ivecpu_intens

CC
Instr

IPC

fTNTNTN

Instr
IPC

memmemLLLL
ensivememory_int)(3322 ++

≈

At any given frequency, this equation can be used to predict the IPC at another frequency given the

number of misses at the various levels in the memory hierarchy as well as the actual time it takes to

service a miss. This provides a mechanism for identifying the optimal frequency at which to run a given

phase with minimal performance loss. As expected, the more memory-intensive a phase is, as indicated

by the memory subsystem performance counters, the more feasible it is to lower the frequency (and

voltage) to save power without impacting the performance and the better that the phase fits onto a slower

core.

3.4. Handling Non-Constant Latencies

The model developed in the previous section assumes that the latencies to the caches and memories are

constant. Due to prefetching and other effects, this is not true, and there are easily detectable cases, as

shown in Section 5.1, where the error from using the nominal latencies is significant. Since the latencies

are assumed to be program- but not frequency-dependent, by making an additional linearity assumption, it

is possible to determine the latencies empirically. However, this does require the measurement of the IPC

of the program at two different frequencies. The IPC equation in the previous section may be written as a

linear equation of two variables in the form IPCbaf 1=+ .

By taking two measurements of IPC at different frequencies, one gets two instances of the equation that

can then be solved to get a and b, which are then used to do the predictions. Intuitively, a / (a + b) is the

fraction of the cycles or the CPI due to cache and memory stalls. The experiments presented here use both

models, trying the initial one first, and then if it yields too great an error, turning to the second.

4. Methodology

4.1. Power Calculations

The equation P = CVdd
2f + βVdd

2 gives the power as a function of the frequency and voltage.

Here C is the capacitance, f is the frequency, Vdd is the supply voltage and β is process- and temperature-

dependent. The first term is the active power while the second is the static, due primarily to leakage.In

reality, systems usually scale frequency and voltage separately, subject to the constraint that running at a

given frequency typically requires at least a certain voltage. However, treating frequency and voltage as

independent quantities makes analysis difficult. Due to the relationship between the two quantities, one

reasonable simplification is to take the voltage to be a function of the frequency, that is, Vdd = V(f). Here

the value returned by V(f) is the lowest possible voltage for the part at the specified frequency.

4.2. Experimental Platform

The experiments described in this paper were performed on an IBM PowerPC-based pSeries P630 [15]

system consisting of 4 1GHz Power4+ cores operating at a core voltage of 1.3 volts. Each core has a

private 32 KB L1 instruction cache and a 64 KB L1 data cache. Two adjacent cores share a unified 1.44

MB data cache, resulting in two L2 caches, each shared by two cores. In addition, the adjacent cores share

a 32 MB L3 cache, resulting in two L3 caches, each shared by two cores. The machine has 4 GB of main

memory. Using experimentation, it was determined that the nominal latency to the L1 cache is 4 to 5

processor cycles, the nominal latency to the L2 cache is 11 to 14 cycles, the nominal latency to the L3 is

100 to 125 cycles and that to memory is 500 cycles. Although these values agree reasonably well with

other reported values for the same hardware, they are, in fact, dependent on the way in which the

measurement program accesses the caches and memory, and, as will become apparent later, the variability

affects the predictive model developed by this research.

The experimental platform runs Gentoo Linux with a 2.6.7 kernel. The kernel has been modified to

support CPU throttling. The underlying hardware provides mechanisms for throttling the pipeline via

dispatch, fetch or commit throttling. The hardware does not currently support direct frequency scaling, so

throttling is used to mimic the effects of frequency scaling. All experiments are performed using fetch

throttling. Experimental data indicate that this provides a good approximation to frequency scaling, even

though the remainder of the pipeline continues processing during fetch-throttled cycles. Throttling can be

used to cover the entire range from 0% frequency to 100% frequency. This work assumes throttling yields

the same power and performance results that using different frequencies for the processors would. In

other words, if feff is the effective frequency, fnominal is the nominal frequency, which is 1.0 GHz for the

experimental platform used, and throttle is the throttling percentage, expressed as a decimal, then feff =

throttle x fnominal.

The Power4 processor provides a number of performance counters, accessible either in user or privileged

state, which can monitor memory performance. The operating system or a user program can read the

performance counters, and the implementations used here read them periodically, with 10 and 100

millisecond being typical sampling intervals. Different experiments use somewhat different programs to

sample and record the counters, depending on the nature of the experiment. In many experiments, to

avoid interference from daemon processes, the experimental platform sets the priority of the workload of

interest to one for a high priority real-time job and the processor affinity to a particular core.

4.3. Calculating Power

The experiments in this study rely on the Lava power-estimation tool [6]. Lava is driven primarily by the

voltage and frequency used and the implementation technology: it is not activity-based. However, since

the Power4 parts do not exhibit very much power variation across activity levels, there is no need for

activity-based calculations. Lava is a circuit-level tool, so this work uses it to determine the shape of the

power versus voltage and frequency curves for a particular technology and then determines where on the

curve, in terms of relative power, the particular design points fall. The primary metric is peak power as

calculated at the selected frequencies, assuming that at each frequency setting, one uses the minimum

possible voltage. Voltage is treated as a well-defined function of frequency to simplify the analysis by

reducing it to the consideration of a single independent variable. Actual hardware generally runs a range

of frequencies at each voltage for a fictitious, but not unlikely, implementation used in this similar to the

real hardware used elsewhere in this study.

Peak Power at 85 Celsius

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5

Frequency (GHz)

W
at
ts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o
lt
ag

e

Power Voltage

Figure 6: Typical power and voltage curves as calculated by Lava.

4.4. Metrics

In this paper, performance is reported in terms of throughput. The synthetic microbenchmark used here

reports performance results that are easily interpreted as throughput numbers. For other tests, benchmark-

specific throughput is reported where appropriate. Power is reported in terms of relative power. The base

for power is a core at full frequency for the duration of the experimental run.

4.5. Benchmarks

This work is a preliminary study analyzing the feasibility of using differences in memory demands to

reduce power. As such, much of this work has been done with a synthetic benchmark that allows one to

measure the performance variability of a program with an adjustable ratio of processor-intensive to

memory-intensive operations. The synthetic benchmark is a single-threaded program that accepts a

parameter that determines the ratio of memory-intensive to CPU-intensive as well as the length of phases.

It currently supports two (2) phases, but the phases may be of different lengths and different memory-to-

CPU intensity. It is constructed so that a miss in the L1 is highly likely to result in a memory access due

to the large memory footprint. The program reports its performance in terms of throughput.

To verify the generality of the results, additional experiments were done using a subset of SPEC

CPU2000 benchmarks -- gzip, mcf, and art – chosen for their contrasting memory behavior [16], and

with two commercial workloads – SPECjbb and TPC-W [17] implemented using Apache 2.0.49, PHP

3.4.6 and MySQL 4.0.28 [17]. The web server and the data base engine are both run on the measured

system. The predictive model was applied to the analysis of all of these benchmarks, but the results

reported here are averaged values since there is currently no implementation of an adaptive scheduler

using the model.

5. Experimental Results

5.1. SPECCPU

The first of the SPECCPU benchmarks, gzip, is CPU-intensive, and the initial predictive model yields

reasonable results for it. Figure 7 shows the measured and expected performance results over the range of

normalized frequencies. Memory stalls account for about 8% of total cycles. The model predicts the

application performance (IPS) with an average error of 2.4% and a maximum error of 12%. A 58%

reduction in power by reducing frequency at minimum voltage from 100 to 80% comes at the cost of 20%

performance degradation.

gzip

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.2 0.4 0.6 0.8 1

Normalized Frequency

IP
C

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

M
IP
S

Measured IPC Expected IPC Measured MIPS Expected MIPS

Figure 7: gzip measured and expected performance versus normalized frequency.

Since it accesses memory in such a way that the processor benefits from prefetching, the art benchmark,

whose results are shown in Figure 8, demonstrates that it is essential to handle non-nominal latencies.

art

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

Normalized Frequency

IP
C

0

50

100

150

200

250

300

350

400

M
IP

S

Measured IPC Expected IPC Measured MIPS Expected MIPS

mcf

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.4 0.6 0.8 1

Normalized Frequency

IP
C

0

50

100

150

200

250

M
IP

S

Measured IPC Expected IPC Measured MIPS Expected MIPS

Figure 8: art and mcf measured and expected performance versus normalized frequency.

In this case, a is 0.9 and b is 1.79, so that cache and memory stalls account for about 33% of the total

cycles. The predictive model has an average error of 4.53% and a maximum error of 7% versus the

measured instructions per second. However, using the original model with constant latencies yields errors

in excess of 20%. A 55% reduction in power at minimum voltage by reducing frequency 20% costs a

reduction of 13.5% in application performance.

Similarly, mcf, also shown in Figure 8, is similarly moderately memory-intensive. It has a = 2.03 and b =

2.75. Memory stalls account for 42% of total cycles. The predictive model yields a result with an average

error of 6.2% and a maximum error of 12%. There is a 54% reduction in power by reducing frequency

from 100% to 80% at the cost of 12.5% performance degradation.

These results show that running the memory-intensive SPECCPU benchmarks, art and mcf, on a lower

frequency processor can reduce power significantly with only a nominal loss in performance. They also

demonstrate the accuracy of the model in predicting the performance of both the CPU-intensive and the

memory-intensive benchmarks.

5.2. SPECjbb
The SPECjbb benchmark measures the performance of a system’s processors and memory using a Java

implementation of the processing portion of the TPC-C. Figure 9 shows the results obtained for it.

SPECjbb Benchmark Measurements

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

S
co

re

0

50

100

150

200

250

300

350

400

450

500
Measured Score Expected Score Measured MIPS Expected MIPS

Figure 9: SPECjbb measured and expected results.

SPECjbb is a moderately CPU intensive workload with 25% of total cycles are due to memory stalls. The

model predicts its throughput score at various frequencies within 6% of measured performance

5.3. TPC-W
The TPC-W experiment uses the implementation of TPC-W described in [17]. Figure 10 plots the

reported performance of the benchmark versus the normalized frequency as well as the performance

projected by the predictor. Both the MIPS and the TPC-W throughput metric of WIPS are shown. One

interesting feature of the TPC-W is that it exhibits a relatively constant IPC across its execution, and it is

an example of a benchmark that is limited by CPU frequency rather than by memory access latency. Here

there is very little opportunity to make good use of heterogeneous cores using only a very straightforward

scheduling scheme.

TPC-W Benchmark Measurements

0

100

200

300

400

500

600

700

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

W
eb

 In
te

ra
ct

io
n
s
P
er

 S
ec

 (W
IP

S
)

0

1

2

3

4

5

6

7

M
ill
io

n
s
o
f I

ns
tr
uc

tio
n
s
p
er

 S
ec

on
d

Measured MIPS Expected MIPS Measured WIPS Expected WIPS

Figure 10: TPC-W performance versus frequency.

6. Conclusions

This study demonstrates the presence of performance saturation due to cache and memory latencies: this

saturation limits the benefits of additional processor frequency and higher power consumption and creates

an opportunity for the use of heterogeneous cores to limit dramatically power consumption without

significantly reducing performance. When heterogeneity arises from differences in frequency and voltage,

there are simple predictive models based on memory-related performance counter information that allow

a scheduler to select which core should run what phase of a program or permits either the designer or the

system itself to determine what voltage and frequency settings to use for its processors. An even simpler

IPC-based predictor is insufficient due to the existence of low IPC programs whose performance does

scale with processor frequency. The existence of the predictors eliminates the need to run a program

phase on all cores to sample its performance in order to determine the proper assignment and offers the

possibility of developing an adaptive scheduler.

Although this work indicates the value of heterogeneity based on frequency and voltage settings and the

existence of a simple predictor for the performance impact of such heterogeneity, this is a preliminary

study. But even this initial investigation shows the promise of power reduction at limited performance

cost through the use of processor cores that differ in their operating frequencies and voltages.

7. Acknowledgment

This material is based upon work supported by the Defense Advanced Research Projects Agency

(DARPA) under Contract No. NBCH3039004.

8. References

[1] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Mike Kistler and Tom W.
Keller, “Energy Management for Commercial Servers”, Computer, volume 36, number 12, December,
2004, pages 39-48.
[2] K. Flautner and T. Mudge, “Vertigo: Automatic performance-setting for Linux”, Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI’02), December, 2002,
pages 105-116.
[3] Rakesh Kumar, Keith Farkas, Norman P. Jouppi, Partha Ranganathan, and Dean M. Tullsen, “A
Multi-Core Approach to Addressing the Energy-Complexity Problem in Microprocessors”, Workshop on
Complexity-Effective Design, 2003.
[4] Rakesh Kumar, Keith Farkas, Norman P. Jouppi, Partha Ranganathan, and Dean M. Tullsen,
“Single-IA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction”,
Proceedings of the 36th International Symposium on Microarchitecture, December, 2003.
[5] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, Keith I. Farkas,
“Single –ISA Heterogeneneous Multi-Core Architectures for Multithreaded Workload Performance”,
Proceedings of the 31st International Symposium on Computer Architecture, June, 2004.
[6] Anirudh Devgan, “LAVA: Leakage Avoidance and Analysis”, IBM User’s Guide, 2004.
[7] Transmeta Corporation, “Transmeta LongRun Dynamic Power/Thermal Management”,
http://www.transmeta.com/crusoe/longrun.html.
[8] Deva Bodas, “New Server Power-Management Technologies Address Power and Cooling
Challenges”, Technology@Intel, http://www.intel.com/update/contents/sv09031.htm.
[9] S. Ghiasi and D. Grunwald, “Aide de Camp: Asymmetric Dual Core Design for Power and
Energy Reduction”, Technical Report CU-CS-964-03, Department of Computer Science, University of
Colorado, Boulder, May, 2003.
[10] S. Ghiasi and D. Grunwald, “Thermal Management with Asymmetric Dual Core Designs”,
Technical Report CU-CS-965-03, Department of Computer Science, University of Colorado, Boulder,
May, September, 2003.
[11] S. Ghiasi, “Aide de Camp: Asymmetric Multi-Core Design for Dynamic Thermal Management”,
Ph. D. thesis, Department of Computer Science, University of Colorado, Boulder, July, 2004.
[12] Timothy Sherwood, Erez Perelman, Greg Hamerly and Brad Calder, “Automatically
Characterizing Large Scale Program Behavior”, Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS X) , October, 2002,
pages 45-57.
[13] Ashutosh S. Dhodapkar and James E. Smith, “Comparing Program Phase Detection Techniques”,
36th Annual International Symposium on Microarchitecture (Micro-36),December, 2003.
[14] Allan Snavely and Larry Carter, ``Symbiotic Jobscheduling on the Tera MTA'', Workshop on
Multi-Threaded Execution, Architecture and Compilation (MTEAC'00), January, 2000.
[15] Guilian Anselmi, Derrick Daines, Stephen Lutz, Marcelo Okano, Wolfgang Seiwald, Dave
Williams and Scott Vetter, pSeries 630 Models 6C4 and 6E4 Technical Overview and Introduction,
IBM Corporation, December, 2003.

[16] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.C. Burger, S.W. Keckler, and C.R.
Moore, "Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture," Proceedings of the
30th International Symposium on Computer Architecture (ISCA-30), June, 2003.
[17] Cristiana Amza, Anupam Chanda, Alan L. Cox, Sameh Elnikety, Romer Gil, Karthick Rajamani,
Willy Zwaenepoel, Emmanuel Cecchet and Julie Marguerite, Specification and Implementation of
Dynamic Web Site Benchmarks, IEEE 5th Annual Workshop on Workload Characterization (WWC-5),
November, 2002.

