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NEUTRAL ONE–DIMENSIONAL ATTRACTOR OF A

TWO–DIMENSIONAL SYSTEM DERIVED FROM NEWTON’S

MEANS

Tomasz Nowicki and Grzegorz Świrszcz

IBM Watson Research Center
1101 Kitchawan Road, Route 134

P.O. Box 218
Yorktown Heights,NY 10598, USA.

Abstract. We investigate a special case of Newton’s means as an example of a
two dimensional rational dynamical system with an observed neutral behavior. We

provide the reason for such a behavior and state a program for further investigations.

1. Newton’s means. The most known case of means as dynamical systems is the
case of arithmetic-geometric means, which form a 2-to-2 iterative relation in C2,
ĝ2 = ag, 2â = a + g, and its limit value (in case a, g > 0) can be used to calculate
elliptic integrals. There are no obvious generalization of this system.

Newton’s means are the generalization of a system of arithmetic-harmonic means
(a, h) 7→ ((a + h)/2, 2/(a−1 + h−1)), with two advantages: the system is given by a
map (not a relation) and the map is rational. As it will be explained below Newton’s
means are related to the zeros of the polynomials which, by itself, makes them an
interesting object of investigation.

The object of the present study is a two dimensional dynamical system derived
from the Newton’s means in case of three variables. There are not many specific
examples of two dimensional relatively simple maps with interesting dynamics. Our
map shows some resemblance to the two dimensional map of a triangle considered
in [5] (a problem by Sharkovsky). There, a segment was invariant and the dynamic
on it was that of a full quadratic map. It was proven that this invariant set attracts
a dense subset of a triangle, and that there exists a dense subset of a triangle
consisting of points not being attracted by the invariant set, but whose ω–limits
are not disjoined with the invariant set. This map was defined by two quadratic
polynomial. Our map is defined by rational functions and it’s degree is higher,
consequently the dynamics are much more complicated.

1.1. Definition and known properties. Fix n ≥ 2. Let x = (x1, . . . xn) ∈ Cn.
Denote ck =

(

n
k

)

, then for k = 0, . . . , n we define standard symmetric polynomials
sk(x), normalized symmetric polynomials pk(x) and for k > 0 the k-th Newton
mean x̂k by

sk(x) =
∑

A⊂{1,...,n}
#A=k

∏

m∈A

xm , pk(x) =
sk(x)

ck
, x̂k =

pk(x)

pk−1(x)
.
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Clearly by Vieta’s formulas x are zeros of the polynomial Wp(z) =
∑

(−1)kckpk(x)zn−k.
It follows in particular that the discriminant D(x) of this polynomial is of constant
sign. A discriminant of a polynomial is an algebraic expression of its coefficients
which is zero when the polynomial has at least one multiple root.

According to [1] already Newton [3] knew that for any real x we have:

pk−1(x)pk+1(x) ≤ pk(x)
2
, (1.1)

which shows that for x > 0 (all coordinates) one has

min(xm) ≤ x̂n ≤ · · · ≤ x̂1 ≤ max(xm)

and explains the name.
Let F (x) = x̂. It was proven previously that:

Theorem I (Same signs [4]). Let H(x) denote the convex hull of the points

x1, x2, . . . , xn ∈ C. If H(x) ⊂ C \ {0} then H(x̂) ⊂ H(x) has the same property and

FN (x) → x0(1, 1, . . . , 1) with xn
0 =

∏n
m=1 xm.

Theorem II (Different signs [2]). For any n ≥ 2 there exists an invariant planar

curve Γ which in the coordinates ak = xk+1/(xk+1 − xk), k = 1, . . . , n − 1 is an

ellipse, where the dynamics of F is conjugated to the dynamics of z 7→ zn on the

unit circle. The conjugacy is given by the natural parametrization of the ellipse by

the argument.

One can prove [2] that for real x different signs is an invariant property under
F . Numerical observations show that the invariant curve attracts a large set of
trajectories. For n > 3 and starting points in a large set the attracting curve
is visible after a few (below 100) iterates, which suggests that it is a hyperbolic
attractor. In the case n = 2 all the dynamic is (2-to-1 semi-) conjugate to the
z → z2 on S1, as it will be explained shortly.

In the case n = 3 the high iterates of any starting point seem to form a double
line around the invariant curve, approaching very slowly (after thousands of iterates
the distinction is still visible) cf. Figure 4. As usual in simulations this maybe due
to the numerical errors, but clearly is not compatible with a hyperbolic attraction.
We shall provide a partial explanation of such behavior. The dynamics reduced to
its natural dimension are complicated as the map contains unavoidable singularities.

1.2. Dimension of the problem. Before we go any further we remark that for
any n as F (λx) = λF (x) the map is homogeneous of degree 1 and that the product
∏n

k=1 xk is invariant. Therefore one can reduce the dimension of the problem as
the dynamics on the surfaces of constant (non-zero) product are all conjugated by
the rays. The map of the implied n − 1 dimensional system will be denoted G. It
depends on the way we reduce the number of variables, but usually conserves some
symmetry and is still rational.

On the other hand one can investigate a polynomial map on variables p:

p̂k =
1

ck

∑

A⊂{1,...,n}

♯A=k

∏

m∈A

pm

∏

m/∈A

pm−1 k = 0, . . . n ,

getting rid of the denominators by the price of working in one dimension higher [2].
This map is polynomial and homogeneous of degree n, however it is not projective
as non-zero arguments can have zero values.
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We shall reduce the original n dimensional system to two n − 1 dimensional
equivalent ones. Firstly we can get rid of the homogeneity using the variables from
Theorem II. Secondly we can use the variables p, with the provision p0 = 1 = pn.
This is possible as the equality p0 = pn can be achieved by the rescaling of the
variable z and is invariant. The equality to 1 can be done by dividing the polynomial
by the coefficient at the highest power of z, which does not change the roots.

1.3. Case n = 2. In this case the choice of the variable a = x2/(x2 − x1) yields
1–dimensional dynamics of the full quadratic map a 7→ â = G(a) = 4a(1− a). This
map is derived from the 2-to-1 projection of (x, y) = z → z2 = (x2 − y2, 2xy) from
the unit circle |z|2 = x2 + y2 = 1 onto the diameter y = 0,−1 ≤ x ≤ 1, where
x 7→ x̂ = 2x2 − 1, which becomes â = 4a(1− a) if a = (1− x)/2. The map is 2-to-1
on the invariant interval [0, 1], which is its Julia set, and for any w ∈ C \ [0, 1] the
iterations GN (w) → ∞, which in this coordinates represent the super sink of the
iterations in other words the condition x1 = x2 (equal to the geometric mean of the
two).

Now we are ready to investigate the case n = 3.

F (x1, x2, x3) =

(

x1 + x2 + x3

3
,

x1x2 + x2x3 + x3x1

x1 + x2 + x3
,

3x1x2x3

x1x2 + x2x3 + x3x1

)

.

As said above we shall use two equivalent sets of coordinates, and we shall use the
same letter G to denote the map in both systems. Although, from the formal point
of view, these are two different maps, this notation is intuitive, and it will always
follow clearly from the context which of the two maps we are considering. We shall
denote by G1 (G2) the first (second) coordinate of G respectively.

2. Dynamics around the ellipse – coordinates (a, b). We first describe the
dynamical system expressed in coordinates:

a =
x2

x2 − x1
, b =

x3

x3 − x2
,

which is defined by G(a, b) = (â, b̂):

â =
3a(1 − b)(1 − a − 2b + 3ab)

(a − b)2 + 1 − a − 2b + 3ab
,

b̂ =
3(1 − a)b(1 − 2a − b + 3ab)

(a − b)2 + 1 − 2a − b + 3ab
.

2.1. Invariant sets. The invariant ellipse E is given by the equation:

a + b − a2 − ab − b2 = 0 ,

and with its parametrization:

a(t) =
1 − cos(t) +

√
3 sin(t)

3

b(t) =
1 − cos(t) −

√
3 sin(t)

3
,

we have G(a(t), b(t)) = (a(3t), b(3t)) on E , conforming with Theorem II. All the
dynamics happen inside the parabola:

D(a, b) = (a − b)2 + 2(a + b) − 3 ≤ 0 ,

which is the discriminant of p0z
3 − 3p1z

2 +3p2z + p3 in the coordinates (a, b). This
is stronger than a ≤ 1, b ≤ 1 which follow from the Newton’s inequalities (1.1). The
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Figure 1. Invariant sets in coordinates (a, b).

latter with same signs condition implies a ≤ 0 and b ≤ 0, hence the different signs
condition is satisfied in the region bounded by the discriminant parabola and the
(invariant) axis a = 0 and b = 0. Remark that the axis have no good interpretation
in variables xk, however the behavior of the iterations of G in the neighborhood of
the axis relates to the behavior of the iterates of F . In particular from the six fixed
points of G: (0, 0),

(

2
3 , 2

3

)

, (0,−1−
√

3), (0,−1+
√

3), (−1−
√

3, 0) and (0,−1+
√

3)
only the second one produces a fixed point of F , but the invariant manifolds of the
others produce invariant sets for F . On the other hand the points x1 = x2 = x3

which are fixed for F produce a super sink at infinity for G. The point (0,0) is a
repelling linear node with diagonal linearization matrix whose both eigenvalues are
equal to 3. The points (−1 −

√
3, 0) and (0,−1 −

√
3) are hyperbolic saddles with

stable manifold along the axis (resp. b = 0 and a = 0) and a transversal unstable
manifold. The map on each of the axis is a two-fold, conjugated to the full quadratic
map z 7→ 4z(1 − z).

The unstable invariant manifold of
(

2
3 , 2

3

)

is the ellipse while the line a = b is
invariant with a neutral (order reversing) attractor at this point with dynamics
governed by the map z 7→ 3z(1 − z).

2.2. Discontinuities. The map G is not continuous only at two points: (1, 0) and
(0, 1) which lie on the intersection of the ellipse, the parabola and the border line
a = 1 (resp. b = 1). The images of discontinuity points depend on the angle of
approach and with the approach tangent to the border line they are mapped into
(0, 0) with the angle of approach to the image depending on the second order term.
The preimages of the discontinuity points are hyperbolas, if we approach a point on
the hyperbola we obtain a specific tangential approach to the discontinuity point
and in the next step a specific angular approach to (0, 0). We describe this in
details as the invariant ellipse crosses the hyperbolas and so would any bassin of
its attraction. Hence any invariant domain would be pinched at the discontinuity
points and thus also at the origin.

The map G is singular (locally irreversible) on the hyperbolas and on the line
a+b = 1 which is mapped onto the discriminant parabola. This is the two-fold. On
the other hands the hyperbolas, the axis and the diagonal a = b form a partition
which is mapped onto itself in a three-fold way.
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3. Dynamics around the line – coordinates (d, s). In order to rectify the
invariant ellipse we use the second set of coordinates: u = p1(x1, x2, x3) = x1+x2+x3

3 ,

v = p1(x1, x2, x3) = x1x2+x2x3+x3x1

3 . It is easy to check that:

û =
1

3

(

u +
1

v
+

v

u

)

,

v̂ =
1

3

(

1

u
+

u

v
+ v

)

.

Remark 1. Observe that (u, v),
(

1
v , 1

u

)

,
(

v
u , 1

u

)

,
(

u, u
v

)

,
(

1
v , u

v

)

,
(

v
u , 1

u

)

form a group
of substitutions isomorphic to the group of permutations of 3 elements, the roots
of the polynomial of degree 3. Hence the preimages of a given (û, v̂) form a group.

A calculation shows that u = v and u + v = −1 are invariant, the former rep-
resenting the diagonal a = b and the latter the invariant ellipse. In order to make
the axis invariant we rotate the coordinates d = u − v, s = u + v + 1, losing the

symmetry. Now system takes the form G(d, s) = (d̂, ŝ),

d̂ =
d(d2 − (s − 3)2)

3(d2 − (s − 1)2)
,

ŝ =
s(3 + d2 − 2s − s2)

3(d2 − (s − 1)2)
.

The line s = 0 corresponds to the ellipse E , we denote it by P.

Remark 2. In this coordinates Theorem II applies to the dynamics of P. Indeed:

G(
√

3 cot(ϕ), 0) =
√

3 cot(3ϕ) .

3.1. Invariant regions. The zeros of the discriminant D of the polynomial W (z) =
z3 − 3uz2 + 3vz − 1 defines an algebraic curve γ:

D(u, v) = 1 + 4u3 − 6uv − 3u2v2 + 4v3

In the coordinates (d, s) we get the expression D(d, s) = −27− 18d2 − 3d4 + 108s +
36d2s − 90s2 + 6d2s2 + 28s3 − 3s4 (up to multiplicative constant).

Remark 3. The curve D(d, s) = 0 divides the real plane into three regions ∆−, Σ
and ∆+. The image G(R2) = ∆− ∪ ∆+. Moreover, both regions ∆− and ∆+ are
forward–invariant, more precisely G(∆−) ( ∆− and G(∆+) ( ∆+.

3.2. Behavior near the line at infinity. We shall use standard projective coor-
dinates

w = 1/d, z = s/d .

We get

ŵ =
3w((w − z)2 − 1)

(3w − z)2 − 1
,

ẑ =
z(z2 + 2wz − 3w2 − 1)

(3w − z)2 − 1
.

Note that ẑ|{w=0,z} = z, so for every curve γ intersecting the line at infinity its

image has the same asymptotic as the original curve.
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Figure 2. Invariant regions for the map G, preimages of ∞ and
preimages of the curve D(d, s) = 0.

The derivative at the line w = 0 is equal to:

(

3 0
8z2

z2−1 1

)

.

That means that infinity is a hyperbolic repellor. This corresponds to the dynam-
ics near the origin in the (a, b) coordinates (where locally the directions are also
invariant).

4. Invariant vector field. On the axis s = 0 the map is strongly mixing, hence
the typical behavior of a trajectory is commanded by an average properties of the
points. The very slow approach of the trajectories to the axis s = 0 suggests that
the map is in the average neutral in the transversal direction. in fact a stronger
fact holds.

Theorem . There exists a vector field v(d), v : R → R2 such that

dG(d, 0)(v(d)) = v(d̂(d, 0)) . (4.1)

The field v(d), where d =
√

3 cot ϕ can be written explicitly

v(d) =
1

sin2(ϕ)





−2
∞
∑

n=0

sin(3nϕ) sin(2·3nϕ)
3n

√
3 sin(ϕ)



 . (4.2)

Therefore in the average the first approximation of the map neither moves away
nor approaches the axis in the transversal direction.

Remark 4. Note that formula ((4.2)) defines actually two vectors attached to each

point (0, d). Indeed, when we replace ϕ with ϕ+π, d =
√

3 cot ϕ remains unchanged,
but the vector v(d) changes sign. This is why we present v using parametric rep-
resentation, instead of striving to express v using coordinates (d, s). This explains
also the double winding of the iterates around the invariant curve.

Figure 3 shows a curve defined by (d(ϕ), 0) + 0.55v(d(ϕ)).

Remark 5. Vector field v given by (4.2) is continuous, but not differentiable. Indeed,
it’s first coordinate looks like a famous nowhere–differentiable Weierstraß function.
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Figure 3. Invariant vector field.

Proof of Theorem . We start with the formula for dG on the d axis. It is natural
to use coordinate d =

√
3 cot ϕ (see Remark 2). We have:

dG
∣

∣

∣(
√

3 cot ϕ,0 =

(

3
(1+2 cos(2α))2

2
√

3 sin(2α)

(1+2 cos(2α))2

0 1
1+2 cos(2α)

)

=

(

3 2
√

3 sin 2ϕ

0 sin 3ϕ
sin ϕ

)

·
(

sin ϕ

sin 3ϕ

)2

.

Denoting w(ϕ) = sin2 ϕv(ϕ) we obtain reformulation of Equation (4.1)

w(3ϕ) =

(

3 2
√

3 sin 2ϕ

0 sin 3ϕ
sin ϕ

)

· w(ϕ) . (4.3)

Let w1, w2 denote the first and the second coordinate of w respectively. From (4.3)

we get w(3ϕ) = sin(3ϕ)
sin(ϕ) = w(ϕ), so we can chose w2(ϕ) =

√
3 sin(ϕ). Now we get

the equation w1(3ϕ) = 3[w1(ϕ) − (cos(3ϕ) − cos(ϕ))] and thus inductively:

w1(ϕ) =
∞
∑

n=0

1

3n

[

cos
(

3n+1ϕ
)

− cos (3nϕ)
]

.

Using cos(3ϕ) − cos(ϕ) = −2 sin(2ϕ) sin(ϕ) we get:

w1(ϕ) = −2

∞
∑

n=0

sin (3nϕ) sin (2 · 3nϕ)

3n
,

and:

v(ϕ) =
1

sin2(ϕ)





−2
∞
∑

n=0

sin(3nϕ) sin(2·3nϕ)
3n

√
3 sin(ϕ)



 .

The ragged character of the invariant field makes it impossible to construct a
smooth family of smooth curves that descends toward the invariant curve and are
mapped monotonously into itself.

5. Simulations and numeric approximations. Numerical simulations clearly
indicate, that the ellipse E in coordinates (a, b) (and – consequently – the line P
in coordinates (d, s)) is an attractor. For a random choice of starting points their
images converge to E and P respectively, see Figure 4.

Next Figure 5 shows unstable manifold of the point (0,−1−
√

3). It is ”winding
up” onto the invariant ellipse E in a complicated, irregular way. A small portion
of the unstable manifold extends toward the hyperbola, then under one iteration
reaches the discontinuity point, and under the next one runs around the ellipse. All
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-0.75 -0.5 -0.25 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

-0.75 -0.5 -0.25 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

-0.75 -0.5 -0.25 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

-0.75 -0.5 -0.25 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Figure 4. Subsequent images of a small circle under the action
of G. Images of iterates number 0 (the original set), 1, 2, 3; then
10, 50; next 150, 350; and finally 650, 1150, 2150.
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Figure 5. Unstable manifold of the fixed point (0,−1 −
√

3).

subsequent iterates repeat the process while keeping the old portion invariant, and
we obtain an invariant curve which runs around the ellipse infinitely many times.

Figure 6 below shows 9 generations of preimages of the point (0,−1) in the
coordinates (d, s). They seem to slowly approach the line P, which might suggest
that it is not an attractor.

However, the approaching is very slow, and the observed phenomenon is specific
only for this particular system of coordinates. Indeed, an analogous picture in
coordinates (a, b) does not show any such behavior. One might argue that there is
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Figure 6. Preimages of the point (0,−1) in coordinates (d, s).
and of the point (−.515 . . . , .576 . . . ) in coordinates (a, b).
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Figure 7. ”True” and ”linear” images of the invariant vector field v.

a visible gap between the preimages and P which might suggest the existence of the
bassin of attraction.

Figures 4 and 5 strongly suggest the existence of an invariant open set in the
shape of a ”triple sausage” containing the ellipse. It is worth noting that we obtain
very similar figures for any choice of starting point, as long as it is in ”general
position”, i.e. not on any invariant line etc.

5.1. Image of the invariant vector field v. The vector field v is invariant under
the action of G more precisely, it is invariant with respect to the map dG acting on
the tangent bundle TR2. It is not true in general that G ((d, 0) + v(d)) = G(d, 0) +
v(G1(d, 0)). The next picture shows difference between the ”linear” and ”true”
images of the vector v. More rigorously speaking, the long arrows at the picture are
the vectors G(d, 0)+dG|(d,0)v(d) and the short arrows are the vectors v(G1(d, 0))−
dG|(d,0)v(d) attached at points G(d, 0) + dG|(d,0)v(d).

Strikingly, the ”true” images of vectors v are almost colinear with their ”linear”
images. This means, that although the lamination by straight segments (d, 0)+tv(d)
is not invariant, the map G perturbs it very slightly from small t. Of course, under
further iterations the perturbation increases rapidly due to the strong expansion in
the direction tangent to the invariant curve.

The next interesting observation is, that the ”true” images of v lying above the
line P are all shorter then their ”linear” images, while the ”true” images of v lying
below the line P are all longer then their ”linear” images.

We made many attempts to find a region Ξ bounded by two graphs of functions,
such that the line P would be contained in Ξ and that the image of Ξ would
contained in it. This seemed to be a natural way to prove formally that P (and
consequently E) is an attractor. Also, many simulations seemed to suggest that
such construction should be possible. We found a smooth perturbation of a curve
γ = (d(ϕ), 0) + εv(d(ϕ)), namely γ̃ = (d(ϕ), 0) + 0.06(1 − 0.2 sin2(2ϕ))v(d(ϕ)) such
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that the image of γ̃ is contained in the stripe Ξ containing P bounded by γ̃. However
such region Ξ is not invariant under G, a boundary of it’s image is not the image of
it’s boundary. In fact, already the second iterate of γ̃ is no longer contained in Ξ.

The reason we believe that the ellipse is an attractor after all is the following:
any trajectory close enough to E (or P) winds around it as it follows the strong
eigen direction along the invariant curve and for a long time mimics the trajectory
on the curve, therefore (by ergodicity) visits often the neighborhood of the fixed
point (2

3 , 2
3 ) where it is attracted to the curve.

6. Conjectures and open questions.

Conjecture . Basing on the numeric simulations and theoretical investigations we
conjecture that the following assertions hold

1. There does not exist any open, proper subset A of ∆− containing the line
s = 0 with the property G(A) ⊂ A.

2. For any P–nowhere dense subset of the axis s = 0 there is no open, proper
subset B of ∆− containing the set {s = 0} \ P with the property G(B) ⊂ B.

3. The set C = {(d, s) : ω(d, s) ⊂ {d = 0}} of points being attracted by d = 0 is
a fractal set with positive measure.

4. The set D = {(d, s) : ω(d, s)∩{d = 0} 6= ∅} is a fractal set whose complement
in ∆− has measure 0.

5. For every open subset E of ∆− there holds
⋃∞

n=0 G(E) = ∆− .
6. For almost every (d, s) ∈ ∆− preimages of (d, s) form a dense subset of ∆−.
7. There exist an open set F containing the axis s = 0 and a continuous F

foliation of F with smooth leaves which is invariant under the action of G.
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